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Abstract: Electro-holography is a promising 3D display technology, as it can, in principle,
account for all visual cues. Computing the interference patterns to drive them is highly calculation-
intensive, requiring the design and development of efficient computer-generated holography
(CGH) algorithms to facilitate real-time display. In this work, we propose a new algorithm for
computing the CGH for arbitrary 3D curves using splines, as opposed to previous solutions,
which could only draw planar curves. The solutions are analytically expressed; we conceived an
efficiently computable approximation suitable for GPU implementations. We report over 55-fold
speedups over the reference point-wise algorithm, resulting in real-time 4K holographic video
generation of complex 3D curved objects. The proposed algorithm is validated numerically and
optically on a holographic display setup.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In computer-generated holography (CGH), the goal is to compute numerical diffraction patterns
for various applications in holography. Because of the wave-based nature of light, all points
in space can potentially affect all the wavefield pixels in the hologram, requiring intensive
calculations. One of the main challenges in CGH is to compute holograms efficiently while
minimizing accuracy loss. CGH has a broad range of applications, such as beam shaping [1],
optical trapping [2], or optical distortion correction [3].

This work focuses on holographic displays [4], which can be considered the ultimate 3D display
technology since they can account for all visual cues, i.e., accurate focus cues, continuous parallax,
realistic shading and occlusion, and no accommodation-vergence conflict [5]. Many types of
CGH algorithms have been devised [6], differently trading off calculation time and supported
visual effects and geometries. Among many others, there are point-cloud [7], layer-based [8],
and polygon-based [9] methods; there are various acceleration techniques as well, such as
sparsity-based methods [10–12] and look-up table (LUT) techniques [13]

Recently, deep-learning-based CGH has had a significant impact on holographic display
technology [14–16]. It has been used for accelerating or substituting different algorithmic
components in CGH, and is particularly useful for highly non-linear optimization processes
with complex loss functions [17,18], achieving unprecedented quality. However, they require
representative training data, and may behave unpredictably for outlier inputs given their often
black-box nature. This contrasts with the analytical approach taken in this paper. Analytical
solutions tend to be more predictable, precise and often computationally simpler, though they are
much less flexible and can be harder to optimize and integrate in end-to-end CGH systems.

We are considering “line-based CGH” techniques, allowing for efficient calculation of the
wavefront pattern created by line and curve segments, rather than sampling them as a dense series
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of points. We have proposed different techniques to that end [19–23]. Unlike these methods,
only planar curves were supported parallel to the hologram plane. The work in [24] partially
addressed this shortcoming by proposing an algorithm for computing CGH for 3D wireframes;
however, this approach only supports straight lines but not 3D curves.

The present study alleviates this limitation by proposing a new algorithm for computing the
CGH of 3D splines. Our specific contributions are as follows:

• We derive an analytical model for the diffraction pattern created by short tilted line
segments and validate the model with numerical simulations.

• We generalize the geometric model in [21] for determining affected pixels by computing
intersections of circle segments with the projected spline.

• We propose efficient approximations for high-speed evaluation of the intersections and
wavefront amplitude value in each hologram pixel.

• A highly optimized version is implemented in CUDA for GPU, and we report real-time
CGH at video frame rates.

• The algorithm is validated both in numerical simulations and on a holographic display
setup.

Like its predecessors, the method does not need transforms (such as the FFT, STFT or wavelets)
or large amounts of precomputed data, which are essential for most of the layer-based, polygon-
based, sparsity-based, LUT-based, and deep-learning-based CGH methods. This facilitates
efficient implementation for GPUs or for specialized hardware implementations using FPGAs or
ASICs.

The remainder of this paper is organized as follows: in section 2., we derive an analytical
model for the wavefield emanating from short tilted line segment apertures; section 3. covers the
extended model for computing intersections in order to determine which hologram pixels need
updating; an efficient approximation and GPU implementation is discussed in section 4.; the
system is evaluated numerically and optically in section 5., and we finally conclude in section 6..

2. Theory

We begin from the expression for a point-spread function (PSF) in holography, created by
a coherent luminous point at coordinates (δ, ϵ , ζ ≠ 0), which will create a complex-valued
interference pattern P in the hologram plane z = 0,

P(x, y) =
a
ζ
· exp

(︂ πi
λζ

[︁
(x − δ)2 + (y − ϵ)2

]︁ )︂
, (1)

where a is the point amplitude and λ is the wavelength of light. We can integrate this expression
to obtain the wavefront created from a line segment parallel to the hologram plane L∥ , which is
given by

L∥(x, y) =
∫ ℓ

−ℓ

a
ζ
· exp

(︂ iπ
λζ

[︁
(x − u)2 + y2]︁ )︂du, (2)

where a is now the constant line amplitude, and ℓ is half of the line segment length. Since
diffraction expressions are rotationally symmetric around the propagation axis z, we can choose
to align the line segment with the x-axis for notational simplicity without loss of generality. In
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the limit for an infinitely long line, Eq. (2) can be transformed to a pure y-function

lim
ℓ→∞

L∥(x, y) = U∥(y) = a

√︄
λ

ζ
exp

(︃
iπy2

λζ

)︃
, (3)

up to a constant phase term, which is omitted as it does not alter the appearance of the hologram
pattern. This expression was used in [21] to draw the CGH of planar curves lying in planes
parallel to the hologram plane, sweeping a section of this one-dimensional wavefield signal along
the curve, drawing this pattern on lines perpendicular to the curve in every point. This approach
will unfortunately not work for arbitrary 3D curves, which are not confined to constant-depth
planes, which we want to address in this paper. Let us now consider a line segment that is linearly
varying in depth. The integral now becomes [25]

L(x, y) =
√︁

1 + m2
∫ +ℓ

−ℓ

a
ζ(u)

· exp
(︃
πi
λζ(u)

[︁
(x − u)2 + y2]︁ )︃du, (4)

where ζ(u) = mu + d is the linearly varying depth. We use the substitutions ρ = d
m , r =√︁

(x + ρ)2 + y2, β = 2π
λm and u = mrv − ρ, to get

a
m

√︁
1 + m2 · exp (−iβ(x + ρ)) ·

∫ +mrℓ−ρ

−mrℓ−ρ

1
v

exp
(︃
iβr
2

[︃
v +

1
v

]︃ )︃
dv. (5)

This integral has a radial symmetry in r, around the midpoint (−ρ, 0). We can use another
substitution, eµ = ν, to solve for the integral part with general bounds∫ w

0

1
eµ

exp
(︃
iβr ·

eµ + e−µ

2

)︃
deµ =

∫ w

0
exp (iβr cosh µ)dµ = I0(w, βr), (6)

where Iν(w, ·) is the incomplete modified Bessel function of the first kind and order ν [26,27]. To
our knowledge, this is the first time a precise analytical expression is given for computing the
diffraction pattern for tilted line segment apertures.

We can also take the limit of this expression for lines tending to infinite length,

lim
ℓ→∞

L(x, y) = a
√︁

1 + m2 · exp(−iβ(x + ρ)) ·
−2πi

m
J0(βr), (7)

where Jν(s) is the Bessel function of the first kind of order ν. Note that instead of having a
symmetry along the y-axis as for the parallel line case, we now have a different radial symmetry
along r. This effect can also be observed experimentally, where short tilted line segments create
radially symmetric patterns with radius ρ, see Fig. 1.

Assuming that the signal is thus the most significant at radius r = ρ, we can express the latter
along the circle with radius ρ, centered in (−ρ, 0) along the angular parameter φ:

a
m

√︁
1 + m2 · J0(βρ) · exp (iβρ cos φ) , (8)

since x = ρ(cos φ − 1). This can be viewed as a generalization of parallel line segments with
zero tilt, tending in the limit to an infinite radius, resulting in a straight line. We will utilize this
principle to draw circular-segment-shaped wavefronts along the curve instead of line-shaped
ones to obtain holograms of general 3D curves, which we elaborate on in the next section.
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(a) 𝜌 = 2.5mm (b) 𝜌 = 5.0mm (c) 𝜌 = 10.0mm (d) 𝜌 = 20.0mm

Fig. 1. Intensity of generated holograms of short tilted line segments shown in grayscale.
The superimposed red circle segment had radius ρ and origin (−ρ, 0), demonstrating the
accuracy of the derived model. Simulation parameters: λ = 532 nm, pixel pitch p = 8 µm,
resolution of 2048 × 2048 pixels with origin at the center.

3. Methodology

We consider 3D quadratic spline g(t) bounded by t ∈ [−1,+1], whose spatial coordinates are
described by three quadratic polynomials

g(t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gx(t) = axt2 + bxt + cx

gy(t) = ayt2 + byt + cy

gz(t) = azt2 + bzt + cz

, (9)

where {gx(t), gy(t), gz(t)} denote the Cartesian components of the spline along every dimension.
In previous work, we only considered planar splines placed at a constant distance gz(t) = cz

from the hologram plane, which amounts to the special case where az = bz = 0. For every
sample on the hologram plane, one needs to find out which points on the spline would contribute
to what part of the holographic signal. Starting with the planar curve case gxy(t) (ignoring the
z-component gz(t) for now), we have to find out which of the lines orthogonal to the curve
intersect with the target sample with coordinates (u, v). This amounts to solving the equation

h(t) • g′
xy(t) = |h(t)| ·

|︁|︁g′
xy(t)

|︁|︁ · cos θ, (10)

where “•” is the dot product, |·| is the Euclidean norm, the prime symbol ′ denotes the derivative
in t, and h(t) is the relative distance function parameterized by t, given by

h(t)

{︄
hx(t) = gx(t) − u
hy(t) = gy(t) − v.

(11)

For planar splines, the lines intersect the curve at orthogonal angles θ = π
2 as shown on

Fig. 2(a), so that cos θ = 0, making the right-hand side of Eq. (10) zero. The left-hand side is the
sum of two products of a quadratic polynomial with a linear polynomial,

h(t) • g′
xy(t) = hx(t)g′

x(t) + hy(t)g′
y(t), (12)

resulting in a cubic polynomial which can be solved analytically.
We extend this now for the general case where cos θ ≠ 0, whenever we consider intersections

with circles rather than straight lines. In Fig. 2(b), we can see that the angle θ is part of an
isosceles triangle, with base length |h(t)| and leg lengths ρ(t). Using the law of cosines, we get

cos θ =
ρ(t)2 + |h(t)|2 − ρ(t)2

2ρ(t) |h(t)|
=

|h(t)|
2ρ(t)

. (13)

From the previous section, we know that the circle arc describing the signal is given by ρ = d
m

for an infinitesimal line segment with depth d and slope m along the z-dimension. This value is
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(a) reference model
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( )

( )
( )
( )

(b) extended model

Fig. 2. Geometric problem to solve for the (a) special case of the planar spline, and (b) the
general case of a 3D spline.

thus now parameterized along the curve by the function

ρ(t) =
gz(t)
g′

z(t)
, (14)

which will tend to infinity when g′
z(t) → 0, matching the previous case of a straight line with

infinite radius of curvature. Substituting these findings in Eq. (10), we get

h(t) • g′
xy(t) =

1
2
|h(t)|2

|︁|︁g′
xy(t)

|︁|︁ g′
z(t)

gz(t)
, (15)

which we should solve for t to obtain all intersections and computing the CGH.

4. Implementation

Solving Eq. (15) analytically is not feasible in general, since it consists of a product of high-order
polynomials and square-root terms of t because of

|︁|︁g′
xy(t)

|︁|︁. Since we are looking for solutions
within a bounded interval t ∈ [−1,+1], this can be numerically solved with root finding algorithms.
However, these are not suitable for use on GPU; we would have to solve this complex expression
using root-finding once in every pixel, leading to high computational load and thread divergence.
Thus, this expression needs to be simplified further, ideally to become similar in complexity to
the previous special planar spline curve case using a cubic polynomial solver.

Thankfully, parts of the expression Eq. (15) are common to all pixels, i.e., those that do not
depend on u or v. As this should happen only once, these shared parts can be processed on the
CPU beforehand, rendering the calculation cost comparatively negligible.

We can rewrite expression Eq. (15) to the form

f0(t) + f1(t)u + f2(t)v + f3(t)(u2 + v2), (16)

where the fj(t) are some expressions purely in t. We now want to obtain the least-square cubic
polynomial approximation pj(t) for each fj(t), namely

arg min
pj

∫ +1

−1

(︁
fj(t) − pj(t)

)︁2 dt where pj(t) =
3∑︂

k=0
pj,k · tk (17)
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and organize the coefficients into a matrix multiplication expression

M · u =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

p0,0 p1,0 p2,0 p3,0

p0,1 p1,1 p2,1 p3,1

p0,2 p1,2 p2,2 p3,2

p0,3 p1,3 p2,3 p3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

u

v

u2 + v2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (18)

where the consecutive rows of M correspond to increasing powers of t, and the consecutive
columns correspond to the different instances j of approximations to the fj(t). The coefficients of
M only have to be computed once per curve segment. The values for u are pixel-dependent, so
that this small matrix product should be computed in every pixel (u, v). The resulting 4 values
correspond to the coefficients of a cubic polynomial that should be solved in each pixel.

To find M numerically, we can uniformly sample the interval t ∈ [−1,+1] with Q samples
{t1, t2, . . . , tQ}, and find a least squares solution to the matrix system F = T · M, defined as

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f0(t1) f1(t1) f2(t1) f3(t1)

f0(t2) f1(t2) f2(t2) f3(t2)
...

...
...

...

f0(tQ) f1(tQ) f2(tQ) f3(tQ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 t1 t21 t31
1 t2 t22 t32
...

...
...

...

1 tQ t2Q t3Q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
· M (19)

for which we can precompute the Moore–Penrose inverse T+ = (TTT)−1TT, which will be
the same for all curve segments, where T is the matrix transpose. We can then calculate the
least-squares solution M = T+F. The precise chosen value of Q appears to have a limited effect
on the final quality of the hologram. Moreover, it’s impact on computation time is negligible. In
this work, we chose Q = 32.

We also need to consider whether a pixel is too far from a curve point, potentially giving rise
to aliasing due to the signal frequency exceeding the Nyquist-Shannon bound, determined by
the hologram pixel pitch p that is inversely proportional to the sampling rate. For the Fresnel
approximation, the PSF shape should be a square [24]. We use a bounding box around the
projected curve on the hologram plane to skip evaluating pixels that are too far away, thereby
speeding up calculations. In addition, for valid solutions, we should verify whether

max
(︁
|hx(t)| ,

|︁|︁hy(t)
|︁|︁)︁ <λgz(t)

2p
(20)

holds. To summarize, in order to determine the wavefront pattern created by a 3D spline, we
need to solve a cubic equation in t for every pixel within the bounding box, whose polynomial
coefficients are given by the matrix product M ·u. This will give rise to either 1 or 3 real solutions.
Only real solutions satisfying both t ∈ [−1,+1] and Eq. (20) will be used.

Whenever a sample pixel satisfies all of the above, we need to compute its complex-valued
amplitude contribution with Eq. (8). We would like to re-use the already computed value of h(t)
instead of finding φ. This can be accomplished by utilizing the fact that |h(t)| is the chord length
of a circular arc with subtended angle φ, cf. Fig. 2(a). We can thus utilize the inverse of the
chord function to get the relationship

φ = 2 arcsin |h(t) |
2ρ(t) . (21)

By using the identity cos (2 arcsin z) = 1 − 2z2 in the last factor of Eq. (8), we now obtain the
expression

a exp
(︃
πi

2λgz(t)
|h(t)|2

)︃
(22)
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simplified by omitting the preceding factors which are constant in φ. This closely matches the
expression from Eq. (3).

5. Experiments

We report two sets of experiments in this section, numerical experiments and optical experiments.
The numerical experiments mainly evaluate computation speed, objective visual quality and
numerically reconstructed views from the generated holograms. The optical experiments test and
validate the algorithm speed and quality on a real-time holographic video display system.

The algorithms were implemented in CUDA enabling massively parallel GPU computation.
They were run on a machine with an AMD Ryzen Threadripper 3960X processor, 64 GB
of RAM and a NVIDIA Geforce RTX 3080 GPU running a Windows 11 OS. The code was
implemented in C++17 with CUDA 11.6, enabling CUDA compute capability 8.6 and utilizing
32-bit floating-point precision. The experiments used the 3D models shown in Fig. 3.

(a) “Sphere” 3D model (b) “Spring” 3D model

Fig. 3. Representations of the two 3D models used in this paper. The models are color-coded
according to their z-coordinates for viewing clarity.

5.1. Numerical experiments

For the numerical experiments, we use a hologram with a resolution of 4096 × 4096 pixels, a
pixel pitch of p = 4 µm, and a wavelength of λ = 532 nm. This was compared with the reference
algorithm, where the splines were sampled using a minimal point sampling density of p to ensure
that the lines appear continuous [20]. This was computed via Eq. (1):

H(x, y) =
∑︂

j
aj · exp

(︂ πi
λζj

[︁
(x − δj)2 + (y − ϵj)2

]︁ )︂
(23)

computing the hologram pattern H by summing over multiple PSFs, where (δj, ϵj, ζj) are the
3D point cloud coordinates and aj their corresponding amplitudes, for a sampled point cloud
consisting of NP points, so that j = {0, 1, . . . , NP − 1}. Pixels were only updated if they would
not cause aliasing, i.e., the PSF affects pixels in a bounded square region as explained in [24].
Besides improving accuracy, this will also speed up the reference algorithm calculation times,
resulting in a fairer comparison.

For both algorithms, a single GPU thread was assigned for every hologram pixel. In the
reference method, each thread loops over every point and updates the hologram pixel according to
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Eq. (23). In the proposed method, each thread loops all spline objects. For every spline, a thread
performs a small matrix multiplication to obtain the cubic polynomial coefficients, cf. Eq. (18).
This is followed by solving the cubic and using the solutions to update the pixels, analogous
to the approach in [21]. In both algorithms, pixels too far away from the luminous object are
skipped. Since these pixels tend to be in large contiguous segments, they will also mostly appear
together in CUDA thread blocks, minimizing thread divergence and thus benefiting performance

Both algorithms were run 10 times to average the calculation times. For the “sphere” model,
the reference algorithm took 1647.5 ms, while the proposed algorithm only took 29.5 ms. For the
“spring” model, the reference and proposed algorithms took 2724.7 ms and 35.5 ms, respectively.
We thus report speed improvements surpassing a factor of 55 over the reference implementation.

The visual quality is assessed by calculating the peak signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM) between reconstructed views of the holograms taken
from the reference and proposed algorithms, respectively. These were obtained by numerically
backpropagating the holograms using the angular spectrum method with zero-padding, taking the
absolute value, and creating 1024 × 1024 8-bit grayscale images, as shown in Fig. 4. Both virtual
object centers were placed 8 cm from the hologram plane, where the reported reconstruction
depths are taken relative to that center. The “sphere” was reconstructed at relative depths of −4
and +5 mm, giving PSNRs of 30.85 and 29.93 dB, and SSIMs of 0.906 and 0.902; the “spring”
was reconstructed at depths of −5 and +3 mm, resulting in PSNRs of 29.74 and 31.95 dB, and
SSIMs of 0.896 and 0.912, for each respectively. This demonstrates that the proposed algorithm
can calculate 3D spline object CGH at high speeds and acceptable visual quality.

(a) sphere ref. (−4mm) (b) sphere ref. (+5mm) (c) spring ref. (−5mm) (d) spring ref. (+3mm)

(e) sphere prop. (−4mm)
PSNR = 30.85dB

SSIM = 0.906

(f) sphere prop. (+5mm)
PSNR = 29.93dB

SSIM = 0.902

(g) spring prop. (−5mm)
PSNR = 29.74dB

SSIM = 0.896

(h) spring prop. (+3mm)
PSNR = 31.95dB

SSIM = 0.912

Fig. 4. Images of the numerically reconstructed of the “sphere” and “spring” holograms.
The reference point-wise algorithm and the proposed 3D spline algorithm are shown, denoted
“ref.” and “prop.” in the figure subcaptions. The images are calculated by taking the absolute
value after backpropagating the hologram to a depth offset from the object center, denoted in
brackets expressed in mm.

Although the used test objects each consist of a single smooth curve, this is not a requirement.
Discontinuities or singular points (such as cusps) are supported as well. Since the computed
spline diffraction patterns are independent, one can calculate the CGH of any number of splines,
by linearly adding their CGH patterns.
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In principle one can place objects at any display distance, but because of the bounded PSFs,
one should take the same considerations into account as the “wavefront recording plane” (WRP)
method [10]. Splines should ideally not be very close (less than 1mm or so) to the hologram
plane. Otherwise the PSF shape will only be a few pixels wide causing strong approximations
due to the coarse sampling. It may be desirable to put objects at some minimal distance from the
hologram plane. Large distances will not affect the accuracy, but will impact calculation time as
most or even all pixels will be affected. The latter can be addressed by combining the proposed
method with a WRP to further speed up the method for far or deep objects.

5.2. Optical experiments

For the optical experiments, we rendered holograms on a holographic display system shown on
Fig. 5. It consists of a phase-modulation type Spatial Light Modulator (SLM) (Jasper, ’JD7714’)
with a resolution of 4096 × 2400 pixels and a pixel pitch of p = 3.74 µm, a green laser with a
wavelength of λ = 532 nm (Thorlabs, ’CPS532’), a beam expander (Thorlabs, ’GBE10-A’), a
polarizer (Thorlabs, ’WP25M-VIS’), a polarized beam splitter (Thorlabs, ’CCM1-PBS251/M’),
a half-wave plate (Thorlabs, ’WPH10M-532’) and a quarter-wave plate (Thorlabs, ’Thorlabs
WPQ10M-532’), a plano-convex lens (Thorlabs, ’LA1433-A-ML’) and a hand-crafted ϕ=0.5
mm circular block filter created with 3M’s aluminum coated tape. It was recorded on a Sony
ILCE-6000 camera with an eyepiece (MEADE, ’602416’).

Fig. 5. Annotated photograph of the optical setup on which the generated holographic
videos are shown. HWP: Half-Wave plate; QWP: Quarter-Wave plate; PBS: Polarized Beam
Splitter; SLM: Spatial Light Modulator.

As displayed content, we rendered a video of the spinning “sphere” model at 30 frames per
second. The model was centered w.r.t. the hologram origin and placed at a depth of 8cm. The
CGH parameters (resolution, p, λ) were configured to match those of the SLM and the laser. The
average generation time per frame took 21.5 ms, which suffices to achieve real-time rendering
at 30 fps. On the other hand, the reference point-wise algorithm took an average of 1217.5
ms/frame, making it too slow for that purpose.

In Fig. 6, we can observe a side-by-side comparison of exemplary frames generated respectively
with the reference and the proposed CGH algorithms, showing little noticeable visual quality
differences. These frames were obtained directly from the camera sensor capturing the real
image after focusing around the end of the eyepiece. Because the SLM is phase-only, some
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information has to be discarded from the complex-valued CGH before displaying it on the SLM.
The hologram amplitude was discarded to promote speed, and the phase values were quantized
to 8-bit precision, matching the SLM precision. Namely, every complex-valued pixel value c was
quantized to an 8-bit phase value representation φ by

φ =

⌊︃
128∠c
π

⌋︃
, (24)

where ⌊·⌋ is the floor operator, and ∠ is the complex argument, returning a phase value from
the interval [0, 2π]. Better visual quality could be achieved by using double-phase amplitude
encoding, or phase retrieval algorithms that optimize the phase patterns at the cost of calculation
speed [28,29].

(a) reference frame #1 (b) reference frame #2 (c) reference frame #3

(d) proposed frame #1 (e) proposed frame #2 (f) proposed frame #3

Fig. 6. Screenshots taken from the recorded videos of the optical setup, for three different
frames using the reference CGH and the proposed CGH, respectively. The full videos can
be seen in Visualization 1 and Visualization 2.

6. Conclusion

We proposed an algorithm for efficiently computing the CGH of 3D curves. Analytical expressions
for tilted line segments were derived, leading to a model for how 3D curves create circularly-shaped
wavefront patterns. These solutions were converted to efficiently computable approximations
suitable for massively parallel processing architectures. An optimized implementation on GPU
was presented, demonstrating video frame rate calculation of 4K-sized holograms with decent
visual quality. The algorithm was validated using both numerical simulations and optical
experiments on a digital holographic display setup. We report a 55-fold speedup over the
reference point-based CGH implementation, validating the practical utility of the method. This
work may contribute to accelerating CGH algorithms not only limited to display purposes and
can potentially lead to new insights in numerical diffraction theory for holography and beyond.
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