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Abstract — This paper establishes an indoor distributed
radar-like prototype using a sub-6 GHz massive multiple-input
multiple-output (MIMO) communication system. Based on the
prototype, the contact-free human tracking performance is
experimentally evaluated. Instead of extracting the location
related geometrical metrics (angle and distance), we propose to
localize the pedestrian through the channel state information
(CSI) directly. Inspired by the concept of synthetic aperture, a
particle filter-based hologram tracking algorithm is proposed.
The experimental results show that the proposed algorithm can
achieve 20.1-cm mean tracking accuracy in real-time.

Keywords — Massive multiple-input multiple-output, indoor
localization, wireless sensing, synthetic aperture radar, channel
state information.

I. INTRODUCTION

Human activity recognition (HAR) has attracted extensive
attention in the past decade due to its potential application
in areas such as elderly care, smart homes, virtual reality, etc.
Especially, the radio frequency (RF) based contact-free (a.k.a.,
device-free or passive) human sensing becomes an active
research area as there is no user-attached sensor needed and
there are less privacy concerns compared to the vision-based
solutions. During the last five years, numerous passive sensing
techniques have been proposed based on different RF standards
and hardware, including radio frequency identification (RFID)
[1], ultra-wideband (UWB) [2], Bluetooth low energy (BLE),
WiFi [3], [4], millimeter-wave [5], etc. As a milestone of
the fifth-generation (5G) wireless communication, the massive
multiple-input multiple-output (MIMO) technique not only
improves communication in terms of channel capacity and
spectral efficiency but also has the potential for accurate
location-based services (LBS) due to the high spatial resolution
[6], [7], [8]. Jointly motivated by recent advances in hardware
and signal processing, sensing functionality can be integrated
into wireless communication networks allowing to reuse
the spectrum, hardware, and even signaling resources, and
achieving so-called integrated sensing and communication [9].

In this paper, we investigate indoor contact-free human
tracking exploiting a massive MIMO communication system.
Inspired by the concept of radio stripe (cell-free massive
MIMO [10]), we implement the distributed massive MIMO
radar-like system with the large antenna array separated in
an indoor environment. On the basis of the prototype, we

Fig. 1. Measurement setups of the distributed massive MIMO radar-like
system. User equipment (UE0, transmitter) is deployed in the center of the
targeted area. The receiver consists of 64 patch antennas. UE1 on the top of
participant’s head is used for active tracking (benchmark).

conduct the contact-free pedestrian tracking experiment. A
synthetic aperture-based algorithm is proposed, which localizes
the target in real-time from the channel response directly and
does not require intermediate geometrical metrics (angle and
distance) compared with other common solutions.

II. EXPERIMENT AND DATA PRE-PROCESSING

A. Measurement Campaign

In this section, we introduce the measurement campaign
for the radar-like pedestrian tracking based on the massive
MIMO testbed at KU Leuven ESAT-WAVECORE, as shown
in Fig. 1. The Massive MIMO system is built on time
division duplex (TDD)-based orthogonal frequency-division
multiplexing (OFDM) signaling, following the NI Labview
Application Framework [11]. For the tracking purpose in this
paper, only the uplink procedure has been considered, i.e., the
base station (BS) receives the orthogonal pilots sent by the
transmitter (user equipment, UE) and conducts the channel
estimation to obtain the channel state information (CSI). The
CSI sampling rate is 100 Hz, the center frequency is 2.61
GHz, and the bandwidth is 18 MHz with 100 evenly-spaced
sub-carriers. The massive antennas of the BS have been
deployed as 8 distributed uniform linear arrays (ULA) of 1×8
antennas, as shown in Fig. 2. The adjacent antenna elements
of the short ULAs are spaced by 7 cm and the height is 1.205
m. The transmitter (UE0) uses a single dipole antenna with a
height of 0.8 m, which is fixed in the center of the target area.
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Fig. 2. Floor plan of the distributed massive MIMO radar-like pedestrian
tracking experiment. The large antenna array of BS is separated into 8 short
ULAs (8×1), together with UE0, which consists of the indoor distributed radar
system. The green rectangular is the predefined pedestrian track template.

For the contact-free human tracking, the communication
links established between the distributed BSs and UE form
a sensing zone where the device-free walking human can be
localized and tracked via characterizing the reflected/scattered
signals on the body. In the experiment, we have predefined
a rectangular track template for the person to walk. Three
persons participated in the experiment and each person walked
counterclockwise along the designed template first, and then
walked clockwise, as in Fig. 2. However, it should be noted
that it is not possible for the participants to follow exactly
the template track due to distinct individual movements. To
handle this problem, we have asked for each participant to
carry an additional transmitter (i.e., UE1) for active tracking
to determine a “ground truth”. To avoid the possible body
shadowing effect, we have placed the antenna on the top of the
participant’s head, as shown in Fig. 2. In this paper, we regard
the active tracking results as the benchmark for radar-like
(contact-free) tracking. The positioning accuracy of the active
tracking will be validated in Section III-C.

B. CSI Calibration

Due to the imperfect synchronization and hardware signal
processing, the measured raw CSI suffers from various
frequency-dependent phase errors, including the sampling
frequency offset (SFO), symbol timing offsets (STO), in-phase
quadrature-phase (IQ) imbalance, etc [8], [12]. Moreover,
resulting from the heterogeneity of hardware components,
there are constant phase offsets among each antenna element of
massive MIMO BS. Note that we do not consider the antenna
coupling effect here. The phase errors in the frequency domain
and antenna domain make the CSI intractable for positioning
and tracking purposes. To this end, we need to calibrate the
massive MIMO prototype before the radar experiment. During
the calibration, the UE is placed at different locations (the
number of locations is no less than the number of antenna
elements of BS [8]). We have used a computerized numerical
control (CNC) X-Y table (mm-level accuracy) to provide
the ground truth of the UE’s locations. The idea of CSI

pre-processing is to calibrate the frequency-dependent errors
at each antenna element first, and then use the residual phase
after the removal of frequency-dependent phase offsets to
align the phases along the antenna array. After this, we save
the parameters needed for CSI calibration and utilize these
parameters to calibrate the CSI in the radar experiment directly.
Due to the page limitation, we omit the details here and
recommend the readers to refer to [8] for the detailed analysis
and implementation.

III. SYNTHETIC APERTURE FOR HUMAN TRACKING

A. Target-of-Interest

In case the pedestrian is walking in an indoor scenario, the
received signal portrays the multipath components (MPCs) via
the CSI at time t and frequency f (in equivalent baseband),

H(t, f)=
∑
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−J 2π

di
λ +

∑
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αj(t, f)e
−J 2π

(
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t

)
,
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where S and D represent the MPCs of the static objects (the
direct link and reflections/scattering from surroundings) and
the dynamic target, respectively. α(·), d(·), and ν(·) denote
the complex gain, link length, and Doppler shift, respectively.
J =

√
−1. In the framework of pedestrian tracking, the

target of interest (TOI) is the components reflected/scattered
from the moving person. In this paper, we use a simple yet
efficient static components removal method. Specifically, we
adopt a moving average method to obtain the mean CSI
within a slow-time sliding window. Given the fact that the
reflected power from the human body is much weaker than the
direct link and many of the static reflections, we can remove
most of the static components using the mean subtraction. To
handle the residual interference, we propose to use the Doppler
frequency shift (DFS) to refine the TOI. Define the CSI after
the mean subtraction as H = {Hnr,nk,nt} ∈ CNr×Nk×Nt ,
where Nr, Nk, Nt denote the number of BS antenna elements,
sub-carriers, and CSI samples within the a short (slow) time
window, respectively. The time window is set as 0.1 s in which
we presume the change of pedestrian’s location is negligible.

Note that for the distributed massive MIMO within an
indoor scenario, the DFS at the large antenna array may
be significant. So, we estimate the DFS for each antenna
element separately. Define the ND-point discrete Fourier
transform (DFT) matrix DNt×ND

and the NT-point DFT
matrix TNk×NT

, given by, respectively,

[DNt×ND
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,
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1√
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(
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)(nk−1)(nT−1)
.

Define the CSI after mean subtraction for the nr-th antenna
element as Hnr ∈ CNk×Nt . So the range-Doppler profile at the
nr-th antenna is given by Ĥnr = THHnrD ∈ CNT×ND . We
can obtain the TOI, given by [ĤTOI]nr

= ĥnr
=Ĥnr

(n̂T, n̂D),

(n̂T, n̂D) = argmax
nT,nD

E
{
(THHnr

D)⊙ (THHnr
D)∗

}
, (2)



Fig. 3. Synthetic aperture for the distributed massive MIMO radar: The
maximal C(PT) identifies the estimated location of the pedestrian, namely
(−0.83, 1.88)m, whereas the ground truth is (−0.86, 2.04)m.

where ⊙ denotes the Hadamard product.

B. Synthetic Aperture
Tracking the pedestrian based on the distance and angle

information generally requires complex high-order parameters
estimation algorithm [4], such as space alternating generalized
expectation maximization (SAGE). However, in this section,
we propose to track the pedestrian based on the received phase
directly, as the phase is sensitive to the finer-grained distance
changing, which makes it promising for the positioning
purpose, especially for the sub-6 GHz systems [7]. Define the
phase of TOI of the nr-th antenna as ϕnr = 2π

dnr

λ + ϕ0,
where ϕ0 is the constant phase offsets caused by the hardware.
dnr

is the reflected distance, given by dnr
= ∥PT−PUE0∥+

∥PT−Pnr
∥, where PT, PUE0, and Pnr

are the coordinates
of the target, transmitter, and the nr-th antenna of receiver,
respectively. Define the measured phase of TOI of nr-th
antenna as ϕ

(m)
nr = ∠ĥnr and amplitude α

(m)
nr = |ĥnr

|.
Stemming from the concept of synthetic aperture radar (SAR),
the location of the target P̂T can be estimated via,
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Since C(PT) in (3) is nonlinear and nonconvex, a common
solution to obtain P̂T is conducting the grid search within
the targeted area and find the index of the maximum, as
shown in Fig. 3. However, the global grid search is extremely
time-consuming, especially for a large targeted area and a
small searching step. To handle this problem, we propose
to estimate the target’s location via tracking the changes of
C(PT) based on particle filter (PF) algorithm. The grid search
is just used for initialization. For each location update, the
candidate region is constrained by the human motion model,
given by,[

P
(t+1)
T

v
(t+1)
T

]
=

[
I2 ∆t · I2
0 I2

] [
P

(t)
T

v
(t)
T

]
+

[
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]
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where vT is the velocity of the moving target. ∆t is the
time difference between two consecutive timestamps. nv is

Fig. 4. Benchmarking: active human tracking results based on the distributed
massive MIMO system. (a) CDF of tracking errors based on CNC X-Y table.
(b) Tracking results of a “cat-shape” trajectory using the open-access massive
MIMO dataset in [13].

the Gaussian velocity errors. We can thus avoid the global
search for each updating of new measurement and speed up
the computation. The updated particles are weighted via the
differences compared with the maximum of C(P(i)

T ) [2]
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where K is the number of particles and σc the standard
deviation of C. Note that Cmax = 1 because we normalize
C(PT) to (0, 1].

C. Benchmark: Active Tracking

As mentioned in Section II-A, we adopt the positioning
results of active tracking as the benchmark (“ground truth”)
for our radar-like tracking. For the active tracking, we have
also utilized a similar SAR-based solution as in Section III-B
but used the received phase directly without static components
removal. To validate the feasibility of active tracking as the
benchmark, we evaluate the positioning accuracy of active
tracking using the collected data based on the CNC X-Y table,
which can provide the mm-level location ground truth. Fig.
4(a) shows the cumulative distribution functions (CDF) of the
tracking errors. The distributed massive MIMO system can
guarantee sub-centimeter level tracking accuracy despite some
outliers (50th percentile errors 0.35 cm and 90th percentile
errors 0.77 cm). Moreover, we have also evaluated the
active tracking accuracy using our previous dense distributed
massive MIMO dataset (open-access in [13]). We formulate
the tracking trajectory as a “cat shape”, as shown in Fig. 4(b).
The tracking results show that a comparable accuracy can be
achieved, which also indicates the feasibility of active tracking
as the benchmark for the radar-like scheme.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of contact-free
human tracking using the sub-6 GHz distributed massive
MIMO communication testbed. Fig. 5 shows that the radar-like
prototype achieves 20.1-cm mean errors for three participants
compared with the active tracking (benchmark), and maximal
tracking errors of 40 to 45 cm in spite of some outliers. The



Fig. 5. Massive MIMO radar-like tracking results corresponding to three
participants and the comparison with the active tracking results (benchmark).

Fig. 6. Massive MIMO radar-like 75th percentile tracking errors with low
bound 50th percentile and upper bound 95th percentile errors: (a) Impact of
the number of sub-carriers. (b) Impact of the number of antennas.

achievable performance is sufficient for pedestrian tracking
considering the size of the human body (with a radius of 20
to 30 cm under the cylindrical body model hypothesis).

Moreover, we introduce the PF algorithm in Section III-B
instead of conducting the grid search, so the location inference
time for each update is short. In the algorithm, we set the
number particles as K = 2000, ND = 256, NT = 64,
and the running environment is Dell OptiPlex 7050 with an
Intel(R) Core(TM) i7-7700 CPU@3.60GHz and 16 GB RAM.
The average inference time for each location update is about
37.4 ms, which is much smaller than the slow-time window of
100 ms adopted for the location updating. This shows that the
proposed algorithm can ensure accurate tracking in real-time.

Fig. 6 evaluates the tracking performance with respect to
the impact of bandwidth and number of antennas. The tracking
errors in Fig. 6(a) fluctuate slightly (about 2 cm) and the
performance has no degradation even if a single sub-carrier has
been adopted. Furthermore, as shown in Fig. 6(b), increasing
the number of the antenna elements improves the tracking
accuracy and reduces the outliers distinctly. Nevertheless, the
accuracy saturates when the number of antennas reaches 24
for this experiment. Note that for evaluating the impact of
the number of antennas, we did not optimize the antenna
placement but simply increased them sequentially, as the
labeled order shown in Fig. 2. When the antenna number is 8,
we observe extremely large tracking errors. It is because the
selected 8 antennas are co-located which has a limited size of
synthetic aperture.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated radar-like pedestrian tracking
using a sub-6 GHz distributed massive MIMO communication

testbed. Taking advantage of the synthetic aperture, we
proposed to localize the target using CSI directly without the
requirement of intermediate geometrical metrics (distance and
angle). We introduced a particle filter to avoid time-consuming
global search and achieved 20.1-cm mean tracking accuracy in
real-time. The future works will consist of multi-target tracking
and finer-grained limb tracking.
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