
Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators

Manu Lahariya1∗, Craig Innes2, Chris Develder1 and Subramanian Ramamoorthy2

Abstract— Soft actuators offer a safe, adaptable approach to
tasks like gentle grasping and dexterous manipulation. Creating
accurate models to control such systems however is challenging
due to the complex physics of deformable materials. Accurate
Finite Element Method (FEM) models incur prohibitive compu-
tational complexity for closed-loop use. Using a differentiable
simulator is an attractive alternative, but their applicability
to soft actuators and deformable materials remains under-
explored. This paper presents a framework that combines the
advantages of both. We learn a differentiable model consisting
of a material properties neural network and an analytical
dynamics model of the remainder of the manipulation task. This
physics-informed model is trained using data generated from
FEM, and can be used for closed-loop control and inference.
We evaluate our framework on a dielectric elastomer actuator
(DEA) coin-pulling task. We simulate the task of using DEA
to pull a coin along a surface with frictional contact, using
FEM, and evaluate the physics-informed model for simulation,
control, and inference. Our model attains ≤ 5% simulation
error compared to FEM, and we use it as the basis for an
MPC controller that requires fewer iterations to converge than
model-free actor-critic, PD, and heuristic policies.

Index Terms— Dielectric elastomer actuators, Differentiable
simulator, Finite element methods, Model predictive control,
Neural Networks, Physics based machine learning, Soft Actor-
Critic, Soft robotics

I. INTRODUCTION

Soft robotic actuators provide a safe, adaptive, low-cost
solution for movement tasks such as grasping and dexterous
manipulation [1]. Precision manipulation using soft actuators
however is a major challenge, as it requires modelling
the deformable actuators’ dynamic within the context of
the manipulation task [2]. Such models are then used to
learn accurate control strategies via simulation [3]. Recently
differentiable simulators have been used to learn controllers
in closed-loop scenarios by allowing the use of gradient-
based optimization methods (e.g., Model Predictive Control,
MPC) [4]. They have also been used for inference and data
generation tasks.

Simulating deformable robots and contact rich manip-
ulation is expensive [3]. Traditional methods model such
dynamics by decomposing their geometry. For example,
Position Based Dynamics approximates multi-body physics
by deconstructing the system into particles [5]. However,
these methods fail to accurately capture the true underlying
physics, making it difficult to meaningfully interpret or

1Authors are with IDLab, Ghent University – imec, Technologiepark-
Zwijnaarde 126, 9052 Ghent, Belgium,

2Authors are with the School of Informatics, University of Edinburgh,
10 Crichton St, EH8 9AB, United Kingdom,

*Corresponding Author: e-mail: manu.lahariya@ugent.be.

Fig. 1. Coin pulled by a dielectric elastomer actuator (DEA)—a soft ac-
tuator that deforms under electric actuation. Our framework learns accurate
physics-informed differentiable simulators and model-based control for such
soft robot manipulation.

constrain the particles. The continuum mechanics and contact
dynamics of deformable materials are difficult to model with
such approximate methods, leading to physically unrealis-
tic results, which hinders model-based control. Physically
accurate simulation of soft robotic manipulation requires
modelling the underlying equations, defined by complex
Ordinary/Partial Differential Equations (ODEs/PDEs).

Finite Element Methods (FEMs) provide a numerical
method for solving such equations. Yet despite the ability of
FEMs to accurately model such phenomena, integrating FEM
simulation with closed-loop control is challenging due to
their computationally expensive meshing: unless the meshes
are dense and cover the domain, fidelity is poor.

This paper’s key idea is to generate data from an accurate
(but slow) FEM model to learn an approximate (but fast)
physics-informed model f for soft robotic manipulation.
Our framework uses f as a differentiable simulator for
simultaneous closed-loop control and inference. Our model
f is composed of two parts: a material network m —
which approximates deformable material behaviour (e.g.,
hyperelastic) — and dynamics d — equations representing
the physical context of manipulation task (sliding motion
under frictional contact with the surface).

Our framework’s objective is to learn fast physics-
informed models that can be evaluated in real-time with-
out significant loss in accuracy, and to use these models
for control. As an illustrative use case, we focus on soft
robotic pulling task using Dielectric Elastomer Actuators
(DEAs). DEAs are soft actuators made using electroactive
polymers that convert electrical work to mechanical work
via expanding or bending motion. In our task, the goal is to
pull a stationary coin by deforming the free end of the DEA
(Fig. 1). We learn the physics-informed model for this pulling
motion f , and evaluate its accuracy as a simulator against
FEM simulations. For control, we use the differentiability
of f to learn a model-based control policy (with the solver

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. Final version can be found here: https://doi.org/10.1109/IROS47612.2022.9981373

https://doi.org/10.1109/IROS47612.2022.9981373

from [6]) and infer the parameters of the system’s dynamics.1

Our main contributions are: (i) a closed-loop control
framework for soft robotic manipulation, that uses a dif-
ferentiable physics-informed model f trained using FEM
(Section II), (ii) the design of an exemplary DEA pulling
task (Section III), that is simulated in FEM (Section IV),
and (iii) performance evaluation of model f and its use in
closed-loop control. For the latter, we compare simulation
accuracy of f with both a FEM model and a baseline neural
network. Additionally, we compare the model-based control
policy (MPC with f), with (i) a model-free control policy
(learnt using the Soft Actor-Critic SAC algorithm [7]), (ii) a
PD control policy (evaluated previously for DEA control [8]),
and (iii) a heuristic control policy2 (inspired by typical
soft-robotic control policies [3]). We design experiments
(Section VI) across 8 DEA pulling setups to evaluate our
framework and answer the following questions:
(Q1) How to define f using the physical laws of the system?

What is the simulation accuracy of f in a system with
new unknown parameters (e.g., frictional coefficient)?

(Q2) What is the performance of model-based control policy
(based on f), compared to other control policies?

(Q3) What is the accuracy of the inferred model parameters?
Our results show f provides ≤ 5% simulation error com-

pared to FEM. Further, in closed-loop control, an MPC
using f outperforms all other policies, while simultaneously
inferring system properties with ≤ 10% error. Vidoes of the
manipulation task and other supplementary materials are
available at https://sites.google.com/view/phy-informed-sim-
soft-robot/home.

A. Related Work

Soft robots are inspired by biological systems, e.g., where
animals use muscles to achieve safe actuation and control [1].
Engineers use soft actuators to develop similarly safe, quick,
adaptable, and precise robotic manipulation [2]. These soft
actuators generate mechanical work under a specific actua-
tion, e.g., shape memory alloys respond to thermal actuation,
hydraulic actuators respond to pressure, etc. Learning control
for soft actuators requires accurate simulation models that
are used inside the control loop [4]. Designing simulator
models for soft actuators is a challenging task, traditionally
using particle based models (e.g., liquids [9]). In recent years,
researchers are using FEM modelling that allows highly
accurate modelling of deformable materials (e.g., fabric [10],
composite materials [11]).

Dielectric elastomers (DE) are electroactive polymers that
produce deformation under the influence of an external
electric field. DEA are soft actuators that use thin layers
of DE materials to achieve actuation under the stimulus of
electric activation. DEAs provide fast and large deformation,
are lightweight, and have a high energy density, which makes
them promising candidates for soft robotic applications [12].

1For the case study of DEA pulling, coin mass mc and kinetic friction
coefficient µb are inferred. For details, refer to Section III-B.

2The heuristic policy linearly ramps up actuation voltage until the
‘episodic’ task terminates. For details, refer to Section VI

FEM

Training data

Learning Inference Policy Update

Fixed parameters

Optimized parameters
Interactions with

environment

Model-based/
Model-free

Fig. 2. Training model f - the simulator for our task. Material network m is
optimized during learning; dynamics d inferred via closed-loop interaction.

Hence, DEA has been explored to design soft robotic grip-
pers [13], underwater robots [14], crawling robots [15], etc.

There have been several previous approaches to modelling
DE behaviour. A mathematical fractional Kelvin-Voigt model
for DEA is presented in [8], where they eliminate overshoot
in PID control. In [16], a spring-dashpots model describes the
DEA’s dynamics, with model parameters determined from
the response of the robot. FEM models for DE material have
been explored, where deformation in unimoph DEA with
inhomogeneous geometry modeled in [17] uses piezoelectric
elements. A simplified finite element analysis of a dielectric
bending actuator is performed in [13]. The FEM model for a
gripping actuator in [18] is based on a custom defined mate-
rial. These methods focus on modelling the DEA behaviour
in isolation (separate from the manipulation task). Thus, they
lack an understanding of the task context in which the DEA
manipulator is being used. In contrast, our method simulates
the complete manipulation task, allowing us to learn both
DEA behaviour and the task specific context.

An accurate simulator of the manipulation task can assist
in learning a controller. For example, a position based
dynamics simulator (defined using particle interactions) is
used in [9] to develop control strategies for pouring liquid.
A FEM based differentiable simulator in [19] is used to
learn control strategies for cutting. The above methods are
designed to control one specific manipulation task (e.g.,
in [20], the model is explicitly engineered for cutting). In
contrast, our control framework can be used for any robotic
manipulation task that can be simulated in FEM.

Learning based modelling and control can be used for
soft robot manipulation. For example, a differentiable model
of a soft robot’s quasi-static physics is learned in [21], and
then used to perform gradient-based optimization to perform
open-loop control. In [22], a recurrent neural network is
used as a fixed forward model within a policy learning
algorithm for closed-loop soft robot control. In contrast, our
trained physics-informed model f can infer properties of
new unknown setups, adapting during the closed-loop control
process.

https://sites.google.com/view/phy-informed-sim-soft-robot/home
https://sites.google.com/view/phy-informed-sim-soft-robot/home

II. CONTROL FRAMEWORK

The objective of our control framework is to learn a control
policy π for a manipulation task. Figure 2 shows the closed-
loop control design using the trained physics-informed model
f of the manipulation task along with policy π.

A model-based control approach utilizes a forward model
of the system: f : S × A → S, where S is the state space,
and A is the control action space. For each timestep t, the
state is st ∈ S , and the control action is at ∈ A. For MPC,
the optimal control actions at each timestep is estimated by
solving the optimization problem defined in Eq. (1), where
ainit is the initial action. We particularly choose to use a
physics-informed f , which is differentiable, and allows us
to use gradient-based methods to solve this optimization
problem (such as finite-horizon Linear Quadratic Regulator,
LQR [6]). The objective of the control (e.g., get to a target
location) is used to define the cost function C : S ×A → R
(e.g., distance from the target location). For example, in
DEA pulling, cost function C is defined for the objective
of achieving target state (i.e., the target location of the coin)
with penalty on control actions to minimize actuation voltage
of the DEA. Eq. (2) shows the cost function, where s∗t is
target state, and ws, wa the state and action penalties.

argmin
s1:T∈S,a1:T∈A

T∑
t=1

C(st, at)

s.t. st+1 = f(st, at) and a1 = ainit

(1)

C(st, at) =
1

2
(ws(st − s∗t)2 + waa

2
t) (2)

The physics of the robotic manipulation task includes,
(i) the physical laws of the deformable material behaviour,
e.g., electromechanical/hyperelastic behaviour, characterized
by high order ODEs/PDEs that are computationally complex,
and, (ii) the physical laws built according to the context of
the manipulation task, e.g., sliding motion laws, or gravity. In
modeling these physics, interaction variables z are introduced
to describe the contact properties (e.g., force, stress, pressure)
between the deformable material and its surroundings. In
particular, for DEA pulling, z are the forces exerted by the
DEA actuator on the contact surface.

We simulate the manipulation task using a FEM model to
numerically solve the associated physics equations. In this
model, state st+1 and interaction variables zt are simulated,
given st and at. The FEM model for DEA pulling is
described in Section IV. How the simulated data is then used
to train a physics-informed model f is described below.

A. Physics-informed model (f)

The physics-informed model f has two parts:
(i) The material network (m): A function approxima-

tor with weights θ estimating interaction variables ẑ
(Eq. (5)). These interaction variables (z) characterize
deformable material behaviour in the manipulation task
(e.g., forces by DEA on contact surface).

(ii) The dynamics (d): Physical laws characterizing the mo-
tion/dynamics of the system in the form of mathematical

Algorithm 1 Learning
Output: Material network m;

1: Randomly initialize weights θ, and fix parameters ϕ;
2: while not stopping condition do
3: at ← select action at t using a fixed policy;
4: st+1, zt = FEM (st, at);
5: Dataset D ← D ∪ (st, at, zt, st+1);
6: end while
7: Using all data from ∼ D; // Say |D| = N data samples
8: ẑt = m(st, at; θ);
9: ŝt+1 = f(st, at; θ, ϕ);

10: θ ← θ−αθ
dLl(θ, ϕ)

dθ ; // Update θ using ẑ and ŝ, Eq. (6)

11: return m

equations (e.g., linear equations or ODEs/PDEs repre-
senting sliding or gripping). The dynamics d estimate
the next state using interaction variables z, state s, and
action a (Eq. (4)). Parameters ϕ describe the system’s
physical properties, e.g., the mass of coin.

Thus, we can write the model f as in Eq. (3).

ŝt+1 = f(st, at; θ, ϕ) (3)
f(st, at; θ, ϕ) = d(ẑt, st, at; ϕ) (4)

ẑt = m(st, at; θ) (5)

where θ are material neural network weights, and ϕ the
parameters (e.g., mass) for system dynamics. The material
model m of a deformable material can describe an actuator
(e.g., DEA), or the manipulated object (e.g., cloth) depending
on the manipulation task. The interaction variables z depend
only on the deformable material (i.e., the material network
m), and are not impacted by the dynamics d of the manipula-
tion. For example, in DEA pulling, m describes the actuator
behaviour of a unimorph DEA (Section IV). Our model f
is a physics informed neural network [23], where physical
rules can be imposed on interaction variables z in the form
of ODEs/PDEs. However, for the case study of DEA pulling,
a system of linear equations sufficiently defines dynamics d.

We next show how to define f using physical laws.
Model f is differentiable, and captures the manipulation
task physics through dynamics d. In addition to its use as a
simulator to generate data, we also use it for inference, and
for gradient-based control learning.

B. Training and policy synthesis

The physics-informed model f and policy π are learnt in
two steps. First, a Learning step optimizes weights θ of m,
using data generated by the FEM model of the task. Second,
a Control step, where policy π is learnt via environment
interactions. These interactions are used to infer parameters
ϕ (e.g., coin mass) of dynamics d, informing f . We then use
f to learn π.

a) Learning
The weights θ are optimized by minimizing the loss

function based on the error in estimating material model,

Algorithm 2 Control
Input: Trained weights θ

1: Randomly initialize parameters ϕ, and ψ, and fix θ;
2: s1 ← env .reset();
3: while not stoping condition do
4: at = π(st; ψ);
5: st+1, rt ← env .step(at);
6: Replay buffer R ← R∪ (st, at, rt, st+1);
7: if it’s time to update then
8: Randomly sample B transitions from ∼ R;
9: // Inference

10: ŝt+1 = f(st, at; θ, ϕ);
11: ϕ← ϕ− αϕ

dLi(θ, ϕ)
dθ ; // Update ϕ using ŝ, Eq. (7)

12: // Policy Update
13: Update ψ by policy defined updates, e.g., SAC [7];
14: end if
15: end while

i.e., m: (zt − ẑt), and the error in enforcing dynamics,
i.e., d: (st − ŝt). Incorporating the loss encountered in ŝ
ensures that our model adheres to dynamics d (as shown
by optimization of physics informed neural networks [23]).
Algorithm 1 shows how θ is optimized by fixing parameters
ϕ and minimizing the learning loss Ll (Eq. (6)). A fixed
policy is used to select actions at (e.g., a random or uniform
policy). The learning rate for weights θ is αθ and number of
data samples is N .

Ll(θ, ϕ) =
1

N

N∑
t=1

(zt − ẑt)2 +
1

N

N∑
t=1

(st − ŝt)2 (6)

b) Control
Algorithm 2 shows our steps for closed-loop control. First,

in inference, parameters ϕ are optimized by minimizing the
dynamics estimation error, i.e., d: (st− ŝt). Eq. (7) gives the
loss function, with learning rate γϕ and batch size B.

Li(θ, ϕ) =
1

B

B∑
t=1

(st − ŝt)2 (7)

Second, we learn policy π with weights ψ. Updates in ψ
are defined using the underlying policy π and its training
objective. For the model-free policy trained using the SAC
algorithm, ψ is updated based on the loss function from [7];
the weights ψ represent weights of the neural network. For
model-based MPC, we use our trained model f and gradient-
based optimization to estimate the best action. Thus, with
MPC, updating parameters ψ (line 13) is unnecessary.

III. SOFT ROBOTIC DEA PULLING

We design the manipulation task of coin pulling using a
unimorph Dielectric Elastomers Actuators (DEAs) to evalu-
ate the framework proposed in Section II. The deformable
DEA actuator is made of Dielectric Elastomers (DEs), which
are a type of electroactive polymers that produce mechanical
strain under the influence of electric voltage. Thus, a DE

Coin

Active
layer

Constraining
layer

Starting State

Actuated State
Fixed

surface

a) b) y

x

Fig. 3. (a) Unimorph DEA: Active layer expands under influence of electric
voltage, causing bending. (b) Problem setup: DEA moves stationary coin.

TABLE I
STATE AND ACTION DEFINITION FOR TIMESTEP t

st
xt Location of coin along x-axis at time t

ut Velocity of coin along x-axis at time t

at
Vt Voltage applied on the DEA
∆t time difference between t and t+1

zt
Fx,t Force along x-axis by DEA on coin c

Fy,t Force along y-axis by DEA on coin c

membrane expands its area when a voltage is applied across
its thickness [24].

Figure 3(a) shows a unimorph DEA, with one active
and one constraining layer. The active layer expands under
externally applied voltage causing the bending motion. The
DEA is fixed at one end, and the other end rests freely on a
circular coin c. On actuation, the DEA acts as a soft robotic
finger, pulling the coin. A controller policy π can be learnt
to achieve a certain displacement in the coin. Figure 3(b)
shows the 2D view of the setup, where the mass of the coin
is mc, the kinetic friction coefficient between the coin and
DEA is µt, and the kinetic friction coefficient between the
coin and bottom surface is µb. The displacement of the coin
depends on such parameters of the system. A pulling coin
setup Cc is characterized by fixed values of {mc, µt, µb}.
Setups C1, C2, . . . represent pulling different coins, based
on different parameter values.3

The physics-informed model f of the system is defined
by the variables shown in Table I. The state of the system at
time-step t is characterized by the location xt and velocity
ut of the coin along the x-axis. The action comprises the
voltage (Vt) applied on the DEA and ∆t,4 and the hidden
variables are the forces (Fx and Fy) applied by the DEA on
the top surface of the coin.

A. Material network (m)

Modeling non-linear properties of DEs require modeling
the effects of hyperelasticity and Maxwell stress [24]. On
application of voltage V, maxwell stress causes the bending
actuation in DEA. The actuated DEA exerts forces Fx and
Fy on the top surface of the coin, which results in its motion.
The material network used to estimate these forces is defined
in Eq. (8). We simulate DEA pulling using FEM, to generate

3We consider the coins to be of fixed dimensions (i.e., fixed volume), and
thus change the mass mc by changing the density ρ of the coin material.
For further details, please refer to Section VI-A.

4Note that in FEM, the time between successive simulation datapoints
may vary. Thus, ∆t is variable during training the model f .

Text

Starting stage

Stage of static friction

Stage of kinetic friction

a)

b)

c)

x,
0.01 m0.04 m

0.001 m

DE Active layer

0.001 m

0.0075 m

Coin

Fig. 4. FEM of DEA pulling, (a) inactive DEA with dimensions, (b) active
DEA during static friction stage (c) motion occurs in kinetic friction stage.

data and optimize weights θ (Section IV).

F̂x,t, F̂y,t = m(xt, ut, Vt, ∆t; θ) (8)

B. Dynamics (d)

Physical laws of the pulling setup define the system
dynamics d (Section II-A). There are two stages during
pulling: static friction (forces are applied but there is no
motion), and kinetic friction (applied forces cause motion
in coin). An actuation threshold voltage V T is required to
achieve a minimum coin displacement (i.e., to get to the
stage of kinetic friction). Coin acceleration At is due to the
net force in the x-axis (Eq. (9)), where Fµ is the opposing
frictional force. We calculate Fµ using Eq. (10), assuming
linear growth in frictional force during the stage of static
friction, and a no-slip condition on the top surface.

F̂Net
x,t = mcAt = F̂x,t − Fµ,t (9)

Fµ,t =

µb

(
F̂y,t+mcg

)
if V ≥ V T ;

µbVt
V T

(
F̂y,t+mcg

)
otherwise

(10)

where g is gravitational acceleration (9.8 m/s2). We as-
sume a frictional velocity decay for a moving coin if DEA
actuation is stopped (i.e., Vt = 0). These dynamics disregard
non-linear motion in coin (with high DEA actuation voltages,
where DEA loses contact with the coin surface). The dynam-
ics d of this pulling setup is characterized by parameters
ϕ (Section II), which are: coin mass mc and frictional
coefficient µb. While training m, these values are fixed. We
infer ϕ during closed-loop environment interactions.

The next location and velocity of the coin, i.e., x̂t+1 and
ût+1, are calculated using At, xt, ut, and ∆t and equations
of motion. Thus, the dynamics d is a set of linear equations
based on the laws of motion.

IV. FEM OF DEA PULLING

FEM is a numerical method for solving differential equa-
tions of a physical system. Its complexity depends on both

the task and available computational power. The physical
system of DEA pulling consists of a unimorph DEA on
the fixed surface and a solid coin (Section III). We use
commercially available software ABAQUS [25] to build a
3D model of DEA pulling. Figure 4 shows the simulated
setup, during the starting stage and the stages of static and
kinetic friction. In the stage of static friction, we clearly see
no motion in the coin even when actuating the DEA.

a) DE Material
To model the non-linear elastic behaviour in DE mem-

branes, recent works use hyperelastic material models, like
the Gent and the Neo-Hookean models [26]. For the small
strains present in the thin membrane of our DEA (≤ 10%),
such hyperelastic behaviour reduces to linear elasticity. Fur-
thermore, since no commercial FEM packages provide DE
elements out of the box, we approximate the behaviour
of our DE material in FEM using piezoelectric materials
elements [27]. We modify the piezoelectric finite elements
material properties to model the Maxwell stress effect ob-
served in dielectric materials. The Maxwell stress p on the
DE membrane is given by Eq. (11) [24]. Similar to DE,
piezoelectric materials exhibit strain when in the presence of
electric fields. The piezoelectric stress is given by Eq. (12).

p = e0er

(V
z

)2

(11)

σij = DE
ijklϵkl − emijEm (12)

where V is the applied voltage across thickness z of the
DE membrane, the relative permittivity is er, and the permit-
tivity of free space is e0. The piezoelectric elastic stiffness
matrix is DE

ijkl, the strain tensor is ϵkl, the stress coefficient
is emij and the electric potential gradient is Em. As detailed
in [17] the piezoelectric stress becomes approximately equal
to the Maxwell stress for a thin membrane, such that the
strain ezz in the direction of thickness (z-axis) is given by:

ezz = ere0Ez (13)

A. FEM simulation settings

Figure 4(a) shows our FEM setup when the DEA is
inactive (zero voltage). The mesh consists of an 8-node linear
brick (ABAQUS element type C3D8E). Each DE membrane
has 10 elements.5 For meshing the coin, ABAQUS’s internal
meshing strategy is used to generate 20 elements.

For both the active and constraining layers of the DE
material, the Poisson’s ratio is 0.5 and Young’s modulus is
0.56 MPa [28]. We use Eq. (13) to calculate ezz = 3.68. All
other piezoelectric coefficients are zero. We assume elastic
behaviour for the coin. The bottom surface and the fixed
end of the DEA are constrained using encastre boundary
condition. The top surface assumes a no-slip condition.

The coin rests on the frictional surface with coefficient
µb ∈ {0.2, 0.25} (defined as tangential behaviour in the
contact interactions in ABAQUS). Similarly, the free end
of the DEA rests atop the coin with µt ∈ {0.5, 0.55}. To

5We limit the number of mesh elements due to software limitations.

simulate a real scenario, we include gravitational load (g =
9.8 m/s2). We also do not assume a no-slip condition between
the top of the coin and DEA, in contrast to the dynamics
in Section III-B. Coin mass (mc) is calculated using its
volume and density ρ ∈ {7.7, 7.8} g/cm3, thus, making mc ∈
{1.36, 1.38} g. The total time simulated in FEM is 1 s, with
∆t between points determined by the internal solver.

V. PARAMETERS SETTINGS

This section details the architectures, parameters, and
training procedures used to evaluate our framework. An
experimental setup C is defined using differing values
of ⟨µt, µb,mc⟩ (Section III). We use 8 setups, denoted
{C1, C2, . . . , C8}. An FEM model is developed for each
setup. To collect the dataset for each model, we apply a lin-
early increasing electric potential load (Vt ∈ {0.0, 400.0}V)
to the top surface of the active DE layer. Table I describes
the values collected at each timestep t. Each dataset contains
1000-2000 data points. Across setups, ⟨x0, u0⟩ = ⟨0.0, 0.0⟩.

During learning, we initialize parameters ϕ (mc and µb,
Section III-B) of dynamics d using the true values from the
FEM model. Note that µt is not used as a parameter in the
dynamics of f , but, is required for the FEM modeling. For
each setup, the threshold voltage (V T) is the voltage required
to achieve a displacement of −10−5 m. We assume the coin
loses contact with the DEA for Vt ≥ 300 V.

Physics-informed model f is developed using Pytorch [29]
and contains the material network m and the dynamics d
(Section II). The material network m is a fully connected
neural network with four input nodes, two output nodes,
three hidden layers with 128 neurons each, and rectified
linear (ReLU) activation functions. An ADAM optimizer
with learning rate 0.001 is used to minimize Eq. (6) and
Eq. (7) for 1,000 iterations. An early stopping criterion is
used based on validation loss with 0.0 minimum change.
The baseline neural network uses RelU activations, while
the recurrent neural network uses LSTM cells. The LSTM
uses an 8-step recurrence.

The target state for the controller is xT = −1.0 mm, i.e.,
goal is to achieve a 1 mm displacement. The manipulation
‘episode’ is simulated, and terminates when ∥xt − xT ∥ <
0.01 mm. To simulate real-world discrepancies, we add gaus-
sian noise to simulated state xt with zero mean and standard
deviation of 0.001 m. We average results for 10 ‘episodes’
for all controllers. Batch size (Algorithm 2) is 256. During
control, the time increment ∆t is fixed to 0.001 s—the policy
does not provide it as an output. For inference, mc is
initialized to 0.001 g and µb is initialized to 0.2.

We use the model-based control policy from [6]. For MPC,
we set the number of timesteps 20, LQR iterations to 20,
and action penalty to 0.001. The model-free policy is trained
using Soft Actor-Critic (SAC) [7]. For SAC, fully connected
neural networks are used for actor and critic with two hidden
layers of 256 neurons each. The value of τ (soft updates) is
set to 0.005, and networks are optimized using MSE loss
and the ADAM optimizer. For the PD controller, the value
of Kp is set to −0.5 and Kd is set to 5.

TABLE II
MEAN ABSOLUTE ERRORS IN SIMULATION

Simulated value f LSTM NN
xt (1× 10−4m) 0.34 3.86 9.86
Fx,t (1× 10−4N) 3.68 − −
Fy,t (1× 10−4N) 12.01 − −

VI. EXPERIMENTAL RESULTS

This section presents experiments describing the high sim-
ulation and inference accuracy of f , while also developing
an effective closed-loop soft robotic controller. For the case
of DEA pulling, we evaluate, (i) the accuracy of the f as a
simulator, and (ii) the accuracy of f in inference, and (iii) the
closed-loop MPC controller that utilizes f .

A. Simulation (Q1)

We design an experiment to answer Q1, i.e., to show that
f can simulate data for new parameter settings, we train and
simulate on different setups (defined in Section III). Note
that different setups represent different coins, with different
mass mc and frictional coefficients µb and µt.

A simulation experiment set has coin setups given by
{Ctrain, Cval, Ctest}. FEM data from {Ctrain, Cval} is used
to optimize weights θ (material network). The objective of
learning step (Algorithm 1) is to optimize weights θ of
the material network m. During training and validation, the
material network m is same across coin setups (i.e., same
θ for Ctrain and Cval) and dynamics d are specific to coin
setups (i.e., ϕ based on Ctrain and Cval). During testing, data
is simulated recursively (for T = 1 s) in a test setup Ctest,
using simulator f . This f consists of (i) a material network
with previously optimized θ, and (ii) the dynamics with
parameters ϕtest (based on Ctest). We present averaged results
for 6 experiment sets (E.g., for first set, {Ctrain, Cval, Ctest}
are {C1, C2, C3}, the second are {C2, C3, C4}, etc.).

We evaluate the absolute errors encountered in simulating
ŝt+1 (xt and ut) at each timestep t. For example, error in
xt is given by ext = |x̂t − xt|, where x̂t is the location
simulated using f , and xt is the true value (from the FEM
dataset). Absolute errors in data simulated using a black-box
baseline Neural Network (NN) and long short term memory
recurrent neural network (LSTM) trained using data from
Ctrain and Cval are also included (e.g., a NN that simply
approximates ŝt+1 = NN(st, at;w)).

Table II provides the mean absolute errors in simulating
location (xt) and forces using physics-informed model f and
the baseline models across all test setups. Figure 5 shows the
absolute error in x for all test setups for f , NN , and LSTM .
In all cases, f outperforms the baseline models. Additionally,
the average absolute error in x simulated using f is less than
0.05 times the magnitude of the actual values, i.e., we note
approximately ≤ 5% error compared the FEM simulation.

In the first half of the simulation time during static friction
(Section III-B), we see negligible displacements and increas-
ing Fy . In the latter half, the kinetic frictional force becomes
stable, and we see a change in coin location (xt). Our model

●

●

●

●

Ctest : C3 Ctest : C4 Ctest : C5 Ctest : C6 Ctest : C7 Ctest : C8

0e+00

1e−03

2e−03

3e−03
A

bs
ol

ut
e

er
ro

r

f LSTM NN
Each box: errors in all simulation points

Absolute errors in simulation

Fig. 5. Absolute error in simulated location xt. Each box point has data
for all simulation points.

f accurately estimates x in both stages. We see a similar
accuracy for f compared to the FEM, NN , and LSTM
in simulating velocity ux for the coin. While decreasing
the neurons per layer in f from 128 to 64 (Section V)
results in no statistically significant increase in average error,
decreasing the capacity of baseline NN by the same amount
results in an increase from 15% average error to 50%.

Real-time control in manipulation tasks requires fast sim-
ulations. For 1 second of simulation with 700 points, the
FEM model takes 130 seconds (average for all test coins) —
a prohibitive duration for real-time control. In comparison,
our physics-informed model f takes ≤ 0.7 seconds. While
both baseline models are also faster than FEM, (0.3 and 1.2
seconds for NN and LSTM respectively), they provide poor
accuracy compared to f . Our proposed model f is fast as
opposed to FEM but provides high fidelity to FEM as a
simulation model of soft robotic manipulation.

The absolute error in forces Fx and Fy in the region of
static friction is higher compared to the region of kinetic
friction. This happens because we optimize material network
m using a physics informed loss function, i.e., a loss function
that is based on the error in the next state s and the error in
the interaction variables z (Eq. (6)). Optimizing m using this
loss function assists in learning the overall manipulation task
behaviour, as opposed to only learning the outputs of m (Fx

and Fy). This behaviour is non-restrictive, as the objective
of our model is to learn the next state of the motion, which
is simulated accurately.

B. Control (Q2)

In this experiment, we evaluate f to answer Q2 (per-
formance of model-based MPC compared to other control
policies?). In the control step (Algorithm 2), we learn closed-
loop control for test setups C1 and C2. Prior to this, in the
learning step (Algorithm 1), we train the model fa using
the FEM data from setups {C3, . . . , C8}. We do not use the
data from C1 and C2 during learning to avoid information
leakage. For C1 and C2, we learn the following policies:

(i) MPC policy: A model-based control policy defined us-
ing differentiable model f and an MPC solver [6]. The
MPC uses the model with infered physical parameters.

(ii) SAC policy: A model-free Actor-Critic policy learnt
using the Soft Actor-Critic algorithm [7],

(iii) PD policy: A feedback based control policy (previously
tested for DEA control [8]),

Target location (xT)
−1.2

−0.8

−0.4

0.0

1e+01 1e+03 1e+05
Number of Iterations

Lo
ca

tio
n

x t
 (m

m
)

MPC (Model − based, f)
SAC (Model − free)

PD

HeurLocation: average for 10 episodes

DEA pulling control (Ctest : C2)

Fig. 6. DEA pulling control for C2 . Terminal state: coin is ≤ 0.01 mm
from xT (Solid line: average for 10 ‘episodes’, shaded region: 25-75%)

(iv) Heur policy: A heuristic control policy that linearly
ramps up actuation voltage (i.e., voltage increases by
0.5 V after each iteration until terminal state).

The Heur policy is inspired by typical soft-robotic con-
trol policies [3]. The environment is simulated by trained
physics-informed models fs,1 and fs,2. This is due to the lack
of a real-world DEA setup (However, Section VI-A shows
our physics-informed models are accurate simulators).

Figure 6 shows the average coin location xt during closed-
loop control of test setup C2. Average is calculated across
10 episodes to compare the MPC policy (model-based),
with SAC policy (model-free), a PD policy and a Heur policy.
We notice similar results for both test setups C1 and C2. The
variance in coin position is due to the noise added in the
simulated observations to estimate a realistic scenario.

The coin reaches the target in ≤ 200 iterations under the
MPC policy, i.e., ≤ 200 observations are captured in the
control loop. In contrast, SAC policy, PD policy, and Heur
capture approximately 10,000, 1500, and 500 iterations.
Thus, during control, the MPC policy reaches the target in
the least number of steps, where the computation time per
iteration (average 1.2 s) is not computationally prohibitive
for a real world manipulation. We note similar computation
times for the model-free SAC policy (average 0.005 s) and
PD policy (average 0.001 s).

During control using Heur policy we notice sudden motion
towards xT after approximately 280 iterations. This repre-
sents the transition from stage of static friction to stage of
kinetic friction. The Heur policy linearly ramps up actuation
voltage every iteration, and thus, does not depend on location
feedback. In contrast, both PD policy and SAC policy rely on
observed location, and take longer to reach and manipulate
the coin in the stage of kinetic friction.

C. Inference (Q3)

This experiment evaluates how accurately f infers the
model parameters. Algorithm 2 infers mc and µb for test
setups C1 and C2. Similar to the control experiment, in
the learning step, we train fa using FEM data from setups
{C3, . . . , C8}. The mass mc and frictional coefficient µb

inferred by physics-informed model f are compared against
their real values (used in Ctest during control with MPC
policy). Inferred mc converges to ≤ 10% error compared to
the real value within 2,000 iterations, while µb, the converges
within 300 iterations. Similar results hold across both test
setups and all episodes.

VII. CONCLUSIONS

This paper presents a framework to learn a differentiable
simulator to develop a corresponding controller for soft
robotic manipulation. We defined a physics-informed model
f consisting of a material network m, and dynamics d. This
model f can be used as a simulator for data-generation,
inference, and control policy optimization. We designed
a soft-robotics case study where a coin is pulled using
unimorph DEA. FEM simulation of the DEA generated data
to train f . Our experiments used multiple setups to evaluate
the framework in learning f and model-based control.

From our analyses, we conclude, (i) the physics-informed
model f trained using the proposed framework can simulate
new setups (characterized by parameters ϕ) with ≤ 5% error
compared to FEM (Fig. 5); (ii) a closed-loop MPC policy
based on differentiable model f outperformed all other poli-
cies in orders of hundreds of iterations (Section VI-B); (iii) f
can be used for accurate inference of the parameters ϕ: mc

and µb (Section VI-C). Future research directions include:
Further evaluating this control framework with physical soft
robotic actuators; Evaluating the model f in tasks with large
degrees of freedom; and exploring model-based policies with
lower computational requirements compared to MPC.

ACKNOWLEDGMENT

S. Ramamoorthy would like to acknowledge financial sup-
port from the Alan Turing Institute, for the project ‘Enabling
advanced autonomy through human-AI collaboration’. We
thank Mukul Sahu for his comments on FEM modeling.

REFERENCES

[1] S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired
evolution in robotics,” Trends in Biotechnology, vol. 31, 2013.

[2] D. Rus and M. Tolley, “Design, fabrication and control of soft robots,”
Nature, vol. 521, 2015.

[3] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception,
and control methods for deformable object manipulation,” Science
Robotics, vol. 6, 2021.

[4] N. El-Atab, R. Mishra, F. Al-modaf, L. Joharji, A. Alsharif, H. Alam-
oudi, M. Diaz, N. Qaiser, and M. Mustafa, “Soft actuators for soft
robotic applications: A review,” Advanced Intelligent Systems, vol. 2,
2020.

[5] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2012, pp. 5026–
5033.

[6] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z. Kolter,
“Differentiable MPC for end-to-end planning and control,” in Pro-
ceedings of the 32nd International Conference on Neural Information
Processing Systems (NIPS), 2018, p. 8299–8310.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference
on Machine Learning (ICML), 2018, pp. 1861–1870.

[10] E. Coevoet, A. Escande, and C. Duriez, “Soft robots locomotion and
manipulation control using fem simulation and quadratic program-
ming,” in Proceedings of 2nd IEEE International Conference on Soft
Robotics (RoboSoft), 2019, pp. 739–745.

[8] T. Karner and J. Gotlih, “Position control of the dielectric elastomer
actuator based on fractional derivatives in modelling and control,”
Actuators, vol. 10, 2021.

[9] T. Lopez-Guevara, N. K. Taylor, M. U. Gutmann, S. Ramamoorthy,
and K. Subr, “Adaptable pouring: Teaching robots not to spill using
fast but approximate fluid simulation,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 77–86.

[11] S. David Müzel, E. Bonhin, N. Guimarães, and E. Guidi, “Application
of the finite element method in the analysis of composite materials:
A review,” Polymers, vol. 12, 2020.

[12] U. Gupta, L. Qin, Y. Wang, H. Godaba, and J. Zhu, “Soft robots
based on dielectric elastomer actuators: a review,” Smart Materials
and Structures, vol. 28, 2019.

[13] F. Zhou, X. Yang, Y. Xiao, Z. Zhu, T. Li, and Z. Xu, “Electromechani-
cal analysis and simplified modeling of dielectric elastomer multilayer
bending actuator,” AIP Advances, vol. 10, 2020.

[14] J. Shintake, H. Shea, and D. Floreano, “Biomimetic underwater robots
based on dielectric elastomer actuators,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 4957–4962.

[15] M. Duduta, F. Berlinger, R. Nagpal, D. R. Clarke, R. J. Wood, and F. Z.
Temel, “Tunable multi-modal locomotion in soft dielectric elastomer
robots,” IEEE Robotics and Automation Letters, vol. 5, 2020.

[16] J. Cao, W. Liang, Q. Ren, U. Gupta, F. Chen, and J. Zhu, “Modelling
and control of a novel soft crawling robot based on a dielectric elas-
tomer actuator,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 4188–4193.

[17] O. Araromi and S. Burgess, “A finite element approach for modelling
multilayer unimorph dielectric elastomer actuators with inhomoge-
neous layer geometry,” Smart Materials and Structures, vol. 21, 2012.

[18] X. Zhao and Z. Suo, “Method to analyze programmable deformation
of dielectric elastomer layers,” Applied Physics Letters, vol. 93, 2008.

[19] P. Jamdagni and Y.-B. Jia, “Robotic cutting of solids based on fracture
mechanics and fem,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 8252–8257.

[20] E. Heiden, M. Macklin, Y. S. Narang, D. Fox, A. Garg, and
F. Ramos, “DiSECt: A Differentiable Simulation Engine for Au-
tonomous Robotic Cutting,” in Proceedings of Robotics: Science and
Systems, 2021.

[21] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and S. Coros, “Soft
robot control with a learned differentiable model,” in 2020 3rd IEEE
International Conference on Soft Robotics (RoboSoft), 2020, pp. 417–
423.

[22] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based
reinforcement learning for closed-loop dynamic control of soft robotic
manipulators,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 124–
134, 2019.

[23] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, 2019.

[24] R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of
polymer dielectrics with compliant electrodes as a means of actuation,”
Sensors and Actuators A: Physical, vol. 64, 1998.

[25] M. Smith, ABAQUS/Standard User’s Manual, Version 6.9. United
States: Dassault Systèmes Simulia Corp, 2009.

[26] H. Zhang, M. Dai, and Z. Zhang, “Application of viscoelasticity to
nonlinear analyses of circular and spherical dielectric elastomers,” AIP
Advances, vol. 9, no. 4, p. 045010, 2019.

[27] V. Piefort, “Finite element modeling of piezoelectric structures,” 2000.
[28] N. Wang, C. Chaoyu, H. Guo, B. Chen, and X. Zhang, “Advances in

dielectric elastomer actuation technology,” Science China Technolog-
ical Sciences, vol. 61, 2017.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” 2017.

	INTRODUCTION
	Related Work

	Control Framework
	Physics-informed model (f)
	Training and policy synthesis

	Soft Robotic DEA pulling
	Material network (m)
	Dynamics (d)

	FEM of DEA pulling
	FEM simulation settings

	Parameters settings
	Experimental Results
	Simulation (Q1)
	Control (Q2)
	Inference (Q3)

	Conclusions
	References

