
Energy-efficient Flow-shop Scheduling in the
Printing Industry using Memetic Algorithm

Ke Shen∗, Fabian Heyse∗, Toon De Pessemier∗, Luc Martens∗, Wout Joseph∗
∗Department of Information Technology, Ghent University/IMEC, Ghent, Belgium

Abstract—Facing the climate change and the energy crisis,
plenty of challenges remain to achieving the carbon neutrality
in the energy intensive industry. This work investigates a flow-
shop production scheduling problem minimizing the energy cost
without delaying any jobs. The research problem comes from a
Belgium printing company with solar panels as its own energy
source. Two sub-problems, the job sequence determination and
the job-machine allocation, are tackled using a memetic algo-
rithm. An energy-efficient local search heuristic is also designed
to make best use of the self-generated electricity. Validated using
realistic production data of 12 jobs in a 2 day planning horizon,
the proposed method outperforms a standard binary-encoded
genetic algorithm in both solution quality (having 27.17% lower
energy cost) and the calculation time (saving 69.89%).

Index Terms—memetic algorithm, production scheduling, en-
ergy efficiency

I. INTRODUCTION

Climate change is more than ever a topic that gets the
attention it deserves [1]. Many countries and regions have
claimed to achieve the carbon neutrality in their long-term
strategies [2]. From the power sector to industry, plenty of
challenges and opportunities remain for the companies: they
are encouraged to consume energy in the most efficient way,
or even to install their own renewable and clean energy source
[3]. If the self-generated power is more than required, the
surplus will be injected into the electrical grid for the future
consumption at a much lower price.

The energy-efficient production scheduling problem
(EEPSP) has been extensively studied in recent studies
because of the urgent demand. The complexity of EEPSP
is proven as NP-hard on multi-state single machines in [4]
and [5]. A few EEPSPs with more complicated machine
environment (e.g. job-shop in [6]) or multi-objectives [7]
are solved using mathematical programming and related
approximation methods. Most of the complex EEPSPs are
tackled using evolutionary algorithms (EAs) [8], since they
can produce feasible and high-quality solutions within very
short computation time: the modified genetic algorithms are
reported in [9]–[13]; the multi-objective EAs are presented in
[14]–[17]; other variants of EAs are introduced in [18] and
[19]. In these works, there is no improved exploration for the
energy efficiency: sometimes it is accomplished by achieving
other objectives [9], or by subjective transformation to other
indicators [13]. In this work, the energy efficiency is our
main focus and optimization objective. Moreover, a memetic
algorithm (MA, extension of the traditional genetic algorithm
that uses local search [20]) is proposed as the approach to the

research problem, where a specific local search heuristic for
energy-efficient candidate solutions are introduced as well.

The remainder of this paper investigates the EEPSP from a
Belgium printing company with solar panels as its own energy
source. The contributions are as follows: (1) A generalized
mixed integer programming (MIP) model is introduced to de-
scribe the research problem. (2) A memetic algorithm with an
energy-efficient local search heuristic is proposed. (3) Numer-
ical experiments are conducted using realistic production data
to demonstrate the competitive performance of the proposed
approach against a standard genetic algorithm. (4) An energy
demand-response framework for industrial applications of the
proposed approach is introduced.

II. PROBLEM DEFINITION

The investigated EEPSP is described using a generalized
MIP model with the following notations. The production
layout is a flow-shop: a set J of n independent jobs are to
be processed by a set M of m machines in series.

Input parameters:
• n: number of jobs.
• j: index for jobs in the job set J , j ∈ {1, 2, ..., n}.
• m: number of machines (stages).
• i: index for machines in the machine set M , i ∈
{1, 2, ...,m}.

• pij : processing time of job j on machine i.
• sij : set up time of job j on machine i.
• l: index for jobs in a schedule, l ∈ {1, 2, ..., n}.
• Ei, power of machine i.
• H: planning horizon of the schedule.
• t: index of time periods in the planning horizon, t ∈
{1, 2, ...,H}.

• et, energy cost at period t.
• dj , due date for job j.
Binary decision variables:
• wjl, if job j is in the lth position of a sequence.
• zijt, if job j starts on machine i at time period t.
• xijt, if job j is executed on machine i during time period
t.

The optimization objective is to minimize the energy cost
CE :

min {CE}
The constraints are as follows:

n∑
l=1

wjl = 1 ∀j (1)

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. Final version DOI: 10.1109/ETFA52439.2022.9921519

https://doi.org/10.1109/ETFA52439.2022.9921519

n∑
j=1

wjl = 1 ∀l (2)

H∑
t=1

xijt = pij ∀j, i (3)

zijt = max{xijt − xijt−1, 0} ∀t ≥ 2, j, i, (4)

n∑
j=1

xijt ≤ 1 ∀t, i (5)

H∑
t=1

zijt = 1 ∀j, i (6)

H∑
t=1

m∑
i=1

zijt = m ∀j (7)

n∑
j=1

(

H∑
t=1

m∑
i=1

xijt − dj) ≤ 0 (8)

CE =

H∑
t=1

n∑
j=1

m∑
i=1

xijtE
iet (9)

The sequence (order) of jobs in a schedule is fixed during
the processing (Constraints (1) and (2)). A job can only start
when its previous stage is finished (Constraints (3) and (4)).
Machines can process only one job at a time (Constraint (5)).
No preemption is allowed (Constraint (6)). Each job contains
exactly m stages (Constraint (7)). The ith stage of a job must
be executed on the ith machine (Constraints (6) and (7)). No
tardiness is allowed for any job (Constraint (8)).

Other case-specific characteristics (of the input parameters)
include:

• A day shift is from 7 am to 11 pm.
• A job needs to finish the same day when it is started.
• Job types are determined by the paper or ink used in the

label.
• The setup time between jobs will reduce if two adjacent

jobs are of the same type.
• Machine states are simplified to on (when processing)

and off (when idle).
These case-specific (not applicable to other EEPSPs) char-

acteristics are not formulated in the presented generalized MIP
model. Moreover, the conversion of the EEPSP to the MIP
model might not be ideal [21] therefore this work does not
use mathematical programming [6] or related approximation
methods [7].

The NP-hardness of the investigated EEPSP can be inferred
from the complexity of a fundamental problem: the flow-shop
scheduling problem minimizing total tardiness (denoted by
F |prmu|

∑
Tj using the three-field notation [22]), known as

NP-hard with two or more stages in the flow [23].

III. METHOD DESCRIPTION

The pseudo-code of the proposed memetic algorithm with
the energy-efficient local search heuristic (MA-ESH) tackling
the investigated EEPSP is presented in Algorithm 1. The
inputs include the problem information (P) and the algorithm
parameters (Q). The output is the best Solution including
a job sequence (Solution.seq) and the corresponding job-
machine allocation (Solution.allc) with the lowest energy
cost (Solution.fit). Each individual pop[h] represents a can-
didate solution.

Algorithm 1 The memetic algorithm with the energy-efficient
local search heuristic (MA-ESH).

Input: P : Problem, Q : Parameters
Output: Solution

1: pop← ∅
1: // Initialization:
2: for h = 1 to Q.popsize do
3: t.seq ← GenerateSequence(P,Q)
4: t.allc← GenerateAllocation(t.seq, P,Q)
5: t.fit← CalculateF itness(t, P)
6: pop[h]← t
7: end for
8: repeat
9: for h = 1 to Q.popsize do
9: // Reproduction:

10: p1, p2← Select(pop)
11: c1.seq ← ReproducSequence(p1.seq, p2.seq,Q)
12: c1.allc← ReproductAllocation(p1.allc, p2.allc,Q)
13: c1.fit← CalculateF itness(c, P)
13: // Local Search:
14: c2.seq ← c1.seq
15: c2.allc← ESH(c1.seq, P,Q)
16: c2.fit← CalculateF itness(c2, P)
17: if c1.fit ≤ c2.fit then
18: pop[h]← c1
19: else
20: pop[h]← c2
21: end if
22: end for
23: until TerminationCriterion(Q)
24: Solution← FindBest(pop)
25: return Solution

A. The Memetic Algorithm (MA)

In the initialization stage, the individuals are initialized by
first ranking the jobs according to their due dates and then
performing permutations between jobs with the same due
dates (line 3 in Algorithm 1). Such modified earliest-due-date
rule [24] is applied to minimize the delay of jobs, and to
reduce the solution space size. For job-machine allocation,
the start time of job l on machine i is denoted as Sli. A
job-machine allocation (t.allc) is represented using a n ×m
matrix whose elements indicate Sli. For each sequence (t.seq),
the corresponding job-machine allocations are generated by

adding random time intervals between the jobs (line 4 in
Algorithm 1), during which the machine states are off but the
solar panels are still working. The fitness (energy cost) can be
calculated for each individual (line 5 in Algorithm 1).

In the reproduction stage, for each individual two parents
(p1 and p2) are selected from the current population using
tournament selection [25] (line 11 in Algorithm 1). The
generation of the children (c1) includes the reproduction of the
new sequence and the corresponding job-machine allocation.
The reproduction of the new sequence (line 12 in Algorithm
1) conducts first the one-point-crossover [26], which has a
high chance to preserve the the same type of the adjacent
jobs. Afterwards, with a certain mutation rate (in Q), a sub
sequence of jobs having the same due date are permutated. The
reproduction of the job-machine allocation (line 13 in Algo-
rithm 1) using a modified one-point crossover is demonstrated
as follows:

p1 =

p11,1:m
...

p1k,1:m
...

p1n,1:m

 p2 =

p21,1:m
...

p2k,1:m
...

p2n,1:m

 → c1 =

p11,1:m
...

p1k,1:m
...

p2n,1:m

For each parent a random job k is chosen as the cut point

(the underlined kth row). The start time of the jobs before
the cut point of p1 (p11,1:m to p1k,1:m), and after the cut
point of p2 (p2k,1:m to p2n,1:m), are copied to the children.
The mutation is performed as follows: for each ali, there
is a probability (decided by a biased coin toss [28]) for it
to be shifted earlier or later of a small time interval. Since
planning a job later has a larger impact than planning it earlier
(the subsequent jobs could be influenced by the late shift of
the current job), the probability for the earlier shift is higher
than the later shift. After reproduction the new job-machine
allocation should not violate the following constraints:

Sli ≥ Sli−1 + si−1
l + pi−1

l (10)

The start time of a job l on machine i should be equal or later
than its finish time on the previous machine i− 1.

Sli ≥ Sl−1i + sil−1 + pil−1 (11)

The start time of a job l should be equal or later than the finish
time of the previous job l−1 on the same machine. Otherwise,
the reproduction operation is re-conducted. Afterwards, an
energy-efficient local search heuristic is performed and the
details are presented in the next section.

When the stop criterion (line 23 in Algorithm 1, e.g. a
maximum number of iterations) is reached, the best individual
with the lowest fitness (energy cost) is selected from the final
population and returned as the Solution.

B. The Energy-efficient Local Search Heuristic (ESH)

Local search is the most important feature of the MA [20]
to find better individuals in each iteration of the algorithm and

to prevent the premature convergence. In our method, the ESH
is designed to pursue the schedule to use as much the surplus
of the self-generated energy as possible, to achieve a lower
energy cost and carbon emission.

Following notations are introduced to present the ESH: the
electricity that is needed to process job l on machine i is
denoted as Pli. The surplus (net injected electricity into the
grid, which is the total self-generated energy minus the total
consumed energy) at the moment t is denoted as It. Apart
from the constraints (10) and (11), the Sli has to comply with
an additional constraint:

ISli
≥ βli × Pli (12)

The surplus at Sli should be equal or higher than the required
energy, which is calculated using Pli multiply a scale factor
βli.

Algorithm 2 The energy-efficient local search heuristic (ESH).

Input: seq, P : Problem, Q : Parameters
Output: allc

1: βli ← 1 // All βli are set to 1
2: i← 1, l← 1
3: while i ≤ m do
3: // For each machine
4: while l ≤ n do
4: // For each job
5: Sli ← Calculate(Sli) // According to (12)
6: k ← 1
7: while Sli + sil + pil > dl and k ≤ 5 do
7: // Overdue:
8: βli ← Adjust(βli)
9: Sli ← Calculate(Sli) // According to (12)

10: k ← k + 1
11: end while
12: if Sli + sil + pil > dl then
12: // Overdue:
13: B ← Adjust(B)
14: l← 1, i← 1 // Re-organize all jobs
15: else
16: l← l + 1
17: end if
18: end while
19: i← i+ 1
20: end while
21: return allc

The procedure of ESH is introduced in Algorithm 2. Since
the tardiness of jobs is often not allowed in realistic industrial
applications, a self-adaptive scale factor βli is designed to cope
with the due dates (dj) of jobs. If all βli are set to 1, each
job has to wait until enough surplus is generated to start the
processing. The energy cost will be the lowest (as zero), but
obviously many jobs will be overdue. An intuitive idea to this
issue is that βli should be lowered (line 9 in Algorithm 2)
for the late-released jobs (when l is relatively large and close
to n). However, it can happen that the βki of a late-released

job k is already very small and the job is planned right after
its previous job k − 1. In this case, job k can not be planned
earlier and still remains overdue (line 12 in Algorithm 2)).
To prevent this phenomenon, B should be lowered to shift all
jobs earlier in the planning horizon.

As an example, suppose there are 4 jobs to be planned on
1 machine. The B is initialized as [1, 1, 1, 1]. In case job 3 is
overdue, β31 is adapted by being lowed with a fixed setup
(from Q, e.g., 0.05). Assuming that job 3 is still overdue
after 5 adaptations, the B will be updated from [1, 1, 0.75, 1]
to [0.9, 0.9, 0.9, 0.9]. If job 3 is still late, β31 will again be
lowered by 0.05. The ESH repeats such adjustment until it
finds a feasible schedule.

By making better use of the surplus, the ESH enables the
MA with a great chance to find better individuals (c2 in
Algorithm 1) than the reproduced ones from the parents (c1
in Algorithm 1) in each iteration.

IV. NUMERICAL EXPERIMENTS

A. The Energy Demand-response Flow

Shown in Figure 1, where the demands are in dashed
lines and the responses are in solid lines, the production
processes demand the energy from the electricity grid and
the production plan from the managing department using the
MA-ESH. Seeking an energy-efficient schedule also demands
the floating consumption and injection tariff from the grid.
The electricity generation forecast (the dotted line from the
solar panels to the electrical grid) could be predicted using
machine learning methods (often influenced by the weather
condition), which is beyond the scope of this work. In our
experiments, the power profiles of machines are known from
the company. The electricity generation data and the tariff from
the power generation market are provided by the solar panel
manufacturer.

The production layout is a flow-shop consisting of 3 ma-
chines. The first machine (the pre-printing stage, 6kW) is
responsible for making the printing forms. Its setup time
for a job depends on the number of colors used in the
product. The second machine (the printing stage, 24kW) is
for conventional press and the printing speed for each job is
different. The last machine (the post-printing stage, 6kW) is
for inspection, cutting, and rewinding, whose processing speed
is synchronized with the second machine.

There are 12 label printing jobs to be processed in a 2
day horizon, the most important characteristics are listed in
Table I. The due dates are represented using minutes since
the beginning of the planing horizon. The processing time of
the jobs on each machine are calculated as the division of the
order quantity and the machine speed.

B. Parameter Settings

Monte Carlo simulations are performed for the best param-
eter settings of the MA-EHS. A trade-off has to be made
between the solution quality (optimality) and calculation time.
Considering the hardware capacity of our laptop (Intel® i7
8565U, 16 GB 2400MHz RAM), the population size is set to

Fig. 1: The energy demand-response framework for the MA-
ESH application.

80, the stop criterion is that the algorithm will stop after 300
generations, or the best individual remains the same for 30
iterations. As shown in Figure 2, the crossover and mutation
probabilities are decided considering the saved energy cost
(compared with a non-optimized empirical schedule) and the
calculation time, where the good values are marked using
green. The algorithm has the lowest calculation time when
there are least operations to perform (with the lowest crossover
and mutation probability). A high mutation probability makes
the algorithm converge slowly since the good individuals are
more likely to be destroyed. Such effect is weakened by an
increased crossover probability which makes the algorithm
more actively explore the solution space near the good in-
dividuals of the current generation. The best settings ensure
that the delivered objective value is (near-) optimal with
a reasonable calculation time. Therefore, the crossover and
mutation probabilities are set as 0.4 and 0.2 respectively.

Other parameters are also decided using the Monte Carlo
simulations and presented as follows: in the mutation operation
for the job-machine allocations, the biased coin toss for an
earlier shift is 0.55 and for a later shift is 0.45, the small
correction interval is 15 minutes. In the ESH, the adjustment
step for the βli and B is set as 0.05 and 0.1 respectively.

C. Results and Discussions

Shown in Table II, the MA-ESH is compared with a
standard genetic algorithm (SGA) for 40 experiments in terms
of the objective value and the calculation time. In our imple-
mentation, the SGA shares the same procedures as those of the
MA-ESH except for the local search (line 14-16 in Algorithm
1). Instead, it replaces the local search using the microbial
elitism selection [29]. The average result of 40 experiments
shows that the SGA takes 2.79 seconds to provide a solution
with the energy cost of 43.18 euros, while the MA-ESH takes
0.84 seconds to find a better solution with the energy cost of
31.45 euros. Therefore, the MA-ESH requires only 30.11% of
the SGA’s calculation time to achieve a 27.17% better energy
cost.

Job No. Due date Type Machine 1 Machine 2 Machine 3
[min] Setup [min] Processing [min] Setup [min] Processing [min] Setup [min] Processing [min]

1 960 2 18 22 15 49.5 24 49.9
2 1920 1 16 4 13 88.9 15 89.5
3 1920 2 18 22 15 28.2 24 28.3
4 1920 2 18 4 15 4 24 4
5 1920 2 18 8 15 17.7 24 17.8
6 960 1 16 14 13 86.6 15 87.2
7 960 1 16 8 13 28.9 15 29.1
8 1920 3 28 10 16 104.6 25 105.3
9 1920 2 18 12 15 20 24 20.1

10 1920 1 16 2 13 98.4 15 99.1
11 960 2 18 14 15 163.6 24 164.7
12 1920 3 28 4 16 65.8 25 66.3

TABLE I: Order information for 12 jobs to be processed.

(a) Average saved energy cost in euros for 30 simulations.

(b) Average calculation time in minutes for 30 simulations.

Fig. 2: Monte Carlo simulations to find the best crossover and mutation probabilities.

Simulation No. Energy Cost [e] Calculation Time [s]
MA-ESH SGA MA-ESH SGA

1 28.41 43.78 0.85 2.54
2 43.77 43.70 0.88 2.12
...
39 29.39 41.20 0.72 2.01
40 46.19 42.89 0.88 3.75

Average 31.45 43.18 0.84 2.79

TABLE II: Comparison of GA and MA-ESH for 40 experiments.

Algorithms Best Sequence Energy cost Calculation time
[e] [s]

MA-ESH [7, 6, 1, 11, 9, 5, 3, 4, 12, 8, 2, 10] 27.54 0.87
SGA [7, 6, 1, 11, 9, 3, 5, 4, 12, 8, 10, 2] 27.62 2.28

TABLE III: The best sequence and the lowest energy cost found by GA and MA-ESH in 40 experiments.

Range (%) From the Known Best Solution Executions [#] Executions [%]
MA-ESH SGA MA-ESH SGA

1% 11 1 27.5% 2.5%
3% 16 1 40% 2.5%
5% 22 3 55% 7.5%

10% 35 7 87.5% 17.5%

TABLE IV: Solution quality for GA and the MA-ESH in 40 experiments.

The performances of the MA-ESH and the SGA are further
investigated in terms of the solution quality. The best solutions
provided by the two algorithms in 40 experiments are further
investigated in Table III. The lowest energy cost found by the
SGA (27.62 euros) is very close (within the 1% range) to
that of the MA-ESH (27.54 euros), which is the known best
solution in 40 experiments. Therefore, it is concluded that
the SGA can still find the (near-)optimal solution, although
it requires more calculation time. The Gantt chart for such
best schedule found by the MA-ESH is shown in Figure
3, where the jobs are distinguished with different colors.
The convergence plot of the MA-ESH in 40 experiments is
provided in Fig. 4. It is noted that some experiments stopped in
less than 300 generations since the other termination condition
is met (no better individual is found over 30 iterations).

Fig. 3: Gantt chart of the best schedule found by MA-ESH.

The quality and the distribution of both algorithm’s solu-
tions are summarized in Table IV. In most (87.5%) exper-
iments, the MA-ESH can converge to a solution within the
10% range of the known best schedule. In 27.5% of the
experiments, it can approach the known best schedule within
the 1% range. While for the SGA, only 2.5% of the 40
experiments can reach within the 1% range of the known best
schedule, and 82.5% of the experiments provide outcomes out
of the 10% range. Therefore, the MA-ESH outperforms the
SGA in the solution quality and the calculation time.

Fig. 4: Convergence plot of MA-ESH in 40 experiments.

V. CONCLUSION

In this work, an energy efficient flow-shop production
scheduling problem from the printing industry is investigated
by solving the two sub-problems: the job sequence determi-
nation and the job-machine allocation based on that sequence.
The optimization objective is to minimize the energy cost of
a schedule without delaying any jobs. A memetic algorithm is
proposed to find the near-optimal solutions, with an energy-
efficient local search heuristic to make best use of the self-
generated electricity. In numerical experiments based on realis-
tic production data, our method outperforms a standard genetic
algorithm in both solution quality (27.17% lower energy cost)
and the calculation time (69.89% shorter).

For future research, one direction is to improve the solution
quality of the MA-ESH since it can not always converge to the
best known schedule. Another is to consider the load balancing
problem for the self-generated electricity to avoid the overload
of the electrical grid.

REFERENCES

[1] X. Zhao, X. Ma, B. Chen, Y. Shang, M. Song, “Challenges toward
carbon neutrality in China: Strategies and countermeasures,” Resources,
Conservation and Recycling, vol. 176, no. 105959, Jan. 2022

[2] X. Li, T. Damartzis, Z. Stadler, S. Moret, B. Meier, M. Friedl, F. Maréchal,
“Decarbonization in Complex Energy Systems: A Study on the Feasibility
of Carbon Neutrality for Switzerland in 2050,” Frontiers in Energy
Research, vol. 8, 2020

[3] A. Qazi, F. Hussain, N. A.Rahim, G. Hardaker, D. Alghazzawi, K. Sha-
ban, K. Haruna, “Towards Sustainable Energy: A Systematic Review of
Renewable Energy Sources, Technologies, and Public Opinions,” IEEE
Access, vol. 7, pp. 63837-63851, 2019

[4] M. Aghelinejad, Y. Ouazene, A. Yalaoui, “Complexity analysis of energy-
efficient single machine scheduling problems,” Operations Research
Perspectives, vol. 6, no. 100105, 2019

[5] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, C. Liu, “Fog Computing for
Energy-Aware Load Balancing and Scheduling in Smart Factory,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4548-4556,
Oct. 2018

[6] H. Golpı̂ra, S. A. R. Khan, Y. Zhang, “Robust Smart Energy Efficient
Production Planning for a general Job-Shop Manufacturing System under
combined demand and supply uncertainty in the presence of grid-
connected microgrid,” Journal of Cleaner Production, vol. 202, pp. 649-
665, Nov. 2018

[7] J. Xu, L. Wang, “A Feedback Control Method for Addressing the
Production Scheduling Problem by Considering Energy Consumption and
Makespan”, Sustainability, vol. 9, pp. 1185, Jul. 2017

[8] K. Gao, Y. Huang, A. Sadollah, L. Wang, “A review of energy-efficient
scheduling in intelligent production systems”, Complex & Intelligent
Systems, vol. 6, pp. 237-249, Sept. 2019

[9] D. Min, T. Dunbing, G. Adriana, S. Miguel A., “Multi-objective opti-
mization for energy-efficient flexible job shop scheduling problem with
transportation constraints,” Robotics and Computer-Integrated Manufac-
turing, vol. 59, pp. 143-157, Oct. 2019

[10] K. Shen, T. De Pessemier, X. Gong, L. Martens, W. Joseph, “Genetic op-
timization of energy-and failure-aware continuous production scheduling
in pasta manufacturing,” Sensors, vol. 19, pp. 297, Jan. 2019

[11] R. Zhang, R. Chiong, “Solving the energy-efficient job shop scheduling
problem: a multi-objective genetic algorithm with enhanced local search
for minimizing the total weighted tardiness and total energy consump-
tion,” Journal of Cleaner Production, vol. 112, pp. 3361-3375, Jan. 2016

[12] M. A. Salido, J. Escamilla, A. Giret, F. Barber, “A genetic algorithm
for energy-efficiency in job-shop scheduling,” The International Journal
of Advanced Manufacturing Technology volume, vol. 85, pp. 1303-1316,
Nov. 2015

[13] Z. Liu, J. Yan, Q. Cheng, C. Yang, S. Sun, D. Xue, “The mixed
production mode considering continuous and intermittent processing for
an energy-efficient hybrid flow shop scheduling,” Journal of Cleaner
Production, vol. 246, no. 119071, Feb. 2020

[14] F. Zhao, X. He, L. Wang, “A Two-Stage Cooperative Evolutionary Algo-
rithm With Problem-Specific Knowledge for Energy-Efficient Scheduling
of No-Wait Flow-Shop Problem,” IEEE Transactions on Cybernetics,
vol. 51, pp. 5291-5303, Nov. 2021

[15] W. Li, L. He, Y. Cao, “Many-Objective Evolutionary Algorithm With
Reference Point-Based Fuzzy Correlation Entropy for Energy-Efficient
Job Shop Scheduling With Limited Workers,” IEEE Transactions on
Cybernetics,

[16] E. Jiang, L. Wang, Z. Peng, “Solving energy-efficient distributed job
shop scheduling via multi-objective evolutionary algorithm with decom-
position,” Swarm and Evolutionary Computation, vol. 58, no. 100745,
Nov. 2020

[17] Z. Pan, D. Lei, L. Wang, “A Bi-Population Evolutionary Algorithm
With Feedback for Energy-Efficient Fuzzy Flexible Job Shop Scheduling,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,

[18] T. Jiang, C. Zhang, H. Zhu, G. Deng, “Energy-efficient scheduling for
a job shop using grey wolf optimization algorithm with double-searching
mode,” Mathematical Problems in Engineering, 2018

[19] T. Jiang, C. Zhang, H. Zhu, G. Deng, “Energy-efcient scheduling for a
job shop using an improved whale optimization algorithm,” Mathematics,
vol. 6, no. 11, pp. 220, Oct. 2018

[20] J. D. Knowles, D. W. Corne, “M-PAES: a memetic algorithm for
multiobjective optimization,” Proceedings of the 2000 Congress on Evo-
lutionary Computation, vol. 1, pp. 325-332, 2000

[21] A. Keha, K. Khowala, J. Fowler, “Mixed integer programming formula-
tions for single machine scheduling problems,” Computers & Industrial
Engineering, vol. 56, no. 1, pp. 357-367, 2009

[22] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, “Op-
timization and approximation in deterministic sequencing and scheduling:
a survey”, Annals of Discrete Mathematics, vol. 5, pp. 287-326, 1979

[23] Q. C. Ta, J. Billaut, J. Bouquard, “Matheuristic algorithms for mini-
mizing total tardiness in the m-machine flow-shop scheduling problem”,
Journal of Intelligent Manufacturing, vol. 29, pp. 617-628, 2018

[24] S. Roychowdhury, T. T. Allen, N. B. Allen, “A genetic algorithm
with an earliest due date encoding for scheduling automotive stamping
operations,” Computers & Industrial Engineering, vol. 105, pp. 201-209,
Mar. 2017

[25] B. Miller, D. E. Goldberg, “Genetic algorithms, tournament selection,
and the effects of noise,” Complex systems, vol. 9, pp. 193-212, 1995

[26] K. Deb, K. Sindhya, T. Okabe, “Self-adaptive simulated binary crossover
for real-parameter optimization,” Proceedings of the 9th annual confer-
ence on Genetic and evolutionary computation, pp. 1187-1194, 2007

[27] H. M. Pandey, A. Chaudhary, D. Mehrotra, “A comparative review
of approaches to prevent premature convergence in GA,” Applied Soft
Computing, vol. 24, pp. 1047-1077, Nov. 2014

[28] N. Gupta, M. Khosravy, N. Patel, N. Dey, R. G. Crespo, “Lightweight
Computational Intelligence for IoT Health Monitoring of Off-Road Ve-
hicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN,”
EEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 611-619,
Jan. 2022

[29] I. Harvey, “The microbial genetic algorithm,” European Conference on
Artificial Life, Berlin, Heidelberg, pp.126-133, 2009

