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Abstract—As the semiconductor manufacturing process is 

moving towards the 3 nm node, there is a crucial need to reduce 

the edge placement error (EPE) to ensure proper functioning of 

the integrated circuit (IC) devices. EPE is the most important 

metric that quantify the fidelity of fabricated patterns in multi-

patterning processes, and it is the combination of overlay errors 

and critical dimension (CD) errors. Recent advances in machine 

learning have enabled many new possibilities to improve the 

performance and efficiency of EPE optimization techniques. In 

this paper, we conducted a survey of recent research work that 

applied machine learning/ deep learning techniques for the 

purposes of enhancing virtual overlay metrology, reducing 

overlay error, and improving mask optimization methods for 

EPE reduction. Thorough discussions about the objectives, 

datasets, input features, models, key findings, and limitations are 

provided. In general, the results of the review work show a great 

potential of machine learning techniques in aiding the 

improvement of EPE in the field of semiconductor 

manufacturing. 

Index Terms— Edge placement error, deep learning, machine 

learning, metrology, optical proximity correction, overlay, 

semiconductor, sub-resolution assist feature. 

I. INTRODUCTION

OORE’S Law states that transistor density will double

every two years, which is still upheld until today, thanks 

to the constant innovations in the semiconductor industry. 

Advance technologies such as extreme ultraviolet (EUV) 

lithography and multiple patterning techniques [1], [2] are the 

driving forces to keep extending Moore’s Law, as well as 

leading the whole industry moving towards 3 nm node and 

beyond. In these patterning schemes, especially in multi-

patterning processes, placement error control between two 

process layers is strictly required to maintain high yield and 
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performance [3], [4], and the most important metrics to 

evaluate placement error is EPE. EPE can be defined as the 

relative displacement of the edges of features from their 

intended target location, and it is a directly representation of 

the pattern fidelity of fabricated structures. EPE is the 

combination of overlay errors and CD errors including OPC 

and stochastics [5]. The visualization of EPE and the 

distribution budget of its components are described in Fig. 1. 

In [6], Jan Mulkens et al proposed an analytical method to 

calculate the EPE, which is shown in (1). Here in this 

equation, 𝐻𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒𝑂𝑃𝐶  is the half-range of the CD error

due to optical proximity residuals. The second term 𝜎𝑃𝐵𝐴

stands for proximity bias average error, which is the feature-

specific field average CD induced by scanner tool-to-tool 

variance. The third term, 𝜎𝐿𝑊𝑅, refers to line width roughness,

which is local errors that come from resist and photon 

stochastics in lithography process. The two terms inside the 

square root are the global errors of EPE. Overlay error 

(𝜎𝑜𝑣𝑒𝑟𝑙𝑎𝑦) is the placement shift error of the printed patterns,

while 𝜎𝐶𝐷𝑈 is the CD uniformity that originates from etch and

deposition steps. 

𝐸𝑃𝐸𝑚𝑎𝑥 =
𝐻𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒𝑂𝑃𝐶

2
+

3𝜎𝑃𝐵𝐴

2
+

6𝜎𝐿𝑊𝑅

√2

+ √(3𝜎𝑜𝑣𝑒𝑟𝑙𝑎𝑦)
2

+ (
3𝜎𝐶𝐷𝑈

2
)

2    (1) 

EPE is the main challenge that inhibits the continuation of 

devices’ size shrinkage in semiconductor industry. Without 

good value of the EPE, pattern-to-pattern electrical contacts 

can be poor, which would lead to fatal failures of IC devices 

such as short circuits or broken connections. Therefore, it is 

essential to develop effective EPE analysis and control 

solutions to ensure proper functionality of fabricated 

semiconductor devices. As the EPE consists of both overlay 

and CD errors, this goal can only be achieved by optimizing 

both overlay metrology and control methods, as well as mask 

design computational techniques in lithography process. Fig. 2 

illustrates the EPE optimization flow.  

MACHINE LEARNING BASED EDGE 

PLACEMENT ERROR ANALYSIS AND 

OPTIMIZATION: A SYSTEMATIC REVIEW 

Anh Tuan Ngo , Bappaditya Dey , Member, IEEE, Sandip Halder, Stefan De Gendt  , Member, 

IEEE, and Changhai Wang, Member, IEEE 

M 

This article has been accepted for publication in IEEE Transactions on Semiconductor Manufacturing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSM.2022.3217326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9483-2710
https://orcid.org/0000-0002-0886-137X
https://orcid.org/0000-0003-3775-3578


IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING 2 

Fig. 2. EPE optimization flow [7]. 

In modern measurement schemes, overlay is measured by 

metrology tools which detect and scan specific targets or 

marks on scribe lines and/or within the field of the product 

wafers [4], [8]. Typically, in the semiconductor industry, a 

sampling approach for overlay metrology is employed, in 

which only a subset of wafers in the production line are 

measured by physical tools such as KLA optical-based overlay 

or ASML YieldStar diffraction-based overlay. This method 

suffers from a major drawback that a lot of wafers are not 

measured to detect abnormal overlay signatures. As a result, 

there is a great chance that underqualified wafers are not 

detected and can slip through to the next process steps. This 

can cause a serious problem in the later stages, since many 

dies will not yield, or wafers need to be scrapped [9]. One 

solution to tackle this problem is applying the virtual overlay 

metrology (VOM) method. There are tens of gigabytes of data 

generated every day from sensors in the lithography clusters 

and other processing equipment in a typical semiconductor 

plant [10]. This amount of available data can be utilized by 

applying machine learning techniques to build a model which 

can predict the overlay property of each wafer, without 

actually measuring the overlay by physical metrology tools. 

Machine learning based VOM models can also find and link 

specific root causes of abnormal overlay excursions, enabling 

software tools or operators to take corrective and/or preventive 

actions in timely manner [9], [11]. Machine learning can also 

be used to aid overlay metrology tools in order to improve 

their measurement accuracy and applied in control schemes in 

the fabrication process to reduce the overlay error. 

Regarding the problem of reducing EPE in lithography 

process, mask synthesis optimization is one of the most crucial 

tasks, because it can help optimize both the placement errors 

and the critical dimension of the desired patterns. The 

conventional methods such as the rule-based [12]–[14] and 

model-based techniques [15]–[17] for mask synthesis have 

been applied for many years. Rule-based approaches are 

capable of achieving high performance on simple designs, but 

they are not able to handle complex target patterns. Whereas 

in contrast, the model-based approaches can produce great 

masks with high accuracy of printed patterns, but they are very 

time consuming and computationally expensive. To ensure 

accurate performance with good runtime, different machine 

learning based mask optimization methods have been 

introduced [18]–[21]. One of these studies stated that a 

machine learning based model can approach a model-based 

method of a commercial software in terms of EPE 

performance but can produce the result up to 144 times faster 

[21]. This shows a great potential of machine learning in 

addressing mask optimization problems. 

In this paper, a systematic review of applications based on 

machine learning techniques for the purposes of enhancing 

virtual overlay metrology, reducing overlay error, and 

Fig. 1. EPE visualization and its distribution budget for 5~7-nm logic node [5]. 
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improving mask optimization methods for EPE reduction was 

conducted. We also thoroughly discussed the objectives, 

datasets, input features, models, key findings, and limitations 

of the work in the literature. Finally, future work in machine 

learning based techniques for EPE analysis and optimization is 

suggested. 

II. METHODOLOGY

In this review, the Preferred Reporting Elements for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines 

was followed [22]. The reviewed papers were indexed in 

Google Scholar database, and the keywords for the queries 

were: 1. overlay, 2. mask optimization, 3. SRAF, 4. OPC, 5. 

analysis, 6. optimization, 7. metrology, 8. semiconductor, 9. 

machine learning, and 10. deep learning. In the search phrases, 

truncation was applied to the words ‘analysis*’ and 

‘optimization*’ in order to seek for their variations or 

synonyms. Two search queries were used in this work, one 

was for overlay analysis and optimization, and the other was 

for EPE. They were constructed by using logical operators as 

follow: 1. for overlay analysis and optimization: (1) AND (5) 

AND (6) AND (7) AND (8) AND (9 OR 10), and 2. for mask 

optimization: (2) AND (3 OR 4) AND (8) AND (9 OR 10).  

To filter the results returned from the search query, this 

review applied three inclusion and three exclusion criteria. 

The three inclusion criteria consist of: (i) articles published 

from 2010, (ii) peer-reviewed journal and conference 

publications, and (iii) articles that focused on machine 

learning based techniques for overlay – EPE analysis and 

optimization. The criteria used for exclusion included: (i) 

articles that did not propose new machine learning methods to 

analyze or optimize overlay – EPE, (ii) review or survey 

articles, (iii) articles that were not written in English. 

III. RESULTS

Using the queries described before, the results returned 2110 

and 599 articles for overlay analysis and mask optimization, 

respectively. In the initial screening after applying the inclusion 

and exclusion criteria on the title and abstracts of these articles, 

2027 papers for overlay and 542 papers for EPE were filtered out. 

Finally, by applying the inclusion and exclusion criteria on the 

full text of those papers, 19 overlay papers and 17 mask synthesis 

papers remained. The selecting procedure is illustrated in Fig. 3. 

For the articles in the topic of overlay analysis and 

optimization, they can be grouped in three categories, which are: 

(i) virtual overlay metrology, (ii) improvement of overlay

metrology accuracy, and (iii) control scheme to improve overlay

in manufacturing process. In terms of mask optimization tasks for

EPE optimization, the publications are divided into two groups:

(i) sub-resolution assist feature insertion, and (ii) optical

proximity correction. The detail of which article belongs to which

category is shown in Table I. Additionally, in Table II and Table

III, the information about the reviewed articles was summarized,

including the discussion about: (i) the objectives, (ii) the dataset

and/or input features, (iii) the machine learning models, (iv) the

results and key findings, and (v) the limitations.

Fig. 3. Diagram of PRISMA selection procedure. 

TABLE I 

CATEGORIZATION OF THE REVIEWED ARTICLES 

Paradigm Categories Articles 

Overlay 

analysis and 

optimization 

Virtual overlay metrology [4], [9], [11], [23]–[30] 

Improvement of overlay 

metrology 
[8], [31]–[33] 

Control scheme to improve 

overlay in manufacturing 

process 

[34]–[37] 

Mask 

optimization 

Sub-resolution assist feature 

insertion 
[21], [38]–[40] 

Optical proximity correction [18]–[20], [41]–[50] 

IV. DISCUSSION: MACHINE LEARNING BASED OVERLAY 

ANALYSIS AND OPTIMIZATION 

Table II shows the summary results of 19 different studies 

about overlay analysis and optimization techniques using 

machine learning. 

A. Virtual Overlay Metrology

VOM is one of the techniques that has attracted a lot of

attention from researchers in terms of optimizing overlay in 

semiconductor process manufacturing. As it is almost 

impossible to measure every wafer of each lot in the 

lithography steps by physical measurement tools, VOM shows 

great potential to tackle this problem by leveraging different 

machine learning techniques with a huge amount of data from 

different sensors and the context of process steps to predict 

overlay signature of each wafer. Thus, it is possible to quickly 

detect wafers with significant overlay excursion and the steps 

through which those wafers have been processed. 
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TABLE II 

SUMMARY OF MACHINE LEARNING BASED OVERLAY ANALYSIS AND OPTIMIZATION STUDIES 
S
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[4] 
(Cited 

by 

22) 

- Investigate the

effect of SWA 
profiles on the

overlay target. 

- Propose a model
for predicting 

displacement offset

by SWAs inputs. 

The asymmetry in intensity 

between the +1st and −1st 

orders by using a grating 
with SWA α of 90°, 89°, 88°, 

87°, and 86°. 

(The dataset is obtained at 

nominal process condition.) 

ANN with 

Levenberg-
Marquardt 

backpropagation 

learning 

Improvement of the proposed ANN model 

compared to the conventional linear regression 
model with a wavelength of 650 nm: 

- MSE value: 

+ ANN model: 0.0331
+ Conventional model: 0.320

- Mean of the residual value: 

+ ANN model: 0.135

+ Conventional model: 0.887

(The results are obtained from modelling and 

simulation work.) 

The authors only 

consider the slope 

sidewall grating for 
the top layer and 

vertical side wall for 

the bottom layer, 
while in reality, 

bottom layer grating 

can also have slope 

side wall. 

[8] 

(Cited 

by 

1) 

Reducing the 

inaccuracy in 
misregistration 

measurements of 

the optical on 
product overlay at 

the after-develop 

inspection. 

- Images of 1000 different 

sites from each wafer.
- Various physical 

characteristics of the wafer 

(kernels, targets' accuracy).

(The dataset is obtained at

nominal process condition.) 

- k-fold Cross-

Validation for 

optimizing ML 
model's 

hyperparameters 

- Gradient

Boosting 

- Accuracy improvement compared to 

imaging-based overlay technique:

+ X: 15% 
+ Y: 17% 

- Residual overlay error:

+ X m3s: < 1.6 nm 

+ Y m3s: < 2 nm 

(The performance of ML models is verified by 

on-wafer measurements) 

Small dataset. 

[9] 
(Cited 

by 

1) 

Build a prediction 
model to provide 

overlay estimates 
for every wafer in 

the lot and to 

identify the main 
root causes for the 

significant 

variations in the 
implant-layer 

overlay. 

- Average exposure

fingerprints of the scanners.

- Measured overlay of the 
first implant layer. 

- Context, scanner logging,

etc. 

(The dataset is obtained at

nominal process condition.) 

- Multivariate

linear regression

- t-SNE

Predicted overlay correlation: 
+ R-squared X: 0.67

+ R-squared Y: 0.67

- t-SNE algorithm successfully identify wafers 

that have additional distortion contributions.

(The performance of ML models is verified by

on-wafer measurements) 

Low R-squared 

correlation 

coefficient. 

[11] 
(Cited 

by 

10) 

Virtual overlay 

metrology for fault 

detection. 

- Wafer alignment metrology

for all colors. 

- Wafer leveling metrology. 

- TWINSCAN Context. 

(The dataset is obtained at

nominal process condition.) 

Bayesian 

Interpolation for 

ANN 

- Predicted overlay correlation R-squared: 
0.7513 

- Residual overlay error in 20 nm DRAM

manufacturing process:
+ X m3s: 4.4 nm 

+ Y m3s: 5.7 nm 

(The performance of ML model is verified by 

on-wafer measurements) 

Low R-squared 

correlation 

coefficient. 

[23] 
(Cited 

by 

17) 

- To build a
correlation between 

context and

TWINSCAN 
metrology to the 

measured overlay of 

YieldStar system. 
- Controller to

improve the

overlay. 

- Pre & Post exposure sensor 

data. 

- Pre exposure context:
+ Chuck ID

+ Wafer sequence

(The dataset is obtained at 

nominal process condition.) 

Time series 

NARX 

- Predicted overlay correlation R-squared: 

0.8321 
- Residual overlay error in 14 nm node

process: 

+ X m3s: 4.37 nm 
+ Y m3s: 4.84 nm 

- The proposed control method can pick up on 

trained lot to lot wafer to wafer contributors to

systematic and random overlay error.

(The performance of ML model is verified by 

on-wafer measurements) 

Information about 

the amount of data 
used for the training 

and validating of the 

model is not clearly 

specify. 

[24] 

(Cited 

by 

4) 

Virtual overlay 

metrology for a 

series of implant 
layers, for the 

purpose of reducing 

the physical 
metrology process 

and optimizing 

overlay control. 

- Average exposure
fingerprints of the scanners.

- Measured overlay of the 

first implant layer. 
- Context, scanner logging,

etc. 

(The dataset is obtained at

nominal process condition.) 

Feed-forward 

ANN regression 

- Predicted overlay correlation:
+ R-squared X: 0.65

+ R-squared Y: 0.75

- Residual overlay error:
+ X m3s: 4.7 nm 

+ Y m3s: 3.0 nm 

(The performance of ML model is verified by 

on-wafer measurements) 

Short examining 

time period. 

[25] 
(Cited 

by 

Propose a method 

using ML and OCD 

to monitor the 

45 wafers were measured by 

SpectraProbe to get the 

Mueller Matrix information. 

PCA regression 

algorithm  

- R-squared correlation of SpectraProbe

prediction data and HV-SEM reference data: 

+ Tilt-X: 0.92 

Small amount of 

training data. 
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2) channel hole tilting 

in-line. 

(The dataset is obtained at 

nominal process condition.) 

+ Tilt-Y: 0.94 
- Measurement time was reduced by 40%

when using the proposed OCD method

compared to the HV-SEM method. 

(The performance of ML model is verified by 

on-wafer measurements) 

[26] 
(Cited 

by 

2) 

Propose a virtual 

overlay metrology 
which aims at 

predicting the 

overlay for a series 

of implant layers. 

Overlay of another implant 

layer of the same wafer, 
exposure tool fingerprints, 

scanner logging, and process 

data. 

(The dataset is obtained at 

nominal process condition.) 

- Lasso 

- Random Forests 
- Feedforward

ANN 

R-squared for both X and Y achieved 
approximately 0.8 when removed 10-par 

correctable errors from the overlay data.

(The performance of ML model is verified by 

on-wafer measurements) 

The prediction for 
some parameters 

such as Tx, Ty, and 

My are inaccurate 

(R square < 0.3). 

[27] 

(Cited 

by 

0) 

Monitor in real time 
the process 

variation on wafer 

by the data from the 
Diffraction-based-

overlay. 

Film thickness, CD width, 

SWA under interest. 

(The dataset is based on the 

study of process sensitivity) 

Feed-forward 

ANN regression 

- Correlation of the predicted and simulated
stack sensitivity: 

R-squared: 0.99

- Maximum prediction error: <5nm, which 
accounts for 3% of the nominal film thickness 

for that layer. 

(The results are obtained from both simulation

work and on-wafer measurements) 

- Small sample size
(only five test

wafers).

- Training data is
generated by

simulation software. 

[28] 
(Cited 

by 

4) 

Propose a model to 

generate dense 
computed overlay 

metrology. 

- Customers APC and

TWINSCAN context. 

- Leveling metrology 
deconvolved. 

- Alignment metrology
- Residual vector per 

alignment metrology. 

(The dataset is obtained at

nominal process condition.) 

ANN with 

Bayesian 

regularization 

- Successfully extracted four unique signatures
from UVLS measurement data which serve as

one of the inputs for the ML prediction model.
- R-squared correlation of prediction data and

the measured metrology data for overlay Y:

0.72 to 0.81. 

(The performance of ML model is verified by 

on-wafer measurements) 

Small dataset, only 

ten wafers' 
metrology data was 

collected to use as 

training data. 

[29] 

(Cited 

by 

4) 

Propose a model to 
enhance the 

alignment 

metrology by 
pairing alignment 

metrology with 

leveling metrology 

data in a wafer. 

- Average sparse estimation

across 4 colors using 32 

marks on the wafer. 
- 4 out of the 11 leveling

signatures. 

- Wafer quality per alignment

metrology. 

(The dataset is obtained at

nominal process condition.) 

- PCA is used for 

dimensional
reduction 

- Bayesian neural 

network with 
automated 

regularization

- The proposed model can capture > 1nm
alignment metrology signature

- Dense estimation performance of 3rd order 

HOWA model fit to the original 32 marks
combine with leveling data outperformed the

model which only fit to the original 32 marks.

(The performance of ML model is verified by 

on-wafer measurements) 

The authors only 

used 4 out of 11 

leveling signatures 
as the input to the 

model, increasing 

the input signatures 
may also increase 

the performance of 

the model. 

[30] 
(Cited 

by 

8) 

- Identify which 
processing steps

that a group of 

wafers has in 
common. 

- Compute overlay

signature. 

- XY vector map of clamped 
wafers shape. 

- Wafer alignment metrology

for all colors.

- TWINSCAN context

(The dataset is obtained at

nominal process condition.) 

- Local regression

nonparametric 

equation with k-
nearest neighbor 

search 

- Hierarchical
clustering with

dendrograms 

- Wafer's overlay signature

- Pointed out which prior processing steps the 

grouped wafers have in common.

(The performance of ML model is verified by 

on-wafer measurements) 

Lack of metric for 

grading the 
performance of the 

model which 

compute the overlay 

signature. 

[31] 
(Cited 

by 

1) 

Develop a self-

reference target 
method in overlay 

metrology. 

Array of small individual 

targets carrying different 

dialed-in overlay bias in each 

target. 

(The dataset is obtained at 

nominal process condition.) 

Custom ML 

regression 

- m3s point to point delta to decap SEM for 
multiple wafers values are in acceptable range. 

- High correlation between IDM ASR and

SEM per field. 
- Total Measurement Uncertainty: 0.2 nm

- Move Acquire Measure: < 0.4 sec.

(The performance of ML model is verified by 

on-wafer measurements) 

Information about 

the amount of data 

used for the training 
and validating of the 

model is not clearly 

specify. 

[32] 
(Cited 

by 

1) 

Improve the TIS to 

enhance the 

accuracy of overlay 

measurement. 

- The ground truth from the

calibrated overlay value.
- 0° images 

- Contrast 

- Q-Merit 

- Kernel merits 

(The dataset is obtained at

nominal process condition.) 

Gradient Boosting 

- TIS mean decrease:

+ DRAM: 40% 
+ NAND: 81% 

- TIS 3σ decrease:

+ DRAM: 34% 

+ NAND: 28% 

(The performance of ML model is verified by 

on-wafer measurements) 

Training data was 
collected only from 

several sites on a 

wafer, thus limit the 
learning capacity of 

the model. 

[33] 
(Cited 

by 

0) 

Propose a DBO 
model to reduce the 

measurement 

inaccuracy due to 
the sidewalls effect 

in the bottom 

gratings’ targets. 

18900 pupil images of 30 

types of overlay targets using 

an optical scatterometry. 
These images are then 

applied PCA method to 

extract the features which are 
used as the input for the 

DBO model. 

ANN with 

Bayesian 

regularization 

- Using the dose level of 500 mJ/s·cm2 for 

each pupil image, the overlay MSE of the

proposed model reduced 42.22% (from 2.25
nm2 to 1.3 nm2) compared to the conventional

DBO model. 

- Using the dose level of 1000 mJ/s·cm2, the

MSE was improved further to 0.4 nm2.

(The results are obtained from modelling and

The authors only 
consider the slope 

sidewall grating for 

the second layer and 
vertical side wall for 

the first layer, while 

in reality, first layer 
grating can also 
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(The dataset is obtained at 

nominal process condition.) 

simulation work.) have slope side wall. 

[34] 
(Cited 

by 

4) 

Monitoring the 
impact of non-

lithography context 

on overlay. 

More than 100 different 

context parameters per wafer 
(1200 lots with 4 wafers per 

lot). 

(The dataset is obtained at 

nominal process condition.) 

Parametric 

clustering 

- Successfully identify the correlation between

non-litho context and overlay error. - Applying
run-to-run control simulation can achieve 

overlay improvement (for a specific context 

value) as: 
+ X-Overlay: 23.8% 

+ Y-Overlay: 18.5% 

(The results are obtained from both simulation 

work and on-wafer measurements) 

Not all available 

context parameters 
are examined. The 

authors only show 

an analysis example 
of one specific non-

litho context for 

monitoring overlay 

signature. 

[35] 
(Cited 

by 

0) 

Propose a method 

for higher 

alignment accuracy 
and a model to 

improve wafer edge 

overlay. 

- For chucking improvement:

parameters in iAS (Pitch,
Roll, Bow Shape) 

- For edge overlay 

improvement: Wafers'
overlay data which has 

intentional error. 

(The dataset is obtained at

nominal process condition.) 

- Bayesian
optimization for 

chucking

improvement 
- Circular Bessel

function to 

improve edge 

overlay 

- Chucking deformation was reduced about 1

nm (24%) by optimizing loading parameters 

with the proposed model.
- Using 7th order Bessel circular showed well 

corrected overlay error for both center and

edge of the examining wafers.

(The results are obtained from modelling and

simulation work.) 

Information about 

the amount of data 

used for the training 
and validating of the 

model is not clearly 

specify. 

[36] 
(Cited 

by 

14) 

Develop a control 

technique for 
overlay 

compensation with 

dynamic metrology 

delay. 

10 variables including mask 

intra-field overlay errors 
involving rotation, 

translation, magnification, 
and wafer inter-field overlay 

errors such as expansion and 

rotation in x- and y- axes. 

(The dataset is based on the 

study of process sensitivity) 

ϵ-SVR 

- ϵ-SVR controller's improvement over 

conventional EWMA controller:

+ X-axis variation: 24% 
+ Y-axis variation: 8% 

+ X-axis overlay error reduction: 96%
+ Y-axis overlay error reduction: 97%

- Under fast and deep delay, Lyapunov

mapping function and Razumikhin condition

can ensure the stability for the system.

(The results are obtained from modelling and

simulation work.) 

When the variation 

in overlay variables 

is small, for some 
parameters, the ϵ-

SVR performed 

worse than the 
conventional 

EWMA controller. 

[37] 
(Cited 

by 

118) 

Propose a virtual 
overlay embedded 

run-to-run control 

system. 

- 37 sensors parameters were 
collected from in two chucks

in photolithography process,

results in 1612 and 1563 data
points for chuck 1 and chuck

2, respectively. 

- Summary of sensor 

parameters’ statistics (148 

inputs for 37 parameters) 

were used to train the VM

model. 

(The dataset is obtained at

nominal process condition.) 

- Variable
selection methods:

stepwise linear 

regression, 
decision trees,

GA, PCA, and

KPCA 

- VM prediction

models: linear 

regression, MLP,

k-NN, SVR. 

- EWMA run-to-

run controller 

- The MASE of all regression models was less
than 10% after training with data collected in 5

months, which satisfies the production

engineers criteria.
- Upon running with Monte Carlo simulation,

the VM embedded EWMA decreased MSE

and MASE on average 70% and 30%, 

respectively. 

(The results are obtained from both simulation

work and on-wafer measurements) 

The run-to-run 

control has not been 
verified by real 

equipment, which 

may contain more 

complicated factors 

compared to the 

simulation 

environment.  

Abbreviations: 

ANN (Artificial Neural Network), DBO (Diffraction-Based Overlay), EWMA (Exponentially Weighted Moving Averages), GA (Genetic 

Algorithm), ϵ-SVR (Epsilon - Support Vector Regression), iAS (inline Alignment Station), k-NN (k-Nearest Neighbor), KPCA (Kernel 

Principal Component Analysis), m3s (mean plus 3 standard deviation), MASE (Mean Absolute Specification Error), ML (Machine Learning), 

MLP (Multi-Layer Perceptron), MSE (Mean Squared Error), NARX (Nonlinear Autoregressive Network with Exogenous Inputs), OCD 

(Optical Critical Dimension), PCA (Principal Component Analysis), SWA (Sidewall Angle), TIS (Tool Induced Shift), t-SNE (t-distributed 

Stochastic Neighbor Embedding) 

Among all the papers that focus on VOM in our review, 

ANN based regression models were used most frequently [4], 

[11], [23], [24], [26]–[29]. ANNs are made up of a network of 

interconnected artificial neurons, which to some extent mimics 

the model of the biological brain. Although regression model 

based on ANN is complex and computationally expensive, it 

is a very powerful technique which can capture highly 

nonlinear relationships of the input features [51]. In those 

studies that used ANN, the performance in [23] was recorded 

as the best, with the correlation of predicted and measured 

overlay R-squared value of 0.8321. The authors of that work 

used an approach called time series NARX with the fitting 

function shown by (2), where u(t) is the input signal (sensors 

data and input context) at time t, y(t) is the corresponding 

overlay prediction output at time t, 𝑛𝑢 and 𝑛𝑦 are the input and

output sequence numbers, and 𝑓() is the approximation 

function that can be learnt by an ANN. 

𝑦(𝑡)  =  𝑓 (𝑢(𝑡 −  𝑛𝑢), … , 𝑢(𝑡 − 1), 𝑢(𝑡),
𝑦(𝑡 − 𝑛𝑦), . . . , 𝑦(𝑡 − 1))

   (2) 

Aside from the ANN based approach, the traditional 

machine learning models such as linear regression, t-SNE [9], 

PCA regression [25], Lasso regression, and Random Forest 

[26] have also been employed to solve the VM overlay

problems. The predicted overlay performance (R-squared

value) of those models varies from 0.65 to 0.80.
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B. Overlay Metrology’s Accuracy Improvement

Applications of machine learning models in improving the

accuracy of overlay metrology techniques have been 

successfully implemented in several studies. In [8], Gradient 

Boosting model was used to reduce the error in misregistration 

measurements of the optical overlay for after-develop 

inspection. Gradient Boosting is an ensemble machine 

learning model which takes the advantages of multiple weak 

Decision Tree predictors to obtain the strong one. Using this 

model, Verner et al has improved the accuracy of the 

conventional imaging-based overlay measurement by 15% and 

17% on gratings X and Y, respectively. The Gradient Boosting 

model was also used by Boaz et al [32] to correct the TIS in 

optical overlay measurement, which is normally caused by the 

tool’s interaction with target asymmetries, lens alignment, lens 

aberrations, and illumination alignment. The model developed 

in that work has reduced the mean of TIS for DRAM and 

NAND layers by 40% and 81%, respectively. Along with 

imaged-based overlay metrology, machine learning was also 

applied to improve the performance of the DBO measurement 

method. In [33], an ANN with Bayesian regularization model 

has been proposed to decrease the measurement inaccuracy 

caused by the sidewalls effect in the diffraction based overlay 

bottom gratings targets. Using the dose level of 500 mJ/s·cm2 

for each pupil image, the overlay MSE of the proposed model 

reduced 42.22% compared to the conventional DBO model. 

C. Control Scheme to Improve Overlay in Manufacturing

Process

To ensure high yield for the production line, the 

development of advanced overlay control scheme is very 

important. Recently, machine learning models have been 

integrated in various process control steps to improve the 

wafers’ overlay accuracy. 

Run-to-run control is one of the most popular methods used 

in semiconductor industry, and it has been applied to optimize 

various process steps such as chemical–mechanical 

planarization (CMP) [52], chemical - vapor deposition [53], 

plasma etching reactor [54], and lithography process [55]. In 

[34], Overcast et al has proposed several metrics with 

parametric clustering algorithms to identify which non-

lithography processes (etch chambers, CMP processes, or 

high-temperature tools) significantly affect the overlay quality 

and stability. Once the notable non-lithography contexts have 

been detected, specific key numbers are calculated and fed to 

the run-to-run simulation software to check for the 

improvement of overlay performance. In [37], Kang et al 

introduced another run-to-run control scheme which embeds 

with a regression VOM model to reduce overlay error of the 

photolithography process. In this control scheme, the VM 

models were first developed by experimenting different ML 

regression models to find the optimal one for each 

measurement position on wafer. Then, the output of these 

models will be fed into the EWMA controller, which adjusts 

the controllable input parameters so that the prediction 

matches the measurement. The authors have verified this run-

to-run method in a Monte Carlo simulation, and the results 

showed a significant improvement compared to the system 

without the run-to-run controller. 

As pointed out by Khakifirooz et al [36], the lack of real-

time metrology data is a major limitation of the run-to-run 

controller. Therefore, the authors have developed a dynamic 

control scheme which is able to compensate the overlay error 

in real time. In that study, the ϵ-SVR optimization technique 

was used as the kernel for the online controller. ϵ-SVR is a 

strong regression technique which is proved to be able to find 

the global minimum in the optimization problem and avoid 

overfitting. The proposed model made use of 10 variables 

including intra-field and inter-field overlay errors, as well as 

considered stochastic time delay of the process, which has 

successfully outperformed the conventional EWMA 

controller. 

D. Challenges and Future Work

As stated in [8], there are more than 1000 process steps to

manufacture some leading-edge devices from a silicon wafer. 

In that process, a huge amount of data is generated by sensors 

from different tools. Thus, the biggest challenge in the field of 

machine learning based overlay analysis and optimization is to 

find which steps in the production line contribute the most to 

the overlay errors of a wafer. In other words, for the best 

performance of machine learning models, most relevant and 

significant features to train are crucial. Therefore, in the 

future, more advanced data analysis techniques need to be 

developed to identify which process steps have the most 

substantial impact on the overlay performance. From that, 

most meaningful features can be extracted from the data 

generated in those steps. 

In addition, most of the reviewed studies above only 

considered the lithography-based processes in analyzing or 

optimizing overlay, while non-lithography-based processes 

also considerably contribute to the overlay performance of a 

wafer [34]. Hence, more work should be done to improve 

overlay outcome by combining data from both the 

lithography-based and non-lithography-based process steps. 

Finally, many studies have trained their machine learning 

models with small datasets. This greatly limit the prediction 

accuracy of the models. For future work, machine learning 

models should be trained with larger datasets in order to 

improve their performance. 

V. DISCUSSION: MACHINE LEARNING BASED MASK

OPTIMIZATION TECHNIQUES 

With the rapid growth of machine learning field and the 

abundance of available data, various advanced models have 

been introduced to optimize the mask synthesis computation 

task in the semiconductor manufacturing process. Table III 

shows the summary results of 17 different studies about mask 

optimization techniques using machine learning. 

A. Sub-Resolution Assist Feature Insertion (SRAF)

Among mask optimization techniques, SRAF is one of the

most effective approaches to enhance the through-process 

robustness of exposing masks in lithography process [56].
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TABLE III 

SUMMARY OF MACHINE LEARNING BASED MASK OPTIMIZATION STUDIES 
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[18] 

(Cited 

by 

1) 

Propose a ML 
based model for 

etch bias prediction, 

and using the output 
of that model to 

introduce an ILT 

method for mask 
optimization to 

minimize EPE 

- For etch bias model: micro-

loading, macro-loading, 

visible area, blocked area,
ILS, stress terms, other ADI 

model signal properties.

- For ILT method: AEI target
and the compact AEI model

proposed above. 

(The dataset is obtained at

nominal process condition.) 

- For etch bias
prediction

model: ANN 

regression
- For ILT

method: N/A 

- Etch bias prediction model performance:
+ RMS Error: 0.86 nm (50% improvement

over conventional model) 

+ Range: 7.9 nm (40% improvement over 
conventional model) 

- ILT etch correction method can output smooth

contour which helps to improve EPE, and it
converge quite fast in only 3 iterations.

+ Average EPE: 0.03 nm

+ Worse case EPE: < 0.2 nm

(The results are obtained from modelling and 

simulation work.) 

For the ML-based ILT 

method, the 
performance in term of 

EPE was quite similar 

to the conventional 
method without 

significant 

improvement. 

[19] 
(Cited 

by 

3) 

Propose a ML 

based OPC model 

- PFT signals 

- Initial EPE 

(The dataset is obtained at

nominal process condition.) 

RF regression 

- The proposed ML-OPC model using RFR 
improve the RMS error by 54% compared to

the state-of-the-art OPC model using MLP.

- Segment grouping improved the RMS error 
by 15%. 

- Using the proposed ML-OPC model as an 

initial guess in combination with the MB-OPC 

model, the iteration time reduced by 56%.

(The results are obtained from modelling and

simulation work.) 

Initial guess for EPE 
has a great impact on 

the performance of the 

model. If a bad guess is 
chosen, the 

performance will be 

degraded. 

[20] 
(Cited 

by 

14) 

Propose a fast OPC 

approach which is 

capable of 
generating 

manufacture-

friendly mask 

Vector of 57 sampling points 

for each mask feature. 

(The dataset is obtained at 

nominal process condition.) 

NKR 

- The proposed algorithm reduced the average

|EPE| by 62% compared to the initial target

pattern. 
- The computational time of the proposed

method is two-fold faster than the PBOPC

software 
- The mask manufacturability is 47% and 27%

improved for Metal and Poly layers in 

comparison with the PBOPC output.

(The results are obtained from modelling and

simulation work.) 

- The choice of 
observation points 

density is empirical and

greatly affect the 
performance of the

algorithm. 

- The performance of 

the proposed method is

still noticeably worse

than the commercial

PBOPC software.

[21] 
(Cited 

by 

29) 

Propose a SRAF 
generation 

technique 

Multi-channel images with 

three different channels: 

Target patterns, horizontal 

SRAFs, and vertical SRAFs. 

(The dataset is obtained at 

both nominal condition and 

process sensitivity study.) 

 CGANs 

- CGAN could reduce the EPE and PV band of 
the mask without SRAF by 86.23% and 

13.06%, respectively.

- The runtime of CGAN model is ~14.6x faster 
than the LS_SVM model proposed in [38] and

~144x faster than the model-based approach by 

Calibre software. 

(The results are obtained from modelling and

simulation work.) 

The authors used 

outputs from the 
model-based technique 

of Calibre software as 
training data, which 

means that the 

performance of the 
proposed model cannot 

exceed the performance 

of that software, in 
terms of EPE as the 

criteria. 

[38] 

(Cited 

by 

20) 

Propose a SRAF 
generation 

technique 

 SRAF labels and feature 

vectors. 

(The dataset is obtained at 

both nominal condition and 

process sensitivity study.) 

- LGR 

- SVC

- For one training set, the proposed LGR and 

SVC models reduced the PV band by 13.72% 

and 14.08%, respectively, compared to the

mask without SRAF. The EPEs are also
reduced by 86.82% and 86.41% by LGR and 

SVC. 

- Regarding the runtime, proposed method 
produces the result 10 times faster than the

model-based approach from Calibra software.

(The results are obtained from modelling and

simulation work.) 

The authors used 

outputs from the 

model-based technique 

of Calibre software as 
training data, which 

means that the 

performance of the 
proposed model cannot 

exceed the performance 

of that software, in 
terms of EPE as the 

criteria. 

[39] 
(Cited 

by 

21) 

Propose a SRAF 

insertion technique 

- CCAS feature in the features

extraction stage. 

- Low-dimension features of 

grids obtained from last stage.

(The dataset is obtained at

both nominal condition and

- SODL

algorithm for 

features
extraction 

stage 

- ILP

- Compared to the ISPD’16 model in [40], EPE

and PV band of the new proposed method

improved 3.5% and 11.8%, respectively.
- In term of SRAF's total area on mask, the

proposed method's SRAF area is only 79.1% of 

the SRAF area generated by ISPD'16 model.

The run time of this 

proposed method is 

1.572 times higher than 
the run time of the 

comparing method in 

[40]. 
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process sensitivity study.) (The results are obtained from modelling and 

simulation work.) 

[40] 
(Cited 

by 

34) 

Propose a machine 

learning framework 

for the SRAF 

generation 

- Feature vector represents the

optical conditions of the grid
point with respect to the target 

patterns. 

- SRAF label for each grid.

(The dataset is obtained at
both nominal condition and

process sensitivity study.) 

- Decision

Tree 

- Logistic

Regression 

The performance of the complete mask 

generated by the proposed framework is 

comparable with the commercial model-based 
framework (even better in EPE criterion), but 

the speed is 10 times faster. 

(The results are obtained from modelling and 

simulation work.) 

The PV band 

performance of the 
proposed method is 

degraded compared to 

the model-based 
method, which should 

be improved in the 

future. 

[41] 
(Cited 

by 

3) 

Extract the contour 
of precise EPE 

metrology on ADI 

wafer regardless the 
e-beam scanning

direction to the 

pattern edge 

- SEM images taken by

0°/45°/90° scan of 4 blocks 

which contain 25 repeating
pattern each on IMEC Suez

wafer. 

- Feature vectors based Local
contrast and Local Gray Level 

Ratio. 

(The dataset is obtained at

nominal process condition.) 

ERTs 

Differences of the contour extracted by 
proposed method compared to the reference for: 

- Critical Dimension: 0.40% 

- Die-to-Database EPE: 11.04% 

(The results are obtained from modelling and

simulation work.) 

In this paper, the 

training edges was 
synthesized from 

different directions for 

different patterns, 
which is not as accurate 

as scanning the same 

pattern from all 

directions. 

[42] 

(Cited 

by 

58) 

Propose a HBM 

based OPC model 

- Training dataset: All edge
types + 5000 features vector 

extracted from layout A using

CCAS. 
- Testing dataset: 5000

features vector extracted from

layout B using CCAS.

(The dataset is obtained at

nominal process condition.) 

HBM 

- HBM resolved the overfitting issue occurred

in LGR and SVC. 

- For the testing layout, HBM model
outperformed LGR and SVC by 5% and 112%

in terms of RMSEs for the extracted samples
- HBM’s performance is comparable with the 

output from the model-based method used in 

Calibre software with 10 iterations.

(The results are obtained from modelling and

simulation work.) 

Small number of train 

and test layout: only 
one layout was used for 

training and one layout 

was used for testing. 

[43] 
(Cited 

by 

91) 

Propose a GAN 

based OPC model 

A training layout library of 
4000 instance was generated 

based on 32nm M1 layout 

topologies specification. 

(The dataset is obtained at 
both nominal condition and 

process sensitivity study.) 

GAN 

- Compared to the ILT model in [45], L2 error 

of the proposed GAN model decreased by 
9.2%, while the contour area variations

decrease around 1%.

- Mask optimization time of GAN based
method is more than 2x faster compared to ILT

model in [45]. 

(The results are obtained from modelling and

simulation work.) 

- Hard to achieve good

convergence for 

training. 

- The performance is

not consistent among 

all the test cases. 

[44] 

(Cited 

by 

9) 

Propose a mask 

synthesis 
framework which 

consists of 3D mask 

model, imaging 
model, resist model, 

and mask synthesis 

model 

Target images and contours. 

(The dataset is obtained at 

both nominal condition and 

process sensitivity study.) 

Reinforcement 

Learning 

- Produced mask that has good pattern fidelity.

- Good prediction accuracy of 3D mask and

imaging models. 
- ML mask synthesis framework showed good

symmetry and consistency properties.

(The results are obtained from modelling and

simulation work.) 

The authors tried 

different loss functions 
to optimize different 

individual quality 

metrics which are 
pattern fidelity and 

image contrast. Loss 

function which 
optimizes for more 

than one metrics can be 

the way to improve the 
performance of this 

framework in the 

future. 

[45] 

(Cited 

by 

52) 

Mask optimization 

approach 

- Run time 

- PV band 

- Image difference

- EPE 

(The dataset is obtained at

both nominal condition and

process sensitivity study.) 

Gradient 

Descent 

The proposed method can generate mask which 

outperformed model from the first-place winner 

of the ICCAD 2013 contest by 7% and 11%, 

respectively. (The evaluation is based on 

number of EPE violation and PV band). 

(The results are obtained from modelling and 

simulation work.) 

Sub-resolution assist 
features in this model 

are generated using 

rule-based method, 
which need to be 

improved in the future. 

[46] 
(Cited 

by 

16) 

Propose a fast 

pixel-based optical 
proximity 

correction model 

Fragments from the desired 

pattern: 
- Convex corners 

- Concave corners 

- Edges 

(The dataset is obtained at

nominal process condition.) 

NKR 

- Using the proposed method, the average |EPE| 

of a 90-nm metal layer decreased 81%, and the
pattern error decreased 92%, compared to the

initial mask. 

- The runtime of the proposed method is 48%
and 61% less than the Calibre pxOPC software

for the 90- and 45-nm metal layers,

respectively. 

(The results are obtained from modelling and

simulation work.) 

Only nominal condition 
was considered in this 

work, process variation 

should be examined as 

the future work. 

[47] 
(Cited 

Evaluate the 

performance of ILT 

Defocus and dose process 

variation. 
ANN with 

Adam 

- Under the nominal exposure condition, model 

train by Adam can achieve EPE of 2.3 nm, 30%

Information about the 

amount of data used for 
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by 

0) 
by applying Adam 

algorithm 

(The dataset is obtained at 
both nominal condition and 

process sensitivity study.) 

optimizer smaller than model train by SGD. 
- Adam has a larger common process window 

than SGD method. 

(The results are obtained from modelling and

simulation work.) 

the training and 
validating of the model 

is not clearly specify. 

[48] 
(Cited 

by 

3) 

Improve OPC 

model performance 

by integrating new 
metrology method 

and deep learning 

prediction model 

Critical dimension and edge 
placement gauges from 

several different patterns. 

(The dataset is obtained at 

nominal process condition.) 

CNN 

- Using proposed MXP metrology with

conventional FEM+ model showed ~20%

accuracy improvement
- Using MXP metrology with proposed Neuron

model gain ~30% accuracy improvement. This

method also improved wafer critical dimension

prediction 4 to 8 nm on 2D patterns.

(The performance of ML model is verified by 

on-wafer measurements) 

The way MXP extract 

the contour is not so 

clear. 

[49] 
(Cited 

by 

0) 

Propose a new OPC 

model based RNN 

network 

- PFT signals 

- Segment type and direction

- Location difference

(The dataset is obtained at

nominal process condition.) 

RNN with 

Attention 

Mechanism 

The EPE measure with M1 layer in 28 nm node 

of the proposed RNN-OPC is 36% smaller than 

the EPE of the ML-OPC model in [57]. 

(The results are obtained from modelling and 

simulation work.) 

The runtime of this 
RNN-OPC is much 

longer than the 

compared MLP-OPC 

method. 

[50] 
(Cited 

by 

2) 

Propose ML based 

models for etch bias 

prediction 

ADI and AEI SEM Images, 

layouts, coordinates. 

(The dataset is obtained at 

nominal process condition.) 

Comparing 3 
methods: 

- SNN 

- ENN 

- RF 

- Compared to the conventional VEB method, 

all three proposed ML methods (SNN, ENN,
and RF) showed better performance.

- Predicted Etch bias RMSE of SNN, ENN, and 

RF models improved 8.34%, 15.01%, 12.69%
respectively over the VEB method.

- Training and predicting time of the proposed

methods are also faster than the VEB method.

(The results are obtained from both simulation

work and on-wafer measurements) 

The edge fragments 

used to measure the 

etch bias did not cover 
the rounded corner, 

which leads to the 

information loss. 

Abbreviations: 

ADI (After Develop Inspection), AEI (After Etch Inspection), CCAS (Concentric Circle Area Sampling), CGANs (Conditional Generative 

Adversarial Networks), CNN (Convolutional Neural Network), ENN (ensemble Fully-connected Neural Networks), ERTs (Extremely 

Randomized Trees), HBM (Hierarchical Bayes Model), ILP (Integer Linear Programming), ILS (Image Log Slope), ILT (Inverse Lithography 

Technology), LGR (Logistic Regression), MXP (Metrology of Extreme Performance), NKR (Nonparametric Kernel Regression), RF (Random 

Forest), RNN (Recurrent Neural Network), SNN (Single Fully-connected Neural Network), SODL (Supervised Online Dictionary Learning), 

SVC (Support Vector Classification) 

SRAFs are small features placed around the target patterns 

(Fig. 4) in order to create a region with high features density, 

which can improve the depth-of-focus of those desired 

patterns [58]. As a result, the resolution of the printed patterns 

when using mask assisted SRAFs is improved considerably 

compared to the masks without SRAFs. 

Fig. 4. Optimized lithographic masks with SRAFs and OPC 

patterns [40]. 

Most of the reviewed studies in this survey used traditional 

ML models such as Logistic Regression (LGR) [38], [40], 

Support Vector Classification (SVC) [38], Supervised Online 

Dictionary Learning (SODL) [39], or Decision Tree [40] for 

the insertion of SRAFs. In those studies, each layout clip of 

training and testing patterns is divided into small pixels, and 

these pixels’ feature vectors are sampled by using the 

Concentric Circle Area Sampling (CCAS) scheme. Then, all 

the pixels are classified using trained ML models to predict 

whether a pixel should be inserted as SRAF or not. The results 

in [38] indicate that the SVC-based model performed 

approximately 5% better than LGR-based model for EPE, 

while in [40], X. Xu et al stated that LGR has better 

performance compared to Decision Tree. In [39], Geng et al 

showed that EPE and PV band of the SODL-based model 

improved 3.5% and 11.8%, respectively, compared to the 

LGR-based model in [40]. In terms of the runtime, machine 

learning based models in those studies have achieved up to 

10x speed increase compared to the model-based technique 

used in commercial software tools. 

Besides traditional ML algorithms, modern Deep Learning 

algorithm has also been used for SRAFs insertion. In [21], 

Alawieh et al introduced a SRAFs insertion framework which 

used Conditional Generative Adversarial Networks (CGANs) 

to generate SRAF features. Using CGAN, the model can be 

trained to translate images of original layout domain to the 
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domain which has layout with SRAFs. The experimental 

results have shown that the CGAN-based model could achieve 

similar performance of the SVC-based model proposed in 

[38], but with around 14.6x speed increase in the runtime. 

B. Optical Proximity Correction

Light diffraction and interference are the main contributors

to the distortion errors like rounded conners or shortened line-

ends in photolithography process, especially in advanced 

technology nodes, where the critical dimensions are in the 

range of only several nanometers. To compensate for those 

errors and minimize the EPE, OPC is widely applied. Fig. 5 

demonstrates the role of OPC in photolithography process. 

In previous studies, several traditional ML models such as 

Nonparametric Kernel Regression [20], [46], Random Forest 

Regression [19], and Gradient Descent [45] have been 

introduced for OPC optimization. These models first fragment 

the edges of target patterns, then extract the features from the 

fragmented layout. Because the diffraction effects are 

extremely complicated toward the sub-resolution domain, the 

traditional ML models have immense complexity and often 

suffer from the overfitting issue [39], [59]. To overcome the 

overfitting problem, a hierarchical Bayes model (HBM) with 

CCAS sampling scheme has been proposed by Matsunawa et 

al [42]. In that work, a generalized linear mixed model was 

trained while considering four different edge types, which are 

normal, convex, concave and line-end edge. The results from 

HBM model can be comparable to a 10-iteration conventional 

model-based method. 

Fig. 5. The role of OPC in photolithography process [42]. 

Recently, supervised deep learning techniques, including 

ANN [18], [47], CNN [48], RNN [49], ENN [50], and GAN 

[43] have been implemented with promising results. However,

the limitation of supervised learning models is that they need a

training dataset generated from other mask generation tools

for training. Thus, their performance can hardly surpass the

available tools’ output. One solution for this was proposed by

Peng Liu in [44], where Reinforcement Learning with ANN

was used for mask synthesis. This approach directly optimizes

the mask based on the user’s desired quality metrics with the

rewarding-punishing mechanism. The proof-of-concept

evaluation provided by the author has shown that

Reinforcement Learning for mask optimization is a potential

direction that can be explored in the future.

C. Challenges and Future Work

Despite a great number of successful applications of ML

techniques on mask synthesis and optimization, there are still 

some difficult challenges. For example, in SRAF insertion, 

each pixel in a layout clip is classified one by one. Since one 

clip normally has the width and height in micrometer scale, 

while the precision of SRAF features needs to be in the 

nanometer region, the number of pixels required can be 

enormous. This eventually becomes very computationally 

expensive, especially with complex ML models. One approach 

to deal with this issue in SRAF generation is to adapt end-to-

end methods with an advance deep learning-based architecture 

such as GAN. GAN models can directly map the images of 

target patterns to that of the mask patterns, hence effectively 

reducing the computational power without compromising 

much accuracy. 

The challenge of OPC optimization lies in the high 

complexity of diffraction and process effects, especially when 

the fabricated patterns are increasingly denser, while the sizes 

become smaller and smaller. Even the state-of-the-art models 

based OPC techniques are yet to be optimal to capture the 

physical phenomena. As most of the previous ML-based OPC 

models rely on the output from model-based OPC for training, 

this becomes a performance bottleneck for the further 

improvement of OPC techniques. Model-based OPC is heavily 

relied on lithography simulators which solve Maxwell’s 

equations by using numerical methods such as finite 

differences and finite elements. Although these methods have 

proven to be generally accurate, they are very computationally 

expensive. Besides, their obtained solutions are discrete or 

have limited differentiability [60]. Furthermore, choosing 

optimal boundary conditions and fine-tuning the geometry for 

these discretizing approaches heavily rely on past experience 

of the design templates, and due to the constraints on 

computational power and time, only a small number of 

parameters are adjusted in order to find the desired responses 

[61]. Physics-informed ML [62] approaches can be a 

prospective direction to transcend the aforementioned 

limitations. Physics-informed ML is a type of ML methods 

which embed the physical laws governing the given dataset 

with a ML model. This ML method overcomes the low data 

availability problem and is very effective in solving ill-posed 

and inverse problems compared to conventional mesh-based 

solvers. Fig. 6 shows an illustration of a physics-informed ML 

algorithm. Here in this figure, the left part represents the 

conventional ML network, whose output is the surrogate 

solution of the physical model, whereas the right part contains 

the mathematical function of the physics prior. The loss 

function is the sum of supervised loss of the conventional ML 

network and the unsupervised loss of the physical model. The 

network is trained until the loss is smaller than a pre-

determined/desired threshold 𝜖0.

Physics-informed ML has been applied in various fields, 

such as geophysics [63], [64], molecular simulations [65], 

material sciences [66], and quantum chemistry [67]. In the 

domain of electromagnetism, Ref [68], and Ref [69] have 

successfully built wave-propagating simulators by leveraging 
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physics-informed ML models, which integrate Maxwell’s 

equations with neural networks. Applying these simulators in 

developing OPC and inverse lithography models is expected 

to be able to improve the performance of mask generation 

tasks in the future. 

Fig. 6. Illustration of a physics-informed ML algorithm [62]. 

VI. CONCLUSION

In this paper, the recent advances of machine learning 

applications in EPE analysis and optimization problems in 

semiconductor manufacturing have been reviewed. ML 

models have proved to be beneficial in a number of tasks, 

including virtual overlay metrology, overlay metrology’s 

accuracy improvement, overlay control scheme, SRAFs 

insertion, and OPC. Currently, there are a great number of 

ongoing studies with the effort of pushing further the 

effectiveness of Machine Learning models to reduce EPE and 

enable higher yield for the manufacturing process. This area of 

research will significantly contribute to the roadmap toward 

3nm node of the semiconductor industry. 

Nevertheless, applications of ML techniques in EPE analysis 

and optimization are still in the very early stage of 

development. There are a variety of challenges that are yet to 

be overcome, which offer a considerable scope for future 

research work. 
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