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Abstract: In this work, we analyze the interference patterns measured in lab-based dual-phase
grating interferometry and for the first time explain the spatial dependencies of the measured
interference patterns and the large visibility deviations between the theoretical prediction and the
experimental results. To achieve this, a simulator based on wave propagation is developed. This
work proves that the experimental results can be simulated with high accuracy by including the
effective grating thickness profile induced by the cone-beam geometry, the measured detector
response function and a non-ideal grating shape. With the comprehensive understanding of
dual-phase grating interferometry, this provides the foundations for a more efficient and accurate
algorithm to retrieve sample’s structure information, and the realistic simulator is a useful tool
for optimizing the set-up.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

X-ray Talbot grating interferometry (XT-GI) is a powerful multi-modality imaging technique
[1–5], and widely implemented in medical and material imaging. In order to realize Talbot grating
interferometry, a phase grating G1 is used to introduce a spatially periodic phase modulation on
the incident wavefront. According to the Talbot effect [6], periodic interference patterns will
alternatively appear and disappear along the propagation axis. Then, a detector is fixed at one
of the fractional Talbot distances to record the fringe. However, since the fringe is normally
too small to be directly resolved by the detector, an analyser absorption grating G2 is required
immediately in front of the detector to help resolve the pattern by forming a Moiré fringe [1] or
transforming local fringe position into intensity oscillation with the assist of the phase stepping
approach [3]. Moreover, if the X-ray source cannot provide enough transverse spatial coherence,
a source grating G0 is utilized to decouple spatial resolution from spatial coherence [4]. In
other cases, G0 is not necessary, for example, if X-rays are generated by a micro-focus tube or
synchrotron radiation is used [7,8]. Three types of complementary information of the sample can
be retrieved simultaneously from Talbot grating interferometry: absorption contrast, differential
phase contrast (DPC) and dark-field signal [5]. Absorption and differential phase contrasts result
from the line integrals along the ray paths of the imaginary and real parts of the sample’s refractive
indexes, respectively. The dark-field signal originates from the decoherence of the wavefront due
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to small angle scattering when X-rays propagating through the sample, which provides access to
sub-micro structure information beyond the direct resolution of the interferometry [9].

However, the analyser absorption grating G2 in Talbot grating interferometry blocks almost
half of information-carrying photons, which greatly reduces the dose efficiency, and it is also
challenging to fabricate high aspect ratio and large-field absorption gratings. Therefore, resolving
the fringe without using an absorption grating provides obvious advantages. One solution is
to make use of the magnification factor of the cone beam, so-called inverse geometry grating
interferometry [8,10], whose fringe is magnified enough to be directly resolved. However, the
achievable resolution of this approach is greatly influenced by the source size due to penumbra.
Another promising solution is to place two phase gratings close together (see Fig. 1). Caused by
the small difference in geometrical magnifications of two gratings, the generated Moiré fringe
whose period is hundreds of times larger than the grating pitch can be easily resolved by the
detector. This set-up is commonly called dual-phase grating interferometry (DPGI) [11,12].
Compared to Talbot grating interferometry, another benefit offered by DPGI is that tuning the
correlation length doesn’t influence the sample magnification, which provides a solution to find
the relation between the sample’s dark-field signal and the correlation length without image
registration, named tunable dark-field imaging [12]. This relation is the key to quantitatively
access sub-micron structure information of the sample [9]. Following these pioneer works, an
analytical model for DPGI has been formulated in Wigner distribution and a fringe-formation
mechanism is provided [13,14]. Due to its importance to this paper, a brief overview of their
theoretical work will be given. As the schematic of the set-up is shown in Fig. 1, each phase
grating is considered as a beam splitter that splits the incoming wavefront into a series of tilted
planar waves according to Fourier coefficients of the grating transmission function, as described
by the angular spectrum theory [15]. After being modulated by two gratings successively, the
final wavefront on the detector plane is formed by a sum of all tilted planar waves, some of
which are diffracted by two gratings whose diffraction orders are the same but opposite in
sign, generating signals with much lower spatial frequencies than others. These low-frequency
fringes are called beat patterns in DPGI, and empirically, only the beat patterns for the first three
diffraction orders are large enough to be resolved due to the finite pixel size and fast decrease in
magnitude for the signals of higher frequencies. Other unresolvable oscillations only contribute to
the background. With l indexing the diffraction orders, the final normalized oscillation intensity
along the transverse direction (x) can be formulated as [14]:

Ires(x)
I0
= 1 +

3∑︂
l=1

Vl · cos
(︃
2πl

x
pfr

)︃
, (1)

with I0 normalization constant. The visibility coefficient Vl is related to Fourier coefficients of
the grating transmission function, set-up geometry, source size, effective spectrum, and detector
response function [14,16]. If the two gratings have the same period pg, the first-order fringe
period (l = 1) is given by:

pfr =
Rs + Rg + Rd

Rg
· pg, (2)

with Rs the distance between source and G1, Rg the inter-grating distance and Rd the distance
between G2 and detector (see Fig. 1).

Although several simulation frameworks have been developed to model fringes formed in DPGI
[13,14,17] and the theoretical predictions for the global oscillation intensity given by Eq. (1) are
in good agreement with their idealized simulation results [14], these models fail to explain some
properties of typical measurements. Firstly, these models expect a homogeneous fringe [14,17],
while the experimentally recorded fringe as in Fig. 2(a) presents a clear spatial dependency. This
interference pattern is measured with 2.24 mm inter-grating distance, and other measurement
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Fig. 1. Schematic of dual-phase grating interferometry. The X-rays are generated by a
micro-focus tube, propagate through two adjacent phase gratings, and are recorded by an
integrating detector.

details can be found in subsection 3.1. To better display the intensity oscillation on the x-axis, a
one-dimensional fringe profile (see Fig. 2(b)) is extracted from Fig. 2(a) by averaging 50 pixels
along the y-axis for a better statistics, and the averaged region is denoted by a gold rectangle. It
can be seen from Fig. 2(b) that the interference pattern is spatially symmetrical. In the central
part of the pattern, there are intermediate peaks between every two main peaks, indicating
that the interference pattern in DPGI does contain signals of higher frequencies according to
Eq. (1). However, these higher frequency signals gradually disappear from the center to the sides.
Secondly, the analytical model cannot accurately predict the fringe contrast of the measured
result [14]. To quantify the fringe contrast, the visibility V is used, defined by the maximum
(Imax) and minimum (Imin) intensity as:

V =
Imax − Imin
Imax + Imin

. (3)

The visibility for each pixel in Fig. 2(b) was extracted by searching the maximum and minimum
intensities within one period around this pixel according to Eq. (3) and plotted in Fig. 2(c).
The period is determined by locating the first harmonics of the Fourier transform of intensity
oscillation in Fig. 2(b). From Fig. 2(c) we can see that the visibility increases from the center and
reaches the maximum on both sides of the center. Then, the visibility constantly decreases when
further away from the center. This spatial dependency of the measured visibility is also mentioned
by Bopp et al. [17]. However, both analytical model [14] and simulation frameworks [14,17]
result in a uniform visibility distribution. Moreover, the maximum visibility shown in Fig. 2(c) is
below 0.15, while the analytical model [14], as implemented based on our experimental settings,
predicts a constant visibility of 0.287 along the x-axis.

It is crucial to correctly understand what causes the deviations between the analytical prediction
and the experimental results, which is a prerequisite for accurately extracting the sample’s
three-modality information or optimizing the set-up. Therefore, this paper aims at filling the gap
between the theoretical and measured results by implementing a wave-propagation simulation.
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Fig. 2. Overview of the measured interference pattern. (a) shows a recorded image when
the inter-grating distance is at 2.24 mm, and the gold square region is averaged along the
y-axis to yield a line plot of the interference pattern in (b). The visibility V for each pixel in
(b) is extracted and plotted in (c).

2. Simulation methods

In this section, we will first introduce the assumptions we made to interpret spatial-depending
interference patterns, followed by elaborating the methods used in our DPGI simulator to justify
this hypothesis, including modelling the effective thickness profile of the grating illuminated by a
spherical wave, implementing the spherical wave propagation in DPGI, handling polychromatic
source and extended source size, and modelling detector response.

The strong spatial dependency of the fringe (see Fig. 2) is hypothesized to result from the
grating thickness profile varying with the X-ray incident angle in a cone-beam geometry, which is
supported by two pieces of evidence. Firstly, the phase gratings used have a very high aspect ratio
(around 56), making the effective thickness profile very sensitive to the incident angle. As shown
in Fig. 3, a rather small incident angle α will lead to a significant change in the effective thickness
profile t1(x), since the non-normal incidence x-rays often cross the material-air boundary when
propagating through a grating with larger aspect ratio. Secondly, according to the results of
Shashev et al. [18], the visibility of the interference pattern generated by a single phase grating
at the 1st fractional Talbot distance varies with the X-ray’s incident angle, and the maximum
visibility is not at normal incidence but with a certain inclination. Similarly, the visibility in
DPGI symmetrically peaks at both sides of the center as if a certain incident angle is met (see
Fig. 2(c)). To prove this hypothesis, a wave propagation based simulation is implemented, and
the physical principles have been developed as follows.
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Fig. 3. Schematic for a ray trace simulation to generate an effective thickness profile of the
grating with rectangular bars in a spherical wave. The effective thickness profile t1(x) is
calculated by accumulating the thickness density map g1(x, z) along the ray paths S(z; x). Due
to the high aspect ratio of the grating, the effective thickness profile t1(x) is very sensitive to
even a small change in the incident angle α. The range of the incident angle for our set-up is
from −1.9◦ to 1.9◦.

2.1. Effective thickness profile of grating for a spherical wave

As shown in Fig. 3, under the paraxial approximation, a discretized monochromatic spherical
wavefront is generated at the entrance of G1 and can be described in one dimension [15]:

u1(x) =
exp[ik(x2/(2Rs))]

Rs
, (4)

with k = λ
2π the wave number and x the transverse position. The incident angle at each x can be

calculated according to the geometry of the system: α1(x) = x
Rs

, or by the phase of the wavefront
φ1(x) [15]:

α1(x) =
λ

2π
∂

∂x
φ1(x). (5)

For a grating made of silicon, a thickness density map of G1 is created as g1(x, z) where the
air-region: g1(x, z) = 0 and the silicon-region: g1(x, z) = d

N with the designed grating thickness d
and the number of discretized slices in the z-axis N. With the ray path S(z; x) determined by the
incident angle for each x at the wavefront u1(x), the effective thickness profile t1(x) is calculated
by summing up the thickness density map along the paths:

t1(x) =
N−1∑︂
i=0

g1(S(i; x), i). (6)

Since the thin grating can be considered as a sufficiently weak scattering object introducing
negligible disturbance on the ray path, which satisfies the precondition of projection approximation
[19], the wavefront at the exit surface u′

1(x) is approximated by:

u′
1(x) = u1(x) · e−ikδSit1(x) · e−kβSit1(x), (7)

with the refractive index defined as: n = 1 − δ + iβ.
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2.2. Spherical wave propagation in DPGI

To find the final interference pattern at the detector plane, the wavefront behind the first grating
u′

1(x) is propagated through G2 and then reaches the detector. However, it is challenging
to numerically propagate a spherical wave, since properly discretizing a spherical wavefront
normally requires impractically dense sampling due to its quadratic phase terms [20], as a large
field of view is a design specification for this work. This problem has already been addressed by
previous works [19–22], where the basic concept is to separate rapid oscillating terms to relieve
the sampling requirement. In this work, we adopt the method from Munro [21], which has been
implemented in multi-slice propagation in inhomogeneous space. Firstly, a divergent beam is
converted into a planar wave by applying a coordinate transformation to subtract its quadratic
phase term. As a result, the wavefront u′

1(x) is transformed from the global coordinate (x) into
the primed coordinate system (x′) through:

v1(x′) =
u′

1(x) · Rs

exp[ikx2/(2Rs)]
. (8)

Then, the wavefront v1(x′) is propagated from the exit of G1 to the entrance of G2 in free space
and we choose to use the Fresnel transfer function approach [15]. To simulate accurate results
with negligible aliasing we still need to properly sample the aperture function v1(x′) and the
propagator. According to the criteria given in [15], the minimum sampling rate for our simulation
is found at 250 µm−1 and the sampling ratio Q is set at 1.1. The sampling ratio Q determines the
size of zero padding on both sides of the aperture function v1(x′) as Q−1

2 . Then, the wavefront at
the entrance surface of G2 is formulated as:

v2(x′) = F−1{F{ZP(v1(x′))} · exp[−jπλf 2
x · (Rg/M1)]}, (9)

whereF is Fourier transform, ZP represents zero padding, fx is the spatial frequency in the x-axis,
and the propagation distance from G1 to G2 in the primed coordinate system is reduced to Rg/M1
by a magnification factor M1 given by:

M1 =
Rs + Rg

Rs
, (10)

The next step is to transform v2(x′) back into the global coordinate system to retrieve the
complete wavefront before entering G2:

u2(x) =
1

Rs + Rg
· v2

(︃
x

M1

)︃
· exp{ikx2/[2(Rs + Rg)]}. (11)

Compared to u′1(x), the x coordinate in u2(x) is magnified by a factor M1 after the propagation,
and the amplitude is dropped by 1

M1
. Then, the projection approximation and Fresnel scaling

algorithm are repeated to calculate the wavefront at the detector plane. It is important to mention
that the X-ray’s incident angle on G2 is approximated by geometry instead of the phase of the
wavefront as α2(x) = x

Rs+Rg
since the disturbances on ray paths caused by G1 are small enough

(around tens of micro-degree) to be ignored. Moreover, the sampling rate for the transmission
function of G2 is lower than G1 due to the transversely magnified coordinate.

2.3. Polychromatic and extended source

The algorithm described above is only able to simulate the wavefront at the detector plane for
a monochromatic point source. However, X-rays generated by a tube source normally contain
a continuous spectrum. With the proof that the fringe generated by a single source with a
polychromatic spectrum is the sum of intensities for different frequencies provided by Cowley
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[23], the interference pattern from the polychromatic source is then simulated by weighted
summing up intensity pattern for each photon energy, and the weights are given by the normalized
effective intensity spectrum.

Furthermore, an extended source can be represented by a group of incoherent point sources
which reproduce the intensity distribution [24], and the final interference pattern is a sum of
individual intensities generated by each point source [23]. However, simulating interference
patterns for every point source is computationally heavily. According to the theoretical results
obtained by Yan et al. [25], the effect of an extended source in DPGI can be modelled by applying
a convolution kernel, which greatly increases computing efficiency. When rewriting the formula
which describes the relationship between an off-center line source and the total fringe phase shift
in DPGI [25], we can derive the lateral displacement relationship between a point source and the
corresponding interference pattern if two gratings are identical:

I(x + ∆s) = 1 +
∞∑︂

l=1
Vl · cos

[︃
2πl

1
pfr

(x + ∆s)

]︃
, (12)

with∆s as the lateral shift of a point source. Combining both the superposition and space-invariant
properties, DPGI can be proven to be a spatial invariant imaging system [15], and the lateral shift
of a point source leads to a displacement of the fringe with the same distance but in opposite
direction according to Eq. (12). Therefore, we can model the effect of the extended source by
a convolution between the interference pattern simulated by a point source and the intensity
distribution of the X-ray source.

2.4. Detector response

Only the intensity of the wavefront on the detector is measurable, and correctly modelling the
detector response function is important in DPGI since the fringe is directly resolved without
analyser grating. The simplest model of the response function is to re-bin the simulated fringe
to the pixel size, with an assumption of shape edge. However, due to the charge sharing effect,
readout sampling or electronics, the edge response of a real detector is not so sharp [26], instead,
the intensity will be shared by a few neighbouring pixels resulting in Gaussian or exponential
line spread function (LSF) which is the first difference of an edge response [27]. Once the LSF is
determined, a more realistic fringe can be simulated through a convolution between the LSF and
the interference pattern simulated with a ideal sharp edge detector.

3. Experiments and results

3.1. Experimental settings

The experiments were carried out on a transmission-type microfocus X-ray tube (FXT-160.51,
FEINFOCUS GmbH, Germany) with 3 µm tungsten coated CVD diamond transmission anode,
operated at 40 kV and 200 mA under the microfocus mode. The phase gratings (GRATXRAY,
Switzerland) made of silicon were identical with 1 µm period and 0.5 duty cycle, and the thickness
of grating is 28.17 µm introducing a π phase shift at the design energy at 22 keV. The fringes
were recorded by an sCMOS camera (Gsense, PHOTONIC SCIENCE, UK) coupled to a 100 µm
CsI:TI scintillator. The detector had an active input area of 67 × 67 µ2 and its effective pixel size
was 16.4 × 16.4 µ2. The first phase grating G1 was placed 500 mm away from the X-ray tube and
the detector was located 500 mm from G1, resulting in a source-to-detector distance of 1000 mm.
The second grating G2 was placed downstream G1 and the inter-grating distance was tuned by a
linear stage (CLS-5282, SmarAct GmbH, Germany) from 2.24 mm to 9.24 mm in steps of 1 mm.
For each inter-grating distance, the fringe was recorded with an exposure time of 25 s.
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3.2. Simulation settings

All parameters set in the simulation were set identical to in the experiment. An initial spectrum
emitted from the tube was modelled by a Monte Carlo simulation [28]. Then this spectrum was
filtered by several uniform attenuation materials, including air (1000 mm), a carbon fibre input
window of the detector (1 mm), silicon substrates of two gratings (2× 0.222 mm), and a diamond
window at the exit surface of X-ray tube (0.26 mm). Finally, the average deposited energy in the
scintillator for each photon energy is incorporated to simulate the effective spectrum. Then the
effective spectrum was normalized and presented in Fig. 4. The spectrum started at 8 keV since
lower energy photons were significantly absorbed, mainly by the silicon substrates, and their
contributions were very limited. The sampling rate for the spectrum is 4 keV−1. Based on the
measurement of the JIMA pattern, the FWHM of the source size was around 5 µm. Therefore, a
Gaussian kernel with 5 µm FWHM was used to represent the effect of the extended source in the
simulation. In the simulation, a 25.42 mm aperture size was applied at the G1 plane, facing the
center of the source. Due to the two-fold magnification, the effective aperture size at the detector
plane was 50.84 mm.

Fig. 4. Normalized effective intensity spectrum employed in the simulation for tungsten
target at 40 kV, including uniform attenuation materials and quantum efficiency of the
detector.

3.3. Comparison between experiment and simulation

The interference pattern recorded at the 2.24 mm inter-grating distance is shown in Fig. 2(a). To
better reveal the properties of the fringe, the intensity oscillation in real space is transformed into
the visibility coefficients in Fourier space according to Eq. (1). For each pixel in Fig. 2(a), one
period of intensity oscillation around the pixel in the transverse direction is segmented and a
Windowed Fourier transform (WFT) [29] is applied to retrieve the first three orders’ visibility
coefficients. This means one recorded image can be converted into three visibility coefficient
images whose values are uniform along the vertical direction due to the accurate alignment
except for statistical errors. Therefore, the measured spatial dependencies of visibility coefficients
for the first three orders are extracted and shown as blue solid lines in Fig. 5(a), (b), and (c),
respectively, calculated by averaging the visibility coefficient images along the vertical direction
for better statistics. The corresponding error bars (one standard deviation) are presented as
shaded regions. To validate the assumption that the spatial dependency of the interference pattern
results from the divergent beam, a simulation is performed with angular-dependent effective
thickness profiles (see Fig. 3), a perfectly sharp-edge detector, and ideal rectangular grating bars.
Then, the simulated fringe is transformed into the first three orders’ visibility coefficients by
applying the WFT and the results are plotted in Fig. 5 as black dotted lines (angular-dependent
effective thickness profile: ADTP). In addition, the x-axis is transformed into the incident angle
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according to the geometry of the set-up. Comparing the results between the experiment (Exp)
and simulation (ADTP), except for the third order, the simulator can correctly model the trends of
how the visibility coefficients change with the incident angles. The visibility of the first order is
low when the incident angle is around zero and gradually increases and peaks at +/−0.5◦, while
the maximum magnitude of the second order appears when normal incidence and its visibility
continue to drop as the incident angle increases. Furthermore, the corresponding theoretical
baselines predicted by the analytical model [14] are plotted as red solid lines (Theory). Since
the analytical model ignores the angular-dependent effective thickness profiles, it is constant
at all incident angles. Moreover, as the rectangular shape of the grating is presupposed in the
analytical model, the theoretically predicted visibilities match very well with the simulation
results only if the incident angle is zero, giving a rectangular effective thickness profile. However,
visibility coefficients for all diffraction orders are generally overestimated in the simulation, and
one significant difference is that the second order suppresses the first and third orders more
effectively in the simulation than measurement with a much higher magnitude over a wider range.
Although the simulation results clearly indicate that the spatial dependency of the interference
pattern comes from the changing effective thickness profile of the grating in a divergent beam,
there is still a significant difference between the experimental and the simulated interference
patterns.

Fig. 5. Comparison of the visibility coefficients for the first three orders between experi-
mental, simulated and theoretical prediction results. The experimental results measured at
2.24 mm inter-grating distance are plotted as blue solid lines (Exp) in figures (a), (b), and
(c) for the first three orders, respectively. The corresponding error bars for one standard
deviation are represented by shaded regions. Moreover, the theoretical baselines for each
order are plotted as red solid lines. The simulation with angular-dependent effective thickness
profiles (ADTP) of the gratings, an ideal sharp-edge detector and perfect rectangular grating
bars are plotted as black dotted lines. Once the real detector response function (RDR)
is included (see Fig. 6), the simulator can produce more accurate results plotted as black
dash-dot lines (ADTP and RDR). When the non-ideal grating shape (NIGS) is included in
the simulation (see Fig. 7), not only are the spatial dependencies of the measured visibility
coefficients correctly predicted by the simulator but the magnitudes of these coefficients are
well reproduced with tolerable deviations, plotted as black dashed lines (ADTP, RDR and
NIGS). These errors most probably come from the non-periodic and irregular shape of the
gratings which cannot be accurately modelled.
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To further improve the simulator, the edge response of the detector was measured and its line
spread function (LSF) was included. A sharp edge of a 0.09 mm Tantalum foil attaching to the
detector was imaged a half meter away from the source, which greatly restrained the blurring
effect from the extended source size. Then, the edge response of the detector was recorded
and its first difference (LSF) was extracted and fitted by two symmetrical exponential functions
(Laplace distribution), as shown in Fig. 6. This fitted LSF was convolved with the previously
simulated results to include the effect of the detector unsharpness (real detector response, RDR),
and the improved simulation results are presented in Fig. 5 as black dash-dot lines (ADTP and
RDR). Compared to the simulation results that only consider the angular dependency of the
effective thickness, when the effect of the detector unsharpness is also included the visibility
coefficients for all diffraction orders are generally reduced and the higher orders’ signals suffer
from more severe damping effects since the LSF of the detector acts as a low-pass filter. Though
the improved simulator produces more accurate results with more similar visibility coefficients to
the measured ones, there is still a margin for improvement of the simulation accuracy.

Fig. 6. Measured edge response for the detector (a) and the measured line spread function
(LSF) is the first difference of the edge response represented by the red dots in (b). The fitted
LSF from two symmetrical exponential functions is plotted as the blue line in (b).

According to the cross-sectional image from scanning electron microscopy (SEM) of the
grating used (see Fig. 7(a)), presupposing the shape of the grating as rectangular is not a proper
approximation. Instead, a trapezoidal shape is more similar to the real grating. Moreover, in
Fig. 7(b) a zoomed-in image indicates that the silicon and air regions are not equivalent, with
less area occupied by silicon. To include the influence of a more realistic shape of the grating, a
non-ideal grating shape is simulated and one period of it is drawn in Fig. 7(c), with a trapezoidal
shape and unequal silicon and air areas. Then, the corresponding effective thickness profiles of
two gratings are determined in the ray trace simulation according to Eq. (6). Once the non-ideal
grating shape (NIGS) is also included, plotted as black dashed lines (ADTP, RDR and NIGS) in
Fig. 5, the simulator can model the experimental results very well with limited deviations. It
is clear from the above results that, although the experimental conditions are approximated as
much as possible, they do not perfectly match. As an example, in Fig. 7(b) it can be observed
that the real grating bars are not perfectly periodic, while the exact shape of Fig. 7(a) is very hard
to model.

In DPGI, one of the advantages is that the interference pattern can be conveniently tuned
by changing the inter-grating distance, allowing for tunable dark-field imaging. Therefore, the
experimental and simulated results are compared at three different inter-grating distances. In
Fig. 8(a), (c), and (e), the comparisons for the first two orders’ visibility coefficients in Fourier
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Fig. 7. (a) Cross-sectional image from scanning electron microscopy (SEM) of the grating
used in the experiments. A zoomed-in region from (a) indicated by a black rectangle is
shown in (b). Based on the measured morphology of the grating, a non-ideal grating is
simulated and the shape for one period is presented in (c).

space between the measurement (solid lines) and the simulation (dash lines) at 2.24 mm, 4.24 mm
and 6.24 mm inter-grating distances, respectively. The third order is ignored here since their
contributions are limited as indicated in Fig. 5. In general, the simulation can accurately reproduce
the experimental results at different inter-grating distances across the full field of view. It can be
seen from Fig. 8(a), (c), and (e) that among all three different inter-grating distances, the visibility
coefficients for the first order present similar tendencies where a valley always appears in the A1
region and two peaks are located at the two sides of the A1, while the visibility coefficients for the
second order show different tendencies with the inter-grating distance increased. Three regions
in Fourier space for different incident angles are selected and the corresponding interference
patterns in real space are compared between the measurement (solid lines) and simulation (dash
lines), shown in Fig. 8(b), (d), and (f). In the A1 region, the magnitudes of the two visibility
coefficients are small and comparable, therefore, not only do the corresponding real space fringes
present low contrast but the observable intermediate peaks appear. In the A2 region, the 1st-order
visibility coefficients reach the maximum and show much larger magnitudes than the second
order, leading to high-contrast and single-frequency patterns in real space. As the incident
angle increases further, in the A3 region, both visibility coefficients drop but the first orders are
dominant, as a result, the interference patterns present lower contrast and have no intermediate
peaks. It is not surprising that once the simulator can model the experimental results well in
Fourier space, the interference patterns in real space can be correctly simulated.

Finally, the macroscopic properties of the interference patterns are compared at eight different
inter-grating distances from 2.24 to 9.24 mm. Figure 9(a) compares the periods between the
theoretical prediction, simulation and measurement. The theoretical periods are calculated
according to Eq. (2), and the periods for simulation and experiment are extracted from the
first harmonics of the Fourier transform of one-dimensional interference patterns. We can see
from Fig. 9(a) that the extracted periods are almost identical with the limited standard deviation
averaged among all inter-grating distances of 0.07 pixels. Figure 9(b) compares the averaged
visibility for the first two orders over the full field of view between the experiment and simulation
at different inter-grating distances. Although the peaking position and maximum visibility for
both orders are modelled accurately, with the inter-grating distance increased, the averaged
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Fig. 8. (a), (c) and (e) compare the experimental (solid line) and simulated (dash line)
results in Fourier space represented by the visibility coefficient for the first two orders at three
inter-grating distances (2.24, 4.24 and 6.24 mm). Three regions according to the incident
angle are selected and the corresponding real space fringes are compared in (b), (d) and (f).

Fig. 9. The macroscopic properties of the interference patterns are compared. (a)
Comparison for the periods among theoretical prediction, measurement and simulation at
eight different inter-grating distances from 2.24 to 9.24 mm. (b) compares the averaged
visibility for the first two orders over the full field of view between the experiment and
simulation at different inter-grating distances.

visibility in measurement drops slower than the simulated results after the peaking position. This
mismatch might result from two factors. Firstly, the irregular and non-uniform shape of the
grating cannot be exactly reproduced in the simulation (see Fig. 7), and we believe this is the
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main reason. Secondly, the identical detector response as in the real experiment is also very hard
to model, especially considering the pixelated response function.

4. Discussion and conclusions

As mentioned in the previous sections, a recently developed technique, dual-phase grating inter-
ferometry (DPGI) has the potential to improve the performance of Talbot grating interferometry.
Directly resolving the fringe without requiring an analyser absorption grating provides an advan-
tage in dose efficiency and eliminates the difficulties in grating fabrication [11,12]. Furthermore,
changing the correlation length in DPGI does not influence the sample’s magnification factor,
which provides a more convenient way to implement tunable dark-field imaging to investigate the
sample’s sub-micro structure information [12].

Although a rigorous mathematical model has been derived to understand DPGI [13,14],
this model cannot explain the spatially depending interference pattern and the huge visibility
difference between the theory and our experimental results. This paper provides a DPGI
simulator based on wave propagation to successfully diminish the gap between the theoretical
prediction and experimental results. Firstly, since the simulation can reproduce the spatial
dependency with very high accuracy, the spatial-depending feature is explained by the local
effective thickness profile changed with the incident angle. Due to the large aspect ratio of the
used grating, the local effective thickness distribution is greatly influenced by the cone-beam
geometry. Meanwhile, in the near-field Fresnel propagation, the major contributions to a certain
point in the propagated wavefront come from a limited region around this point at the aperture
plane [15,30]. Consequently, the locally recorded interference pattern is directly determined by
the local effective thickness profile according to Eq. (1). Secondly, the simulation with a sharp
edge detector and perfect rectangular gratings which are also assumed in the theoretical model
[14] cannot precisely model the measurement results. Once the simulator includes the measured
camera response function and non-ideal grating shape, it can reproduce the experimental results
with high accuracy. These results indicate that the camera response function and precise grating
shape play a very important role in DPGI, which should always be considered when we implement
this technique.

This simulator also reveals several potential developments in the future. Firstly, the small
angle scattering information or dark-field signal of the sample can be represented by the visibility
reduction in Talbot grating interferometry with the assistance of the phase stepping approach [5].
By stepping one of the gratings one or more periods, for each pixel the visibility (normalised
amplitude) is extracted from the phase stepping curve after approximating the intensity oscillation
as a sinusoidal function [3,5]. A similar phase stepping approach is also used in DPGI for
decoupling the image resolution from the period of the fringe [12]. However, the interference
patterns in DPGI consist of multiple harmonics (different diffraction orders) which present
distinct spatial dependencies (see Fig. 8). Therefore, when extracting the dark-field signal in
DPGI, any phase stepping approach that ignores higher order harmonics would be inaccurate.
Sufficient sampling is therefore needed to retrieve the magnitude of the visibility coefficients.
With a comprehensive understanding and accurate simulation of the spatial dependencies of the
visibility coefficients, a better algorithm can be developed to efficiently and accurately extract
the dark-field signal from the sample in DPGI. Furthermore, this simulator can be used to
optimize the set-up performance further. For example, Fig. 8 shows that the highest visibility
coefficients are achieved in the A2 region for different inter-grating distances for current set-up
configurations and the higher visibility is always appreciated in the grating interferometry for
better signal-to-noise ratio. Therefore, this simulator can be used to locate the high visibility
regions for different set-up configurations and find the best configuration leading to an optimum
visibility. Moreover, the maximum visibility coefficients result from a non-rectangular effective
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thickness profile, so this implies a bended grating with this optimum shape would be able to
generate uniform high contrast fringes in DPGI.

In conclusion, this paper presents a realistic DPGI simulator which successfully models
experimental results and interprets the differences between the theoretical prediction and
measurement. This simulator paves the way to develop a better algorithm to retrieve the sample’s
structure information and optimize the set-up.
Funding. Interreg Vlaanderen-Nederland (Smart*Light); European Regional Development Fund (Smart*Light);
Provincie Oost-Vlaanderen (Smart*Light); Fonds Wetenschappelijk Onderzoek (3179I12018, 3G036518, 3G010820);
the Swiss LOS Lottery Fund of the Kanton of Aargau, CH.

Acknowledgments. We acknowledge our technicians Sander Vanheule, Yen Decappelle and Iván Josipovic from
the Radiation Physics research group at Ghent University for their technical support.

Disclosures. The authors declare no conflicts of interest related to this article.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray talbot

interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003).
2. A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys. 44(9A), 6355–6367 (2005).
3. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a

grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
4. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with

low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
5. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray

dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008).
6. H. F. Talbot, “Lxxvi. facts relating to optical science. no. iv,” The London, Edinburgh, Dublin Philos. Mag. J. Sci.

9(56), 401–407 (1836).
7. M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential

phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett.
90(22), 224101 (2007).

8. A. Momose, H. Kuwabara, and W. Yashiro, “X-ray phase imaging using lau effect,” Appl. Phys. Express 4(6), 066603
(2011).

9. M. Strobl, “General solution for quantitative dark-field contrast imaging with grating interferometers,” Sci. Rep. 4(1),
7243 (2015).

10. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster,
J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5),
054703 (2009).

11. H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and
application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).

12. M. Kagias, Z. Wang, K. Jefimovs, and M. Stampanoni, “Dual phase grating interferometer for tunable dark-field
sensitivity,” Appl. Phys. Lett. 110(1), 014105 (2017).

13. A. Yan, X. Wu, and H. Liu, “Quantitative theory of x-ray interferometers based on dual phase grating: fringe period
and visibility,” Opt. Express 26(18), 23142–23155 (2018).

14. A. Yan, X. Wu, and H. Liu, “Predicting fringe visibility in dual-phase grating interferometry with polychromatic
x-ray sources,” J. X-Ray Sci. Technol. 28(6), 1055–1067 (2020).

15. J. W. Goodman, Introduction to Fourier Optics. Goodman (McGraw-Hill, 1968).
16. A. Yan, X. Wu, and H. Liu, “A general theory of interference fringes in x-ray phase grating imaging,” Med. Phys.

42(6Part1), 3036–3047 (2015).
17. J. Bopp, V. Ludwig, M. Seifert, G. Pelzer, A. Maier, G. Anton, and C. Riess, “Simulation study on x-ray phase

contrast imaging with dual-phase gratings,” Int. J. Comput. Assist. Radiol. Surg. 14(1), 3–10 (2019).
18. Y. Shashev, A. Kupsch, A. Lange, R. Britzke, G. Bruno, B. R. Müller, and M. P. Hentschel, “Talbot-lau interferometry

with a non-binary phase grating for non-destructive testing,” in Talbot-Lau interferometry with a non-binary phase
grating for non-destructive testing, (2016), pp. Tu_3_G_2–1.

19. D. Paganin, Coherent X-ray optics, 6 (Oxford University Press on Demand, 2006).
20. O. Chubar and R. Celestre, “Memory and cpu efficient computation of the fresnel free-space propagator in fourier

optics simulations,” Opt. Express 27(20), 28750–28759 (2019).
21. P. R. Munro, “Rigorous multi-slice wave optical simulation of x-ray propagation in inhomogeneous space,” J. Opt.

Soc. Am. A 36(7), 1197–1208 (2019).
22. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6(6), 786–805

(1989).

https://doi.org/10.1143/JJAP.42.L866
https://doi.org/10.1143/JJAP.44.6355
https://doi.org/10.1364/OPEX.13.006296
https://doi.org/10.1038/nphys265
https://doi.org/10.1038/nmat2096
https://doi.org/10.1080/14786443608649032
https://doi.org/10.1063/1.2743928
https://doi.org/10.1143/APEX.4.066603
https://doi.org/10.1038/srep07243
https://doi.org/10.1063/1.3208052
https://doi.org/10.1038/nphys3734
https://doi.org/10.1063/1.4973520
https://doi.org/10.1364/OE.26.023142
https://doi.org/10.3233/XST-200726
https://doi.org/10.1118/1.4921124
https://doi.org/10.1007/s11548-018-1872-x
https://doi.org/10.1364/OE.27.028750
https://doi.org/10.1364/JOSAA.36.001197
https://doi.org/10.1364/JOSAA.36.001197
https://doi.org/10.1364/JOSAA.6.000786


Research Article Vol. 31, No. 2 / 16 Jan 2023 / Optics Express 1691

23. J. M. Cowley, Diffraction physics (Elsevier, 1995).
24. M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional

talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc.
232(1), 145–157 (2008).

25. A. Yan, X. Wu, and H. Liu, “Clarification on generalized lau condition for x-ray interferometers based on dual phase
gratings,” Opt. Express 27(16), 22727–22736 (2019).

26. M. Boone, “New imaging modalities in high resolution x-ray tomography,” Ph.D. thesis, Ghent University (2013).
27. S. Smith, Digital signal processing: a practical guide for engineers and scientists (Elsevier, 2013).
28. J. Dhaene, “Development and application of a highly accurate polychromatic x-ray microtomography simulator,”

Ph.D. thesis, Ghent University (2017).
29. A. Torre, Linear ray and wave optics in phase space: bridging ray and wave optics via the Wigner phase-space

picture (Elsevier, 2005).
30. K. M. Mechlem, “Towards low-dose spectral phase-contrast x-ray imaging,” Ph.D. thesis, Technische Universität

München (2020).

https://doi.org/10.1111/j.1365-2818.2008.02072.x
https://doi.org/10.1364/OE.27.022727

