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SCROLLAR INVARIANTS, SYZYGIES AND

REPRESENTATIONS OF THE SYMMETRIC GROUP

WOUTER CASTRYCK, FLORIS VERMEULEN, AND YONGQIANG ZHAO

Abstract. We give an explicit minimal graded free resolution, in terms
of representations of the symmetric group Sd, of a Galois-theoretic con-
figuration of d points in P

d−2 that was studied by Bhargava in the con-
text of ring parametrizations. When applied to the geometric generic
fiber of a simply branched degree d cover of P1 by a relatively canon-
ically embedded curve C, our construction gives a new interpretation
for the splitting types of the syzygy bundles appearing in its relative
minimal resolution. Concretely, our work implies that all these splitting
types consist of scrollar invariants of resolvent covers. This vastly gen-
eralizes a prior observation due to Casnati, namely that the first syzygy
bundle of a degree 4 cover splits according to the scrollar invariants of
its cubic resolvent. Our work also shows that the splitting types of the
syzygy bundles, together with the multi-set of scrollar invariants, belong
to a much larger class of multi-sets of invariants that can be attached
to C ! P

1: one for each irreducible representation of Sd, i.e., one for
each partition of d.

1. Introduction

(1.1). This article, which is an extended version of [16], is concerned with
the “scrollar invariants” of a curve C with respect to a separable morphism
ϕ : C ! P1. Throughout, all curves are assumed to be smooth, projective
and geometrically integral, unless otherwise stated. We recall, e.g. from [18,
§1.2], that the scrollar invariants of C with respect to ϕ are the positive
integers e1 ≤ e2 ≤ . . . ≤ ed−1 for which

(1) ϕ∗OC
∼= OP1 ⊕OP1(−e1)⊕ . . . ⊕OP1(−ed−1),

where d denotes the degree of ϕ. Some prefer the equivalent characterization
of ei as the minimal n for which h0(C,nD) − h0(C, (n − 1)D) > i, with D
any geometric fiber of ϕ. The scrollar invariants sum up to g + d − 1,
with g the genus of C, and they satisfy ed−1 ≤ (2g + 2d − 2)/d; this upper
bound will be referred to as the “Maroni bound”. As a side remark, let
us point out that the scrollar invariants ei are the function-field analogues
of log λi, with λ1 ≤ λ2 ≤ . . . ≤ λd−1 the non-trivial successive minima of
the Minkowski lattice attached to a degree d number field [30, §7]; thus,
studying the scrollar invariants of C with respect to ϕ is closely related to
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2 SCROLLAR INVARIANTS, SYZYGIES AND REPRESENTATIONS OF Sd

studying the “geometry” of the corresponding function field extension, in
Minkowski’s sense.

(1.2). We caution the reader for an ambiguity in the existing literature:
several references, in fact including [18, §1.2], define the scrollar invariants
of C with respect to ϕ as the integers e′1 ≤ e′2 ≤ . . . ≤ e′d−1 for which
ϕ∗OC(KC) ∼= OP1(−2)⊕OP1(e′1)⊕. . .⊕OP1(e′d−1), withKC some canonical

divisor on C. The Riemann–Roch theorem implies that e′i = ei−2 for all i.1

Consequently, when interpreting our results for this alternative definition,
the shift by −2 must be taken into account.

(1.3). Contributions. Consider a degree d cover ϕ : C ! P1 over a field k
with char k = 0 or char k > d, and assume for technical convenience that ϕ
is simply branched, i.e., geometrically, all non-trivial ramification is of type
(2, 1d−2). This ensures that the Galois closure

ϕ : C ! C
ϕ
! P1

has the full symmetric group Sd as its Galois group over P1 [26, Lem. 6.10].
By the normal basis theorem we can view L = k(C) as the regular repre-
sentation of Sd over k(t) = k(P1), and its decomposition L = ⊕λ⊢dWλ into
isotypic components induces a decomposition

(2) ϕ∗OC
∼=
⊕

λ⊢d

Wλ

into vector bundles Wλ of rank (dimVλ)
2, where Vλ denotes the irreducible

representation (i.e., the Specht module) corresponding to the partition λ.
As will be explained in Section 4, we can further decompose Wλ as

(3)

OP1(−eλ,1) ⊕ OP1(−eλ,2) ⊕ . . . ⊕ OP1(−eλ,dimVλ)
OP1(−eλ,1) ⊕ OP1(−eλ,2) ⊕ . . . ⊕ OP1(−eλ,dimVλ)

...
...

. . .
...

OP1(−eλ,1) ⊕ OP1(−eλ,2) ⊕ . . . ⊕ OP1(−eλ,dimVλ),

where every column (i.e., every “vertical slice”) contains dimVλ copies of
the same entry. Our main objects of study are the integers obtained by
selecting a “horizontal slice”:

Definition 1. Under the above notation and assumptions, we call {eλ,1, . . . ,
eλ,dimVλ} the multi-set of “scrollar invariants of λ with respect to ϕ”.

One sees that the d!−1 scrollar invariants of C with respect to ϕ are obtained
by taking the union, over all non-trivial partitions λ ⊢ d, of the multi-sets
of scrollar invariants of λ with respect to ϕ, where each multi-set is to be
considered with multiplicity dimVλ.

Definition 1 generalizes the notion of scrollar invariants of C with re-
spect to ϕ. Indeed, as a consequence to Proposition 2 below, we recover

1See also Footnote 10.
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{e1, e2, . . . , ed−1} as the multi-set of scrollar invariants of the partition (d−
1, 1) with respect to ϕ. Some basic properties generalize as well: e.g.,
in (4.9) we will prove a “volume formula” for the sum of the scrollar invari-
ants with respect to any partition λ ⊢ d, thereby generalizing the identity
e1 + e2 + . . . + ed−1 = g + d − 1. We will also prove a duality statement
relating the scrollar invariants with respect to λ to those with respect to
the dual partition λ∗ (i.e., the partition obtained by transposing its Young
diagram).

(1.4). We remark that these generalized scrollar invariants have appeared
before, at least implicitly. Indeed, they describe the splitting types of the
underlying vector bundle Eλ of the parabolic bundle attached to Vλ under the
Mehta–Seshadri correspondence [38], where Vλ is viewed as a representation
of πgeom1 (P1 \ branch locus of ϕ) via its natural map to Gal(C/P1) ∼= Sd.
Equivalently, one finds Eλ as the Deligne canonical extension to P1 of the

local system attached to this representation. We have Wλ
∼= EdimVλ

λ . The
reader is forwarded to the recent works by Landesman–Litt [34, §2], [35, §3]
and the references therein for further details.

(1.5). For certain partitions λ ⊢ d, we managed to relate the corresponding
multi-sets of scrollar invariants to known data. The easiest cases are the
hooks, with Young diagrams

...

· · ·

d− i

i

for i = 0, 1, . . . , d− 1. Concretely, in Section 4 we will prove:

Proposition 2. Consider a simply branched degree d ≥ 2 cover ϕ : C !

P1 over a field k with char k = 0 or char k > d with scrollar invariants
e1, e2, . . . , ed−1, and let i ∈ {0, 1, . . . , d − 1}. The multi-set of scrollar in-
variants of the partition (d− i, 1i) with respect to ϕ is

{
∑

ℓ∈S

eℓ

∣
∣
∣
∣
∣
S is an i-element subset of {1, 2, . . . , d− 1}

}

.

For i = 1, corresponding to the standard representation V(d−1,1), we indeed
recover the scrollar invariants of C with respect to ϕ. For i = 0, correspond-
ing to the trivial representation V(d), we find the unique scrollar invariant
0. For i = d− 1, corresponding to the sign representation V(1d), we find the
unique scrollar invariant e1 + e2 + . . .+ ed−1 = g + d− 1.
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(1.6). The main result of this article is a concrete and surprising inter-
pretation for the multi-set of scrollar invariants of the partition λi+1 =
(d− i− 1, 2, 1i−1)

(4)
...

· · ·

d− i − 1

i− 1

for any i = 1, 2, . . . , d − 3: in Section 5 we show that this multi-set equals
the splitting type

(5)
{

b
(i)
j | j = 1, . . . , βi

}

with βi =
d

i+ 1
(d− 2− i)

(
d− 2

i− 1

)

of the ith syzygy bundle in the relative canonical resolution of C with re-
spect to ϕ, as introduced by Casnati–Ekedahl [12], who built on work of
Schreyer [45]; see (1.10) below for more details. We will occasionally re-
fer to the elements of this splitting type as “Schreyer invariants of C with
respect to ϕ”.

Theorem 3. Consider a simply branched degree d ≥ 4 cover ϕ : C ! P1

over a field k with char k = 0 or char k > d, and let i ∈ {1, . . . , d − 3}.
The multi-set of scrollar invariants of the partition (d − i − 1, 2, 1i−1) with
respect to ϕ is equal to the splitting type of the ith syzygy bundle of the
relative canonical resolution of C with respect to ϕ.

Symbolically: for λ = λi+1 the partition from (4) we have

eλ,j = b
(i)
j , j = 1, 2, . . . ,dimV(d−i−1,2,1i−1)

for a suitable ordering of the eλ,j ’s. As a sanity check, the reader is invited
to verify that dimV(d−i−1,2,1i−1) indeed equals βi, using the hook length

formula. In (4.13) we will slightly relax the simple branching assumption
to the condition that all non-trivial ramification is of the form (2, 1d−2) or
(3, 1d−3).

As a consequence to Theorem 3 we find that the splitting types of the
syzygy bundles turn out to consist of scrollar invariants, namely of the Galois
closure ϕ : C ! P1. Thus, they too are “geometric” in Minkowski’s sense.
We know of one prior observation of this kind: for d = 4 it was noted that the
scrollar invariants of the degree 3 cover obtained from ϕ through Recillas’
trigonal construction are given by b1 and b2, with {b1, b2} the splitting type
of the first syzygy bundle of C with respect to ϕ. This observation seems
due to Casnati [11, Def. 6.3-6.4], although we refer to Deopurkar–Patel [21,
Prop. 4.6] for a more explicit mention. As will become clear, our main result
can be viewed as a vast generalization of this.
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Beyond the families (d−i, 1i) and (d−i−1, 2, 1i−1), we did not succeed in
finding partitions whose corresponding scrollar invariants can be related to
known data and we in fact believe that they are all genuinely new. The first
such partitions appear in degree d = 6, namely (23) and (32), corresponding
to invariants a1, a2, . . . , a5 and their duals g+5− a1, g+5− a2, . . . , g+5−
a5, which seem unrelated to both the scrollar invariants and the Schreyer
invariants.

(1.7). For any given subgroup H ⊆ Sd, we can look at the subfield LH ⊆ L
that is fixed by H. The corresponding degree [Sd : H] = d!/|H| covering

RH ϕ : RH C ! P1

is called the “resolvent of ϕ with respect to H”. For H = {id} we recover the
Galois closure ϕ : C ! P1: recall that its scrollar invariants are obtained
by taking the union of the multi-sets of scrollar invariants with respect to λ,
over all non-trivial partitions λ, where each multi-set is to be considered with
multiplicity dimVλ. For general H, this remains true but the multiplicities
change:

Theorem 4. Consider a simply branched degree d ≥ 2 cover ϕ : C ! P1

over a field k with char k = 0 or char k > d, along with a subgroup H ⊆ Sd.
The scrollar invariants of RH C with respect to RH ϕ are found by taking
the union, over all non-trivial partitions λ ⊢ d, of the multi-sets of scrollar
invariants of λ with respect to ϕ, where each multi-set is to be considered
with multiplicity

mult(Vλ, Ind
Sd
H 1).

Here IndSd
H 1 denotes the representation of Sd that is induced by the trivial

representation of H (i.e., it is the permutation representation of Sd/H).

In other words, the decomposition of (RH ϕ)∗ORH C is obtained by taking

mult(Vλ, Ind
Sd
H 1) horizontal slices of the block (3) corresponding to λ, for

each partition λ ⊢ d. A proof can be found in Section 4. Note that some
multiplicities may be zero, in which case the corresponding scrollar invariants
do not appear. E.g., for d = 4 andD4 = 〈(1 2), (1 3 2 4)〉 the dihedral group of

order 8 one has IndS4
D4

1 ∼= V(4)⊕V(22), which in combination with Theorem 3
shows that the scrollar invariants of RD4 C with respect to RD4 ϕ are given
by b1 and b2. This is not a coincidence, as the resolvent with respect to D4

(also known as “Lagrange’s cubic resolvent”) is nothing but the degree 3
covering found through Recillas’ trigonal construction [52, §8.6].

As another exemplary corollary to Theorems 3 and 4 we state:

Theorem 5. Consider a simply branched degree d ≥ 4 cover ϕ : C ! P1

over a field k with char k = 0 or char k > d. Let H be the Young subgroup
S2 × Sd−2 of Sd. Then the multi-set of scrollar invariants of RH C with
respect to RH ϕ is obtained by taking the union of the multi-sets

• {e1, e2, . . . , ed−1}, the scrollar invariants of C with respect to ϕ, and
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• {b1, b2, . . . , bd(d−3)/2}, the splitting type of the first syzygy bundle of
C with respect to ϕ.

The (very short) proof can be read in (5.7).

(1.8). Syzygies from Galois representations. The main auxiliary tool
behind Theorem 3 is an explicit, purely Galois-theoretic way of constructing
minimal graded free resolutions of certain configurations of d ≥ 4 points in
Pd−2, that were introduced by Bhargava in the context of ring parametriza-
tions [4, §2]. These configurations arise by considering a degree d exten-
sion F ⊆ K of fields with charF = 0 or charF > d, along with a basis
α0 = 1, α1, . . . , αd−1 of K over F . Denote by L the Galois closure; we as-
sume for convenience that Gal(L/F ) is the full symmetric group Sd. Write
σ1 = id, σ2, . . . , σd for the embeddings K !֒ L that fix F element-wise, take
the dual basis α∗

0, α
∗
1, . . . , α

∗
d−1 with respect to TrL/F , and define

α
∗(j)
i = σj(α

∗
i )

for each i = 0, 1, . . . , d − 1 and j = 1, . . . , d. Then the requested points in
Pd−2 are

(6) [α
∗(1)
1 : . . . : α

∗(1)
d−1], [α

∗(2)
1 : . . . : α

∗(2)
d−1], . . . , [α

∗(d)
1 : . . . : α

∗(d)
d−1].

No d−1 of these points lie on a hyperplane, so they are “in general position”.
Thus, from [45, (4.2)] we know that any minimal graded free resolution

of their joint coordinate ring must have

0 1 2 . . . d− 3 d− 4
0 1 0 0 . . . 0 0
1 0 β1 β2 . . . βd−3 0
2 0 0 0 . . . 0 1

as its Betti table. In our minimal graded free resolution, the details of
which can be found in Section 3, the ith syzygy module arises from the
isotypic subrepresentation Wλi+1

⊆ L corresponding to the partition λi+1 =

(d− i− 1, 2, 1i−1), where as before we view L as the regular representation
of Sd through the normal basis theorem.

The connection between the partitions λi+1 and syzygies of d general
points in Pd−2 is not a new observation: this was studied by Wilson [56,
§5]. In his discussion, the syzygy modules are constructed from the Specht
modules Vλi+1

; we tend to think of these as “vertical slices” of the corre-
sponding isotypic componentsWλi+1

. Our new Galois-theoretic construction
is somehow orthogonal to this and uses “horizontal slices”, which are not
representations. Nonetheless, as we will see, they better suit our needs.

(1.9). In Section 5 we will explain how Bhargava’s point configuration
shows up very naturally when studying the geometric generic fiber of our
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cover ϕ : C ! P1, henceforth assumed to be of degree d ≥ 4. In more detail,
from Casnati–Ekedahl [12, Thm. 2.1] we know that ϕ decomposes as

C
ι

−֒! P(E) π
−! P1, E = OP1(e1)⊕OP1(e2)⊕ . . .⊕OP1(ed−1),

with π the natural Pd−2-bundle map and ι the “relative canonical embed-
ding”.2 By identifying C with its relative canonical image, we can view each
geometric fiber of ϕ, including the geometric generic fiber, as a configura-
tion of d points in Pd−2; an illustration of the case d = 4 can be found in
Figure 1. The field of definition of any point in the support of the geomet-

Pd−2

P1

ϕ

P(E)

C

Figure 1. Configuration of d points in Pd−2 attached to ϕ.

ric generic fiber can be identified with k(C). It is then always possible to
equip that point with projective coordinates [α∗

1 : α∗
2 : . . . : α∗

d−1] satisfying
Trk(C)/k(t)(α

∗
i ) = 0 for all i = 1, . . . , d − 1. By dualizing, we obtain a basis

1, α1, . . . , αd−1 of k(C) over k(t) from which the geometric generic fiber of
ϕ is recovered through Bhargava’s construction. (We will actually need a
slightly stronger fact, namely that 1, α1, . . . , αd−1 can be arranged to be a
so-called “reduced basis” of k(C) over k(t); see (5.3) for further details.)

2The standard (i.e., absolute) canonical map C ! P
g−1 is obtained from ι by compos-

ing it with the “tautological map”

κ : P(E)
∼=
! P(E(−2)) ! P

e1+...+ed−1−d = P
g−1

,

the image of which is a rational normal scroll; see [25, §1]. If e1 > 2 then κ is an embedding,
in which case one can reverse the construction and recover P(E) from the canonical model
of C as the union of the linear spans inside P

g−1 of the fibers of ϕ. Each such linear span
is indeed a P

d−2, by the geometric Riemann–Roch theorem. This is Schreyer’s original
approach from [45].
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(1.10). Casnati–Ekedahl, building on Schreyer, further showed that a min-
imal graded free resolution of the geometric generic fiber can be completed
to a minimal resolution of C relative to P(E):

(7) 0 ! OP(E)(−dH + (g − d− 1)R) !

βd−3⊕

j=1

OP(E)(−(d− 2)H + b
(d−3)
j R) !

βd−4⊕

j=1

OP(E)(−(d− 3)H + b
(d−4)
j R) !

· · · !
β1⊕

j=1

OP(E)(−2H + b
(1)
j R) ! OP(E) ! OC ! 0.

Here R = [π∗OP1(1)] and H = [OP(E)(1)] denote the Pd−2-ruling and the

class of “hyperplane sections”,3 respectively, known to form a Z-basis of
Pic(P(E)); see [25, 45]. This introduces the Schreyer invariants from (5).
At this point, it should come as no surprise to the reader that our strategy
to prove Theorem 3 will be to apply this construction to the minimal graded
free resolution discussed in (1.8).

(1.11). Recall from (1.2) that the scrollar invariants are being defined in-
consistently in the existing literature. There is a corresponding ambiguity
for the Schreyer invariants: several references, including Schreyer’s original
treatment [45], instead define them as

b
(j)
i − 2i− 2.

The reason for the shifts is that working with E(−2) makes it more natural
to use the generator H − 2R ∈ Pic(P(E)) rather than H. Thus, when
interpreting our results for the invariants as they were initially introduced
by Schreyer, the shifts must be taken into account.

(1.12). Further applications and remarks. Our work has three imme-
diate further applications, which are discussed in Section 7. Firstly, The-
orem 4 in combination with Proposition 2 and Theorem 3 gives a way of
constructing many new examples of multi-sets of integers that are realizable
as the multi-set of scrollar invariants of some P1-cover. Most of these exam-
ples are highly non-balanced, i.e., there are large gaps between the scrollar
invariants, so they live in a different regime from the ones provided by the
existing literature, see e.g. [1, 14, 17, 19]. Secondly, since the Schreyer invari-
ants are scrollar, they are subject to the “Maroni bound” coming from the
Riemann–Roch theorem, which leads to non-trivial upper and lower bounds
that seem unreported. Thirdly, from Theorem 4 we see that Gassmann
equivalent subgroups of Sd (see (7.6)) give rise to resolvent covers having

3More precisely: OP(E)(1) = j∗OPg+2d−3(1) with j : P(E) ! P
e1+...+ed−1+d−2 the

“tautological map” from [25, §1], but now associated with E rather than with E(−2)
as was the case in Footnote 2 (this difference is the source of the ambiguity mentioned
in (1.11)).
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coinciding multi-sets of scrollar invariants. The number-theoretic counter-
part of this statement reads that arithmetically equivalent number fields
have Minkowski lattices with similar-sized successive minima: this fact was
recently proved by the second-listed author [55], taking inspiration from the
current work.

(1.13). A multi-set Σ of integers is “balanced” if |maxΣ − minΣ | ≤ 1.
Consider the Hurwitz space Hd,g of simply branched degree d covers ϕ :
C ! P1 by curves of genus g. Ballico [1] has proved that the multi-set
of scrollar invariants of a sufficiently general element of Hd,g is balanced.
Bujokas and Patel [10, Conj.A] have conjectured that the same is true for
the splitting types of the syzygy bundles of a relative minimal resolution,
provided that g is sufficiently large with respect to d.4 They prove this for
the first syzygy bundle subject to the bound g ≥ (d− 2)2, and for all higher
syzygy bundles assuming g ≡ 1 mod d.

More generally, for any partition λ ⊢ d one can wonder about the generic
behaviour of its scrollar invariants on Hd,g. By Proposition 2 one cannot

expect balancedness for all λ, even if g is large enough.5 We ask:

Problem 6. Let d ≥ 2 and g ≥ 0 be integers and let λ ⊢ d be a non-
trivial partition. Consider an algebraically closed field k with char k = 0
or char k > d. Under what conditions on d, g, λ can we conclude that the
scrollar invariants of λ with respect to a general element ϕ : C ! P1 of
Hd,g over k are balanced?

A weaker question is answered in a recent preprint by Landesman and
Litt [35, Ex. 1.3.7], who prove that the scrollar invariants of any λ ⊢ d with
respect to a sufficiently general element ϕ : C ! P1 of Hd,g are always
“consecutive”: if eλ,1 ≤ . . . ≤ eλ,dimVλ are the scrollar invariants of λ with
respect to ϕ then eλ,i+1 − eλ,i ≤ 1 for i = 1, . . . ,dim Vλ − 1.

(1.14). Acknowledgements. The first-listed author is supported by the
European Research Council (ERC) with grant nr. 101020788 Adv-ERC-
ISOCRYPT, by CyberSecurity Research Flanders with ref. VR20192203,
and by Research Council KU Leuven with grant nr. C14/18/067. The
second-listed author is supported by the Research Foundation – Flanders
(FWO) with grant nr. 11F1921N. The third-listed author is supported by
the National Natural Science Foundation of China with grant nr. 12071371.
We have benefited from conversations with Alex Bartel, Marc Coppens, Li-
fan Guan, Florian Hess, Michael Hoff, Aaron Landesman, Alexander Lem-
mens, Dongwen Liu, Wenbo Niu, Frank-Olaf Schreyer, Takashi Taniguchi,
Frederik Vercauteren and Yigeng Zhao, all of whom we thank for this. We
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4Work by Bopp and Hoff [8] shows the necessity of this assumption.
5We thank Aaron Landesman for pointing this out to us.
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2. Auxiliary facts from representation theory

(2.1). We begin with some notation. Fix an integer d ≥ 4. For a partition
λ = (dr, . . . , d1) of d we interchangeably write

Sd1 × Sd2 × · · · × Sdr and Sλ

for the Young subgroup Sym{1, . . . , d1}×Sym{d1+1, . . . , d2}×· · ·×Sym{d−
dr + 1, . . . , d} of Sd = Sym{1, . . . , d}, obtained by concatenating cycles. If
no confusion is possible, then for d′ < d we will view Sd′ as a subgroup of
Sd by identifying it with S1 × S1 × · · · × S1 × Sd′ . For i ∈ {2, . . . , d− 2} we
write λi to denote the partition (d− i, 2, 1i−2). We extend this notation by
letting λ0 = (d), λ1 = (d− 1, 1) and λd = (1d). Note that we do not define
λd−1. If R is a Z-graded ring (e.g., a polynomial ring), then for any i ∈ Z

we write Ri to denote its homogeneous degree i part.

(2.2). We state two basic facts on representations of finite groups, where
we work over an arbitrary field F with charF = 0 or charF > d. We stick
to Sd, but modulo further assumptions on F (being algebraically closed of
characteristic 0 is always sufficient) the direct generalizations of these results
hold for any finite group and are well-known to specialists.

Lemma 7. Let V be an irreducible representation of Sd and let H ⊆ Sd be

a subgroup. Then dimV H = mult(V, IndSd
H 1).

Proof. We have

dimV H = mult(1,ResSd
H V ) = dimHomH(1,Res

Sd
H V )

= dimHomSd
(IndSd

H 1, V ) = mult(V, IndSd
H 1)

where the third equality follows from Frobenius reciprocity. �

Lemma 8. Consider a partition λ ⊢ d. Then there exists a unique ρ ∈
Z(F [Sd]) such that ρ(Vµ) = 0 for every partition µ 6= λ and such that ρ
induces the identity map on Vλ.

(Here Z(F [Sd]) denotes the center of the group ring F [Sd].)

Proof. This follows from [47, Thm. 8]. �

(2.3). More specific to Sd, we have:

Lemma 9. For any 2 ≤ i ≤ d− 2 we have dim
(

V
Sλi
λi

)

= 1.

Proof. We know that mult(Vλi , Ind
Sd
Sλi

1) = 1, see e.g. [44, Cor. 2.4.7], so this

follows from Lemma 7. �

We also need facts on how certain tensor products decompose into irre-
ducibles:
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Lemma 10. Consider a partition λ ⊢ d. Then

Vλ ⊗ V(d−1,1)
∼=
⊕

µ⊢d

V
cµλ−δµλ
µ ,

where cµλ equals the number of ways of transforming µ into λ by removing
a box and adding a box; here δµλ denotes the Kronecker delta.

Proof. This can be found in [29, p. 257-258]. �

It is understood that the box removals are valid, in the sense that they result
in the Young diagram of a partition of d − 1. Writing λ = (dr, . . . , d1), we
note that Lemma 10 admits the rephrasing

Vλ ⊗ V(d−1,1)
∼= V

|{d1,...,dr}|−1
λ ⊕

⊕

µ

Vµ,

with µ ranging over all partitions whose Young diagram can be obtained
from that of λ by removing one box and adding another box. Warning:
here |{d1, . . . , dr}| denotes the cardinality as a set, rather than as a multi-
set.

Lemma 11. Consider a partition λ ⊢ d. Then

Vλ ⊗ V(d−2,2)
∼=
⊕

µ⊢d

V
−cµλ+

1
2
(dµλ+eµλ−e

′

µλ)
µ ,

where cµλ, dµλ, eµλ, e
′
µλ denote the number of ways of transforming µ into

λ by

• removing a box and adding a box,
• consecutively removing two boxes and consecutively adding two boxes,
• removing two horizontally adjacent boxes and adding two horizon-
tally adjacent boxes, or removing two vertically adjacent boxes and
adding two vertically adjacent boxes,

• removing two horizontally adjacent boxes and adding two vertically
adjacent boxes, or removing two vertically adjacent boxes and adding
two horizontally adjacent boxes,

respectively.

Proof. This follows along [29, p. 258-259] or from a double application of
Lemma 10. �

Using that

(8) Sym2 V(d−1,1)
∼= V(d) ⊕ V(d−1,1) ⊕ V(d−2,2),

see [27, Prob. 4.19], we get the following corollaries:

Corollary 12. We have

mult(Vλi+2
, Vλi ⊗ Sym2 V(d−1,1)) =

{
0 for all 2 ≤ i ≤ d− 4,
1 if i = d− 2.
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Proof. By Lemma 10 we only need to look at Vλi+2
⊗V(d−2,2), which we can

handle with Lemma 11. Assume 2 ≤ i ≤ d − 4. Clearly cλi+2λi = 0. There
is only one way to transform

...

· · ·

d− i− 2

i

into

...

· · ·

d− i

i− 2

by consecutive removal of two boxes and consecutive addition of two boxes,
so dλi+2λi = 1. However, these boxes are vertically resp. horizontally adja-
cent, so eλi+2λi = 0 and e′λi+2λi

= 1. The case i = d−2 follows similarly. �

We also need particular statements about Sym3 V(d−1,1) for which we give
ad-hoc proofs:

Lemma 13. Assume d ≥ 5. Then

mult(Vλ3 ,Sym
3 V(d−1,1)) = mult(Vλd , Vλd−3

⊗ Sym3 V(d−1,1)) = 0.

Proof. As for the first vanishing, the Specht module Vλ3 can be naturally re-
alized inside the polynomial ring F [z1, z2, . . . , zd] equipped with the natural
Sd-action (where the zi are variables), where it is generated by polynomi-
als of degree 4 > 3, see [27, Prob. 4.47]. From [32, Prop. 5] we see that
Vλ3 cannot appear in the decomposition of F [z1, z2, . . . , zd]3, which contains
Sym3 V(d−1,1) as a subrepresentation, so the desired conclusion follows.

As for the second vanishing, tensoring Sym3 V(d−1,1) with Vλd−3
produces

the sign representation V(1,...,1) as a component if and only if tensoring with
the dual V(d−3,2,1) of Vλ3 produces the trivial representation as a component.

This can only happen if V(d−3,2,1) is a subrepresentation of Sym3 V(d−1,1),
which it is not, by the first part. �

Finally, we will also make use of

(9) mult(V(13),Sym
3 V(2,1)) = 1 and mult(V(14),Sym

4 V(3,1)) = 0,

which follow very easily along the previous lines of thought (or by explicit
computation).

3. A minimal free resolution from Galois theory

(3.1). We resume with the notation and assumptions from (1.8), where
moreover we assume (without loss of generality) that TrL/F (αi) = 0 for
i = 1, . . . , d−1. Note that Bhargava’s point configuration (6) is closed under
the action of Gal(L/F ). Therefore, as an algebraic set, it is defined over F .
Write R = F [x1, . . . , xd−1] and let I ⊆ R be the ideal of this algebraic set.
The main result of Section 3 is a new and explicit minimal free resolution of
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the coordinate ring R/I as a graded R-module. As mentioned, our approach
is Galois-theoretic and therefore quite different from that of Wilson [56, §5].
Instead, there is common ground with the approach of Behnke [2] and it
may be possible to deduce several of the statements below from his work
(we did not succeed in doing so). We note that this section is technical and
the reader may want to skip it upon a first reading.

(3.2). Choosing α such that K = F (α), we can identify Gal(L/F ) with

Sym
{

α(1) = σ1(α) = α,α(2) = σ2(α), . . . , α
(d) = σd(α)

}

,

which in turn is identified with Sd = Sym{1, 2, . . . , d} by writing indices
rather than field elements, e.g., (1 2) refers to the field automorphism swap-
ping α(1) and α(2) and fixing the other α(i)’s. As discussed in the introduc-
tion, we view L as the regular representation of Sd along with its isotypic
components Wλ, with λ running over the partitions of d. For example, W(d)

and W(1d) are the one-dimensional subspaces generated by 1 and

δ =
∏

1≤i<j≤d

(α(i) − α(j)),

respectively. A less degenerate example is W(d−1,1), which is the (d − 1)2-
dimensional subspace generated by the trace zero elements

α
(1)
1 , α

(1)
2 , · · · α

(1)
d−1,

α
(2)
1 , α

(2)
2 , · · · α

(2)
d−1,

...
...

. . .
...

α
(d−1)
1 , α

(d−1)
2 , · · · α

(d−1)
d−1 ,

where α
(j)
i = σj(αi). Each of the vertical columns spans a V(d−1,1).

We fix a similar kind of basis for Wλi , for i = 2, . . . , d− 2. Namely, from
Lemma 9 we know that each irreducible subrepresentation ofWλi has a one-

dimensional intersection with LSλi . Thus we can find linearly independent
elements

ωi1, ωi2, . . . , ωiβi−1
∈Wλi

that are fixed by Sλi . This leaves each ωij with βi−1 linearly independent
conjugates, which together span a Vλi . Taking the union over all j then
produces our basis of Wλi .

(3.3). For 2 ≤ i ≤ d − 2 we consider the F -vector space Vi obtained from

Wλi by intersecting it with LSλi , where λi is as defined in (2.1); in other
words

Vi = span{ωi1, ωi2, . . . , ωiβi−1
}.

We stress that these Vi’s are not subrepresentations of L. Instead, we think
of Vi as a “horizontal slice” of our isotypic component Wλi , which can be
recovered from Vi by taking its closure under the action of Sd (in other
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words, Wλi is the smallest subrepresentation of L containing Vi). Likewise,
we define V0 = F and Vd = span{δ} = Fδ. Our resolution will take the form

(10) .
.
.

.

.

.

.

.

.

0 ! V ∗
d ⊗R(−d) ! V ∗

d−2 ⊗R(−d+ 2) ! V ∗
d−3 ⊗R(−d+ 3) ! . . .

! V ∗
3 ⊗R(−3) ! V ∗

2 ⊗R(−2) ! V ∗
0 ⊗R! R/I ! 0,

· · · · · · · · ·

where V ∗
i = HomF (Vi, F ) denotes the dual of Vi; at each step of the reso-

lution we have depicted the Young diagram of the corresponding partition.
Our syzygy modules do not come equipped with an Sd-module structure,
in particular one is free to drop the one-dimensional factors V ∗

0 and V ∗
d if

wanted, but these are included to emphasize the self-duality of the resolu-
tion. The space

V1 =Wλ1 ∩ LSλ1 = span{α1, α2, . . . , αd−1},
corresponding to the standard representation, seems missing, but will play
a key role in the construction of the morphisms, and in fact the polynomial
ring R = F [x1, . . . , xd−1] will come about as SymV ∗

1 (as is also the case in
Behnke’s resolution from [2]).

(3.4). Construction. We now explain how the morphisms are constructed.
We begin with the first step of the resolution (10). Start from the decomposi-
tion (8) of Sym2 V(d−1,1) into irreducible subrepresentations. Let y1, . . . , yd−1

be an F -basis for V(d−1,1) such that y1 is fixed by Sd−1, and all other yi are
conjugate to y1 in a way that is compatible with the action of Sd on L, i.e.,
for all i = 1, . . . , d − 1 we have σi(y) = yi. By Lemma 9 there is, up to
scalar multiplication, a unique element in V(d−2,2) that is fixed by S2×Sd−2.
Under the isomorphism (8) this corresponds to an element

p1 =
d−1∑

m,n=1

p1mnym ⊗ yn ∈ Sym2 V(d−1,1)

for certain p1mn ∈ F where, without loss of generality, we may assume that
p1mn = p1nm for all m,n. We use this element to construct a map

ψ1 : Sym
2 V1 ! V2 : α⊗ β 7!

d−1∑

m,n=1

p1mnα
(m)β(n)

where as usual α(m) = σm(α) and β(n) = σn(β). Through dualization we
obtain a map ψ∗

1 : V ∗
2 ! Sym2 V ∗

1 whose codomain, after identifying V ∗
1 with
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R1, can be viewed as R2. Thus this yields a map V ∗
2 ⊗R(−2) ! V ∗

0 ⊗R, as
desired.

(3.5). Before discussing the next steps, we show that ψ1 can be made
quite concrete. The Specht module V(d−2,2) can be naturally realized inside
F [z1, . . . , zd]2. Explicitly, it is the subspace generated by (z1 − z2)(z3 − z4)
and all its conjugates [27, Prob. 4.47]. By Lemma 9, inside F [z1, . . . , zd]2 ∼=
V 2
(d) ⊕ V 2

(d−1,1) ⊕ V(d−2,2), this subspace contains up to scalar multiplication

a unique polynomial that is fixed by S2 × Sd−2. It is easily made explicit:

p1 =
∑

τ∈Sd−2

(z1 − zτ(3))(z2 − zτ(4))

(abusingly, we again call this polynomial p1; here we recall from (2.1) that
we view Sd−2 as the subgroup of Sd fixing 1 and 2). This gives rise to a map

V1 ! V2 : α 7! p1(α(1), . . . , α(d))

which is nothing but the quadratic map corresponding to the symmetric
bilinear map ψ1 from above; let us call it ψ′

1. With respect to our bases
α1, . . . , αd−1 of V1 and ω2

1 , . . . , ω
2
β1

of V2, it may be represented as

ψ′
1





d−1∑

i=j

ajαj



 =

β1∑

ℓ=1

d−1∑

j,k=1

Qℓj,kajakω
2
ℓ ,

for certain Qℓj,k ∈ F , where we can assume Qℓjk = Qℓkj for all j, k. Thus ψ1

defines β1 quadratic forms Qℓ ∈ R. One checks that

ψ∗
1 : V ∗

2 ! Sym2 V ∗
1 : ω2∗

ℓ 7!

d−1∑

j,k=1

Qℓjkα
∗
j ⊗ α∗

k,

therefore the image of V ∗
2 ⊗ R(−2) ! R is the ideal generated by these

Qℓ’s. We will soon prove that it equals I. We end by noting that, for
d = 4, 5, the quadratic formsQℓ can also be obtained by applying Bhargava’s
parametrizations from [3, 4] to the extension K/F .

(3.6). Now assume that 2 ≤ i ≤ d − 3. Let y1, . . . , yd−1 be as before and
take an F -basis wi1, . . . , w

i
βi−1

of Vλi such that wi1 is fixed by Sλi , and all

other wij ’s are conjugate to wi1. By Lemma 9 and Lemma 10 we have that

mult(Vλi+1
, Vλi ⊗ V(d−1,1)) = 1, dim

(

V
Sλi+1

λi+1

)

= 1.

Hence there is, up to scalar multiplication, a unique element

pi =

βi−1∑

m=1

d−1∑

n=1

pimnw
i
m ⊗ yn ∈ Vλi ⊗ V(d−1,1)
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which is fixed by Sλi+1
and such that its conjugates generate a representation

isomorphic to Vλi+1
. We use this pi to construct a map

ψi : Vi ⊗ V1 ! Vi+1 : ω ⊗ α 7!

βi−1∑

m=1

d−1∑

n=1

pimnω
(m)α(n),

where the conjugation of ω is labelled compatibly with that of wi1, that is,

ω(m) = σ(ω) for any σ mapping wi1 to wim. By identifying V ∗
1 with R1 as

before, the dual map ψ∗
i : V

∗
i+1 ! V ∗

i ⊗V ∗
1 is naturally converted into a map

V ∗
i+1 ⊗R(−i− 1) ! V ∗

i ⊗R(−i).

(3.7). We have now constructed our resolution (10) except for the last step.
For this, consider the representation Vλd−2

⊗Sym2 V(d−1,1) and note that, by
Corollary 12, it contains a unique subrepresentation isomorphic to V(1,...,1).

As above, consider a basis wd−2
1 , . . . , wd−2

βd−3
of Vλd−2

such that wd−2
1 is fixed

by Sλd−2
and the other wd−2

j ’s are conjugate to it. Then there exists an
element

pd−2 =

βd−3∑

i=1

d−1∑

j,ℓ=1

pd−2
ijℓ w

d−2
i ⊗ (yj ⊗ yℓ),

unique up to scalar multiplication, on which Sd acts as the sign representa-
tion. We can assume that pd−2

ijℓ = pd−2
iℓj , leading to a linear map

ψd−2 : Vd−2 ⊗ Sym2 V1 ! Vd.

Upon dualizing, tensoring with R and identifying V ∗
1 with R1, this yields a

morphism of graded R-modules ψ∗
d−2 : V

∗
d ⊗R(−d) ! V ∗

d−2 ⊗R(−d+ 2).

(3.8). A chain complex. Our next goal is to prove that the sequence (10)
is a complex. We first discuss what this means in terms of the maps ψi.

Lemma 14. Assuming d ≥ 5, the sequence (10) is a chain complex if and
only if

(1) the quadrics Qℓ vanish on the points (6),
(2) we have ψ2(ψ1(α⊗ α)⊗ α) = 0 for any α ∈ V1,
(3) we have ψi+1(ψi(ω ⊗ α) ⊗ α) = 0 for any 2 ≤ i ≤ d− 4, α ∈ V1 and

ω ∈ Vi,
(4) we have ψd−2(ψd−3(ω ⊗ α) ⊗ (α ⊗ α)) = 0 for any α ∈ V1 and

ω ∈ Vd−3.

Proof. The first step V ∗
2 ⊗R(−2) ! V ∗

0 ⊗R! R/I being a complex is equiv-
alent to the quadrics Qℓ being contained in the ideal I, i.e. the quadrics must
vanish on (6). The subsequent steps are handled using a direct computation
with bases.
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For the second step of the resolution, we may write the maps ψ1 and ψ2

as

ψ1(αj ⊗ αk) =

β1∑

ℓ=1

Qℓjkω
2
ℓ , ψ2(ω

2
ℓ ⊗ αn) =

β2∑

m=1

Lmℓnω
3
m,

for certain Qℓjk, L
m
ℓn in F . In terms of the dual bases with respect to TrL/F ,

the maps ψ∗
1 and ψ∗

2 satisfy

ψ∗
1(ω

2∗
ℓ ) =

d−1∑

j,k=1

Qℓjkα
∗
j ⊗ α∗

k, ψ∗
2(ω

3∗
m ) =

β1∑

ℓ=1

d−1∑

n=1

Lmℓnω
2∗
ℓ ⊗ α∗

n.

Let q(x) be homogeneous in R, then in the sequence of maps a computation
shows that

(11) ψ∗
1(ψ

∗
2(ω

3∗
m ⊗ q(x))) = q(x)

β1∑

ℓ=1

(
d−1∑

n=1

Lmℓnxn

)



d−1∑

j,k=1

Qℓjkxjxk



 .

On the other hand, letting α =
∑

r arαr ∈ V1 for ar ∈ F , one computes that

(12) ψ2(ψ1(α⊗ α)⊗ α) =

β2∑

m=1





β1∑

ℓ=1

(
d−1∑

n=1

Lmℓnan

)



d−1∑

j,k=1

Qℓjkajak







ω3
m.

We indeed see that (12) is zero for all α ∈ V1 if and only if (11) is zero for
all m = 1, . . . , β2 and q(x) ∈ R. The “only if” part relies on the fact that a
non-zero polynomial in R cannot vanish on all of F d−1, because F is infinite:
indeed, by assumption it admits an Sd-extension, so it cannot be finite.6

The middle steps are handled similarly. Explicitly, for 2 ≤ i ≤ d − 4 we
may write the maps ψi and ψi+1 as

ψi(ω
i
j ⊗ αk) =

βi∑

ℓ=1

Lℓjkω
i+1
ℓ , ψi+1(ω

i+1
ℓ ⊗ αn) =

βi+1∑

m=1

L′m
ℓnω

i+2
m ,

for certain Lℓjk, L
m
ℓn ∈ F . On the dual bases this gives

ψ∗
i (ω

i+1∗
ℓ ) =

βi−1∑

j=1

d−1∑

k=1

Lℓjkω
i∗
j ⊗ α∗

k, ψ∗
i+1(ω

i+2∗
m ) =

βi∑

ℓ=1

d−1∑

n=1

L′m
ℓnω

i+1∗
ℓ ⊗ α∗

n.

For q(x) ∈ R, one computes that
(13)

ψ∗
i (ψ

∗
i+1(ω

i+2∗
m ⊗ q(x)) =

βi−1∑

j=1

ωi∗j ⊗
(

q(x)

βi∑

ℓ=1

(
d−1∑

n=1

L′m
ℓnxn

)(
d−1∑

k=1

Lℓjkxk

))

.

6But even for a finite field F it is true that a non-zero polynomial of degree < charF
cannot vanish everywhere.
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On the other hand, if we let α =
∑

r arαr for ar ∈ F , then

(14) ψi+1(ψi(ω
i
j ⊗ α)⊗ α) =

βi+1∑

m=1

(
βi∑

ℓ=1

(
d−1∑

n=1

L′m
ℓnan

)(
d−1∑

k=1

Lℓjkak

))

ωi+2
m .

Again, it is clear that (14) is zero for all j = 1, . . . , βi−1 and all α ∈ V1 if
and only if (13) is zero for all m = 1, . . . , βi+1 and all q(x) ∈ R.

We omit the details of the final step, which again can be dealt with
analogously. �

The reader may have observed that the syzygies of our resolution make
an explicit appearance in the above proof, more precisely in (11) and (13).

(3.9). So we turn to proving the statements (1–4) from Lemma 14. Towards
proving that the quadrics vanish as wanted, we give an explicit description
of the coordinates of our points (6); this again follows [4, §2]. Consider the
matrix

(15) D =








1 1 . . . 1

α
(1)
1 α

(2)
1 . . . α

(d)
1

...
...

. . .
...

α
(1)
d−1 α

(2)
d−1 . . . α

(d)
d−1







,

and denote by Dj,i the minor of D corresponding to α
(i)
j , i.e. it is (−1)i+j

times the determinant of D with the j-th row and ith column removed.

Then we have α
∗(i)
j = Dj+1,i/detD.

Theorem 15. The quadrics Qℓ vanish on the points (6), i.e. for any ℓ we
have

d−1∑

i,j=1

Qℓijα
∗
iα

∗
j = 0.

Proof. We claim that for p = 1, . . . , d we have

(16)

d−1∑

m,n=0

ψ1(α
∗
m ⊗ α∗

n)α
(p)
m α(p)

n = 0.

Indeed, using the definition of ψ1 we can expand this as

d∑

i,j=1
i 6=j

cij

d−1∑

m,n=0

Dm+1,iDn+1,jα
(p)
m α(p)

n

for certain coefficients cij ∈ F in which we have absorbed a denomina-
tor detD2 (which is a non-zero element of F , being the discriminant of
1, α1, . . . , αd−1 with respect to K/F ). In each term, at least one of i, j is
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not equal to p. Say i 6= p, then the corresponding summand can be written
as

cij ·
d−1∑

n=1

Dn+1,jα
(p)
n ·

d−1∑

m=1

Dm+1,iα
(p)
m = 0,

and one sees that the last factor is 0 because it is the determinant of the
matrix obtained from D by replacing the ith column with a copy of the pth
column. The case j 6= p is analogous, hence the claim follows.

Expand αmαn with respect to the basis 1, α1, . . . , αd−1 and let cqmn ∈ F
denote the coordinate at αq. Then we may rewrite (16) as

d−1∑

m,n=0

d−1∑

q=0

ψ1(α
∗
m ⊗ α∗

n)c
q
mnα

(p)
q = 0.

Multiplying by α
∗(p)
r and summing over p yields

d−1∑

m,n=0

crmnψ1(α
∗
m ⊗ α∗

n) = 0

for all r = 0, . . . , d − 1. Since α∗
m =

∑d−1
i=1 TrL/F (α

∗
iα

∗
m)αi (here we use the

fact that the αi have trace zero), we get for any ℓ

d−1∑

m,n=0

crmn

d−1∑

i,j=1

Qℓij TrL/F (α
∗
iα

∗
m)TrL/F (α

∗
jα

∗
n) = 0.

Multiplying by αr and summing over r finally yields the desired vanishing.
�

(3.10). As for the other statements in Lemma 14, we have:

Lemma 16. If d ≥ 5, then for α ∈ V1, we have that ψ2(ψ1(α⊗α)⊗α) = 0.

Proof. Let η = ψ2(ψ1(α ⊗ α) ⊗ α). By construction of ψ2, η lies in Wλ3 .
On the other hand, η is also an element of the subrepresentation U =
span{α(j)α(k)α(ℓ) | 1 ≤ j, k, ℓ ≤ d} of L. Now U is the image of the equi-
variant map

Sym3 V(d−1,1) ! L : yj ⊗ yk ⊗ yℓ 7! α(j)α(k)α(ℓ).

However, by Lemma 13, Sym3 V(d−1,1) does not contain the irreducible rep-
resentation Vλ3 and so indeed η = 0. �

Lemma 17. For 2 ≤ i ≤ d − 4, α ∈ V1 and ω ∈ Vi, we have ψi+1(ψi(ω ⊗
α)⊗ α)) = 0.

Proof. This is similar to the previous lemma. Let η = ψi+1(ψi(ω⊗α)⊗α)).
Then η lives in Wλi+2

, by construction of ψi+1. However, η is also contained

in the subrepresentation U = span{σ(ω)α(j)α(k) | σ ∈ Sd, 1 ≤ j, k ≤ d}.
The space U is the image of the map

Vλi ⊗ Sym2 V(d−1,1) ! L : σ(wi1)⊗ (yj ⊗ yk) 7! σ(ω)α(j)α(k).
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However, by Corollary 12, Vλi ⊗ Sym2 V(d−1,1) does not contain the repre-
sentation Vλi+2

, proving the desired result. �

Lemma 18. If d ≥ 5 then we have ψd−2(ψd−3(ω⊗α)⊗ (α⊗α)) = 0 for all
α ∈ V1 and ω ∈ Vd−3.

Proof. The proof idea is the same as in the previous two lemmas. This time
one uses that Vλd−3

⊗Sym3 V(d−1,1) does not contain the sign representation
V(1,...,1), by Lemma 13. �

(3.11). The case d = 4 is not covered by our treatment so far. We leave
it to the reader to check that the requirements from Lemma 14 should be
replaced by

(1) the quadrics Qℓ vanish on the points (6),
(2) we have ψ2(ψ1(α⊗ α)⊗ (α⊗ α)) = 0 for any α ∈ V1.

The first requirement is covered by Theorem 15, while the second require-
ment can be checked as in Lemma 18, with mult(V(14),Sym

4 V(3,1)) = 0
from (9) as the key representation-theoretic ingredient.

(3.12). Exactness and minimality. We now prove that our chain com-
plex is indeed a minimal free resolution. This is equivalent with proving
surjectivity of the maps ψi:

Lemma 19. If the linear maps ψ1 : Sym2 V1 ! V2, ψi : Vi ⊗ V1 ! Vi+1 for
2 ≤ i ≤ d− 3, and ψd−2 : Vd−2 ⊗ Sym2 V1 ! Vd are all surjective, then the
complex (10) is a minimal free resolution.

Proof. From [45, (4.2)] we know that I is generated by β1 linearly indepen-
dent quadrics. Thanks to Theorem 15 we also know that the β1 quadrics Qℓ

are elements of I. Thus they form a minimal generating set if and only if
they are linearly independent. But this is equivalent to ψ1 being surjective.
Assuming surjectivity of ψ1, again from [45, (4.2)] we then know that the
R-module of syzygies between these Qℓ’s is generated by β2 linearly inde-
pendent linear syzygies. But we have just showed that ψ∗

2 produces β2 linear
syzygies. Thus they form a minimal generating set if and only if they are
linearly independent. In turn, this is equivalent to the surjectivity of ψ2.
An inductive application of this argument concludes the proof. �

(3.13). To prove surjectivity we need the following technical lemma; here,
by the product W ·W ′ of W,W ′ ⊆ L we mean the subspace generated by
all ww′ for w ∈W and w′ ∈W ′.

Lemma 20. We have Wλ2 ⊆ W 2
(d−1,1), Wλi+1

⊆ Wλi ·W(d−1,1) for 2 ≤ i ≤
d− 3, and W(1d) ⊆Wλd−2

·W 2
(d−1,1).

Proof. Denoting by Sym2W(d−1,1) the subspace of L generated by all ele-

ments of the form α(m)β(n)+α(n)β(m) with α, β ∈ V1 and m,n ∈ {1, . . . , d},
we will first show that

(17) Wλi+1
⊆W i−1

(d−1,1) Sym
2W(d−1,1)
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for all i = 1, . . . , d − 3. Since Sym2W(d−1,1) ⊆ W 2
(d−1,1), this will settle the

first inclusion.
Because of the Sd-action, it is enough to prove that Vi+1 is contained in the

right-hand side of (17). In turn, it suffices to prove this for LSλi+1 ⊇ Vi+1.

Since this field is generated by α(d−i)+α(d−i+1), α(d−i+2), α(d−i+3), . . . , α(d)

for some primitive element α ∈ K, any element is an F -linear combination
of elements of the form

(α(d−i) + α(d−i+1))f1α(d−i+2)f2 · · ·α(d)fi .

Every appearance of α(m)fj can be rewritten as an F -linear combination of

the elements α
(m)
0 = 1, α

(m)
1 , . . . , α

(m)
d−1. After doing this, we find that every

element of LSλi+1 is an F -linear combination of elements of the form
(

α
(d−i)
k0

α
(d−i+1)
k1

+ α
(d−i+1)
k0

α
(d−i)
k1

)

α
(d−i+2)
k2

· · ·α(d)
ki
,

for 0 ≤ kj ≤ d− 1. This shows that Vi+1 is contained in

(18) (W(d) +W(d−1,1))
i−1 Sym2(W(d) +W(d−1,1)).

We claim that Sym2W(d−1,1) contains W(d) andW(d−1,1). This claim readily

implies that Sym2(W(d) +W(d−1,1)) = Sym2W(d−1,1) and also that

(W(d) +W(d−1,1)) Sym
2W(d−1,1) =W(d−1,1) Sym

2W(d−1,1),

so that (18) equals W i−1
(d−1,1) Sym

2W(d−1,1), thus settling (17).

In order to prove the claim, it suffices to show that Sym2W(d−1,1) contains

K = V0 + V1. Pick a non-zero element β1 ∈ K ∩ Sym2W(d−1,1) that is not

contained in F ; e.g. one of α2
1, α1α2 will do. By replacing it with

β1 −
1

d!
TrL/F (β1) = β1 −

1

d

d∑

j=1

β
(j)
1

if needed, we can assume that it has trace zero, so that it belongs to
V1. Extending this to a basis β1, . . . , βd−1 of V1, it is easy to see that
β21 , β1β2, . . . , β1βd−1, β1 ∈ K ∩ Sym2W(d−1,1) are linearly independent over
F , hence they must generate K, as wanted.

Having settled the case i = 1, we now assume 2 ≤ i ≤ d−3. Decomposing

V ⊗i−2
(d−1,1) ⊗ Sym2 V(d−1,1) =

⊕

λ

V
ci,λ
λ

we see from (17) that

Wλi+1
⊆W i−1

(d−1,1) Sym
2W(d−1,1) ⊆

∑

λ with
ci,λ>0

Wλ ·W(d−1,1).

By decomposing Sym2 V(d−1,1) as in (8) and using Lemma 10 and Lemma 11,
one sees that ci,λ > 0 only if the Young diagram corresponding to λ has at
most i boxes not in its first row and λ 6= (d − i, 1i). Consequently, again
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using Lemma 10, we see that the only partition λ with ci,λ > 0 such that
Vλ ⊗ V(d−1,1) contains Vλi+1

is λ = λi. We conclude that

Wλi+1
⊆Wλi ·W(d−1,1),

as wanted.
For the last inclusion we give an ad-hoc proof. Recall that W(1d) is gen-

erated by the Vandermonde determinant
∣
∣
∣
∣
∣
∣
∣

1 α(1) . . . α(1)d−1

...
...

. . .
...

1 α(d) . . . α(d)d−1

∣
∣
∣
∣
∣
∣
∣

for some primitive element α ∈ K. Expanding this determinant with respect
to the last two columns yields a linear combination of

∣
∣
∣
∣
∣
∣
∣

1 α(1) . . . α(1)d−3

...
...

. . .
...

1 α(d−2) . . . α(d−2)d−3

∣
∣
∣
∣
∣
∣
∣

· (α(d) − α(d−1)) · (α(d−1)α(d))d−1

and conjugates thereof. By [27, Prob. 4.47] the product of the first two
factors is in the image of the Specht module Vλd−2

under the natural map

F [z1, . . . , zd] ! L : zi 7! α(i), so it is in Wλd−2
. By mimicking the argumen-

tation from the start of this proof, the last factor is seen to be in

(W(d) +W(d−1,1))
2 =W 2

(d−1,1),

where the equality holds because W 2
(d−1,1) ⊇ Sym2W(d−1,1) contains W(d)

and W(d−1,1). �

(3.14). We are now ready to conclude:

Lemma 21. The maps ψi are all surjective, so that the complex (10) is a
minimal free resolution.

Proof. We first prove the surjectivity of ψ1 : Sym2 V1 ! V2. By Lemma 20
any γ ∈ V2 can be written as

γ =
∑

1≤m,n≤d
1≤j≤k≤d−1

cmnjk α
(m)
j α

(n)
k

for cmnjk ∈ F . For every pair j, k define Djk =
∑

1≤m,n≤d c
mn
jk α

(m)
j α

(n)
k . We

show that we may take the individual Djk’s to be in V2 as well. For this, let
ρ ∈ Z(F [Sd]) be the element obtained by applying Lemma 8 to the partition
(d− 2, 2). Now consider for every j, k the element

D′
jk =

1

2(d− 2)!

∑

τ∈S2×Sd−2

τ(ρ(Djk)).

We still have γ =
∑

1≤j≤k≤d−1D
′
jk with D′

jk ∈ span{α(m)
j α

(n)
k | 1 ≤ m,n ≤

d}, and each D′
jk is contained in LS2×Sd−2 ∩W(d−2,2) = V2, as wanted.
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We now prove that every D′
jk is in the image of ψ1. If D′

jk = 0, there

is nothing to prove. So we assume that D′
jk 6= 0. Consider the equivariant

map

φjk : V(d−1,1) ⊗ V(d−1,1) ! L : ym ⊗ yn 7! α
(m)
j ⊗ α

(n)
k

whose image is precisely span{α(m)
j α

(n)
k | 1 ≤ m,n ≤ d}. From Lemma 10

we see that V(d−1,1) ⊗ V(d−1,1) contains a unique copy of V(d−2,2), which

contains the element p1 from (3.4). The image of φjk also contains V(d−2,2)

as a subrepresentation because D′
jk 6= 0. So Schur’s lemma implies that φjk

cannot map p1 to zero. Since both φjk(p
1) andD′

jk are fixed under the action

of S2×Sd−2, we find from Lemma 9 that D′
jk = djkφjk(p

1) = ψ1(djkαj⊗αk)
for some djk ∈ F×. But then

γ = ψ1




∑

1≤i≤j≤d−1

djkαj ⊗ αk



 ,

i.e. ψ1 is surjective.
For the other maps, the argument is similar. Let 2 ≤ i ≤ d− 3 and take

γ ∈ Vi+1. We wish to prove that γ is in the image of ψi : Vi ⊗ V1 ! Vi+1.
By Lemma 20 we may write γ as

γ =
∑

1≤j≤βi−1
1≤k≤d−1

σ∈Sd,1≤n≤d

cσ,njk σ(ω
i
j)α

(n)
k ,

for cσ,njk ∈ F . For every pair j, k define

Djk =
∑

σ∈Sd
1≤n≤d

cσ,njk σ(ω
i
j)α

(n)
k .

Let ρ ∈ Z(F [Sd]) come from Lemma 8 applied to λi+1 and define

D′
jk =

1

2(d− i− 1)!

∑

τ∈Sλi+1

τ(ρ(Djk)).

We still have γ =
∑

1≤j≤βi−1,1≤k≤d−1D
′
jk with D′

jk ∈ span{σ(ωij)α
(n)
k | σ ∈

Sd, 1 ≤ n ≤ d}, and each D′
jk is contained in LSλi+1 ∩Wλi+1

= Vi+1. We

prove that every D′
jk is in the image of ψi, from which the surjectivity of ψi

follows. We may assume that D′
jk 6= 0, for else there is nothing to prove.

Consider the equivariant map

φjk : Vλi ⊗ V(d−1,1) ! L : σ(wi1)⊗ yn 7! σ(ωij)α
(n)
k .

The image of this map is precisely span{σ(ωij)α
(n)
k | σ ∈ Sd, 1 ≤ n ≤ d}.

Lemma 10, Schur’s lemma and the fact that D′
jk 6= 0 yields as before that

D′
jk = djkφjk(p

i) = ψ1(djkω
i
j ⊗ αk) for some djk ∈ F×, as wanted.
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The surjectivity of the last map ψd−2 can be proved similarly, the main
representation-theoretic ingredient now being that Vλd−2

⊗Sym2 V(d−1,1) con-
tains a unique component V(1d) by Corollary 12. We omit further details. �

(3.15). Three points in P1. The remainder of Section 3 discusses two
stand-alone observations, which can be skipped by the reader eager to move
forward. First, we consider the ideal I of the 3 points in P1 associated with
a basis 1, α1, α2 of a cubic S3-extension K/F as in (1.8), where we assume
TrL/F (αi) = 0 for i = 1, 2. This ideal is generated by one cubic polynomial
in R rather than by quadrics, hence the resolution takes the form

0 ! R(−3) ! R! R/I ! 0.

This exceptional behaviour also has a representation-theoretic explanation:
for d = 3 the decomposition (8) fails, instead we have Sym2 V(2,1) ∼= V(3) ⊕
V(2,1), so we cannot construct the quadratic map from (3.4). Here, the cor-

rect representation to look at is Sym3 V(2,1), which has a unique component
V(13) in view of (9). Let

p =

2∑

j,k,ℓ=1

pjkℓyj ⊗ yk ⊗ yℓ ∈ Sym3 V(2,1)

be a generator of this component, expanded with respect to some basis y1, y2
of V(2,1), this defines the cubic map

ψ : V1 ! V3 : α 7! p(α(1), α(2), α(3))

from V1 =W(2,1) ∩ LS2 to V3 =W(1,1,1), which is easy to make explicit:

ψ(α) = (α(1) − α(2))(α(1) − α(3))(α(2) − α(3)).

This naturally induces a linear map Sym3 V1 ! V3, mapping αj ⊗ αk ⊗ αℓ
to Cjkℓδ, for some Cjkℓ ∈ F and some fixed non-zero δ ∈ V3, corresponding
to a cubic form

C(x1, x2) =

2∑

j,k,ℓ=1

Cjkℓxjxkxℓ

which again can be seen to vanish on the points (6). The resulting complex
0 ! V ∗

3 ⊗ R(−3) ! V ∗
0 ⊗ R ! R/I ! 0 is a minimal free resolution of

R/I. We note that the cubic form C can also be obtained by applying the
Delone–Faddeev parametrization [28, Prop. 4.2] to the cubic extension K/F .

(3.16). Self-duality. As a second side trip, we note that there is a “dual”
representation-theoretic construction of a minimal free resolution of our co-
ordinate ring R/I, in which the spaces V ∗

0 , V
∗
2 , V

∗
3 , . . . , V

∗
d−2, V

∗
d appear

in opposite order. This construction links the well-known self-duality for
minimal free resolutions of d general points in Pd−2 [2, 45] to the duality
for representations of Sd, obtained by tensoring with the sign representation
Vλd = V(1d) (i.e. by transposing Young diagrams).
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(3.17). For the first step, tensoring the decomposition of V(d−2,2) from (8)
with the sign representation yields

V(1d) ⊗ Sym2 V(d−1,1)
∼= V(1d) ⊕ V(2,1d−2) ⊕ V(22,1d−4),

so there is a unique component Vλd−2
. Moreover, Lemma 9 shows that

V
Sλd−2

λd−2
has dimension 1. Denote by u a generator of V(1,...,1). Let

q1 =

d−1∑

m,n=1

q1mnu⊗ (ym ⊗ yn) ∈ V(1,...,1) ⊗ Sym2 V(d−1,1)

be the unique element (up to multiplication by a scalar from F×) which is
fixed under Sλd−2

and such that its conjugates generate the representation

Vλd−2
. We can assume that q1mn = q1nm and use this element to define a

quadratic map

ϕ1 : Vd ⊗ V1 ! Vd−2 : δ ⊗ α 7! q1(δ, α(1) , . . . , α(d)),

which naturally induces a linear map Vd⊗Sym2 V1 ! Vd−2, also denoted by
ϕ1. Dualizing yields the first step of the resolution for I

V ∗
d−2 ⊗R(−2)

ϕ∗
1

−! V ∗
d ⊗R! R/I ! 0.

The subsequent steps are similar. Let 2 ≤ i ≤ d−3, then from Lemma 10
we see that Vλd−i−1

appears once in Vλd−i
⊗ V(d−1,1). By Lemma 9 there is,

up to scalar multiplication, a unique

qi =

βd−i−1∑

m=1

d−1∑

n=1

qimnw
d−i
m ⊗ yn ∈ Vλd−i

⊗ V(d−1,1),

that is fixed by Sλd−i−1
and whose conjugates generate a Vλd−i−1

.7 In the
same way as before, this induces a linear map

ϕi : Vd−i ⊗ V1 ! Vd−i−1

which, when dualized, yields a next step in the resolution.
To conclude, using Lemma 10 and Lemma 11 along with (8) one finds

a unique trivial component in the representation V(d−2,2) ⊗ Sym2 V(d−1,1),

resulting in a linear map ϕd−2 : V2 ⊗ Sym2 V1 ! V0 whose dual is the last
step of the resolution.

7Notice that for 3 ≤ i ≤ d − 3 the elements pd−i from (3.6) are also taken from
Vλd−i

⊗ V(d−1,1), but they are fixed under Sλd−i+1
and generate a Vλd−i+1

, rather than

being fixed under Sλd−i−1
and generating a Vλd−i−1

.
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(3.18). The resulting sequence

0 ! V ∗
0 ⊗R(−d)

ϕ∗

d−2
−−−! V ∗

2 ⊗R(−d+ 2)
ϕ∗

d−3
−−−! . . .

. . .
ϕ∗
3

−! V ∗
d−3 ⊗R(−3)

ϕ∗
2

−! V ∗
d−2 ⊗R(−2)

ϕ∗
1

−! V ∗
d ⊗R! R/I ! 0

is indeed a minimal graded free resolution because it is explicitly isomorphic
to our sequence from (3.3). We sketch this for steps 2 ≤ i ≤ d − 3; the
analysis for i = 1 and i = d− 2 is completely similar. Choose elements ciσ ∈
F , where σ ranges over Sd, with the following property: if w ∈ Vλi is fixed
by Sλi , then

∑

σ∈Sd
ciσσ(u⊗w) is non-zero and fixed under Sλd−i

. Note that

such coefficients indeed exist in view of Lemma 9, because the σ(u⊗w)’s span
a V(1,...,1) ⊗ Vλi

∼= Vλd−i
. It follows, for each m = 1, . . . , βi−1 = βd−i−1, that

∑

σ∈Sd
ciσσ(δω

i
m) ∈Wλd−i

is fixed under Sλd−i
and non-zero; consequently

̟i
m =

∑

σ∈Sd

ciσσ(δω
i
m), m = 1, . . . , βd−i−1

is a basis for Vd−i. We leave it to the reader to verify that the map ψi
expressed with respect to the bases ωim and ωi+1

m coincides with the map ϕi
expressed with respect to the bases ̟i

m and ̟i+1
m .

4. Scrollar invariants of representations and resolvents

(4.1). We now return to our simply branched degree d cover ϕ : C ! P1

over a field k satisfying char k = 0 or char k > d, with C a curve of genus g.
In this section we explain the decomposition (3) that underlies Definition 1,
introducing the scrollar invariants of C with respect to a partition λ ⊢ d:
this is done in (4.5). We then proceed with studying some of their first
properties. Recall that this notion generalizes that of the scrollar invariants
e1, e2, . . . , ed−1 of C with respect to ϕ, which arise as the scrollar invariants
with respect to the partition (d−1, 1). Several other examples are discussed,
which are all subsumed by Proposition 2 on the scrollar invariants of hooks:
its proof can be found in (4.11). In (4.9) we prove our “volume formula”
generalizing the sum formula e1 + e2 + . . . + ed−1 = g + d − 1, and we
also present an explicit formula relating the scrollar invariants of λ to those
of the dual partition λ∗. The main result of this section is Theorem 4,
expressing the scrollar invariants of resolvent covers in terms of scrollar
invariants with respect to certain partitions: a proof can be found in (4.6).
Our treatment is based on explicit function field arithmetic, in the style
of Hess [30]; alternatively, it should be possible to develop much of the
following material using the formalism of parabolic vector bundles and the
Mehta–Seshadri correspondence [38] mentioned in (1.4).

(4.2). Reduced bases. Consider the extension k(t) = k(P1) ⊆ k(C) = K
induced by ϕ. The simple branching assumption will not play an important
role until (4.8). Following Hess, see [30] and [31, pp. 43-52], we can interpret
the decomposition (1) in terms of this extension. Denote by OK resp. O∞

K
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the integral closure of k[t] resp. k[t−1] in K. Geometrically, these rings
correspond to two affine patches of the curve C, one above A1 = P1 \ {∞}
and the other above P1 \ {0}.
Theorem 22. There exists a k[t]-basis 1, α1, . . . , αd−1 of OK , together with
unique integers 1 ≤ r1 ≤ . . . ≤ rd−1 such that 1, t−r1α1, . . . , t

−rd−1αd−1 is a
k[t−1]-basis of O∞

K .

Proof. This follows from [30, Cor. 4.3]; see also [31, p. 46]. �

The integers ri describe how ϕ∗OC splits, that is, ri = ei for i = 1, . . . , d−1.
An accompanying basis 1, α1, . . . , αd−1 as above is called a “reduced basis”.

(4.3). As explained in [30, §7] and already touched upon in (1.1), the no-
tion of a reduced basis is the function-field theoretic analogue of that of a
Minkowski-reduced Z-basis 1, v1, . . . , vd−1 of the ring of integers of a degree d
number field E, and under this correspondence the scrollar invariants ei can
be seen as the equivalents of log ‖vi‖, with ‖·‖ denoting the ℓ2-norm under

the Minkowski embedding. Given the analogy between g and log
√

|∆E |,
where ∆E is the discriminant of E, it is interesting to view the property
e1 + e2 + . . . + ed−1 = g + d− 1 against Minkowski’s second theorem

‖v1‖ · ‖v2‖ · · · ‖vd−1‖ ∼d

√

|∆E |,
and to view the Maroni bound ed−1 ≤ (2g + 2d− 2)/d against the observa-

tion ‖vd−1‖ = Od(|∆E |1/d) due to Peikert–Rosen [41, Lem. 5.4], see also [6,
Thm. 1.6].

(4.4). For the purposes of this paper, it is convenient to assume that
Gal(L/k(t)) is the full symmetric group Sd, although the observations below
apply more generally. Let OL resp. O∞

L be the integral closure of k[t] resp.
k[t−1] in L. For any k(t)-vector space V ⊆ L, say of dimension n, we define

OV = OL ∩ V, O∞
V = O∞

L ∩ V.
Note that OV is a free k[t]-submodule of L of rank n, and similarly for
O∞
V . By [30] there are unique integers 0 ≤ r1 ≤ . . . ≤ rn, together with a

k[t]-basis v1, . . . , vn of OV such that

t−r1v1, . . . , t
−rnvn

form a k[t−1]-basis of O∞
V . We call the ri the “scrollar invariants” of V and

an accompanying basis v1, . . . , vn is called a “reduced basis”. The scrollar
invariant 0 is realized if and only if v1 ∈ k. Note that the scrollar invariants
of K are just {0} ∪ {e1, . . . , ed−1}, where ei are the scrollar invariants of C
with respect to ϕ.

We prove two auxiliary lemmas:

Lemma 23. Let V ⊆ L be a k(t)-subspace with scrollar invariants r1, . . . , rn
and reduced basis v1, . . . , vn. For every integer r define

V r = {v ∈ OV | t−rv ∈ O∞
V }
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and let jr be maximal such that rjr ≤ r. Then V r is a k-vector space with
basis {tivj}j=1,...,jr,i=0,...r−rj , and k(t)V r is a k(t)-vector space with basis
{v1, . . . , vjr}.
Proof. It is clear that {tivj}j=1,...,n,i=0,1,2,... is a k-basis for OV . When ex-
panding v ∈ OV with respect to this basis, the requirement t−rv ∈ O∞

V

is easily seen to be equivalent to the vanishing of the coordinates at tivj
with i+ jr − r > 0, from which the first claim follows. The second claim is
immediate from the first one. �

The next lemma is frequently useful in proving that a candidate-reduced
basis is indeed a reduced basis.

Lemma 24. Let V be a k(t)-vector subspace of L with scrollar invariants
r1 ≤ . . . ≤ rn. Suppose that v′1, . . . , v

′
n ∈ OV form a k(t)-basis for V and

that there are integers r′1 ≤ . . . ≤ r′n such that

r1 + . . . + rn = r′1 + . . .+ r′n

and such that t−r
′
iv′i ∈ O∞

V . Then ri = r′i for all i, and v
′
1, . . . , v

′
n is a reduced

basis for V .

Proof. Let v1, . . . , vn be a reduced basis of V . Define the matrices

D1 = diag(tr1 , . . . , trn),

D2 = diag(tr
′
1 , . . . , tr

′
n).

Note that detD1 = detD2 = tr1+...+rn . Let B be the change of basis matrix
from {v′i}i to {vi}i. Since the v′i are integral over k[t], this matrix has entries
in k[t]. We also have detB 6= 0 since the v′i form a k(t)-basis of V . We make a

similar reasoning above infinity. The change of basis matrix from {t−r′iv′i}i to
{t−rivi}i is given by D2BD

−1
1 . It has entries in k[t−1] since t−r

′
iv′i is integral

over k[t−1]. It follows that det(D2BD
−1
1 ) = detB ∈ k[t] ∩ k[t−1] = k. Since

detB is non-zero, we conclude that {v′i}i is a reduced basis for V . �

(4.5). Scrollar invariants of representations and partitions. We now
introduce our scrollar invariants associated to irreducible representations.
Recall that we can view L as the regular representation of Sd. We split L

into isotypic components Wλ
∼= V dimVλ

λ as in (1.3), one for each partition
λ ⊢ d. The patches OWλ

and O∞
Wλ

then glue together to the vector bundle

Wλ from Section (1.3). The next corollaries to Lemma 23 establish the
decomposition (3) and lie at the heart of everything that follows:

Corollary 25. If V ⊆ L is an irreducible subrepresentation then all scrollar
invariants of V are equal to each other.

Proof. Let v1, . . . , vn be a reduced basis for V and let r1 ≤ . . . ≤ rn be the
corresponding scrollar invariants. The k-vector space V r1 from Lemma 23
has dimension jr1 . But it contains all the conjugates of v1, and by the
irreducibility of V we can find n conjugates which are linearly independent
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over k(t), so definitely over k. But then we must have jr1 = n, i.e. r1 = r2 =
. . . = rn. �

Corollary 26. The scrollar invariants of Wλ ⊆ L form a multi-set

eλ,1, eλ,1, . . . , eλ,1, eλ,2, eλ,2, . . . , eλ,2, . . . eλ,dimVλ , eλ,dimVλ , . . . , eλ,dimVλ

with every block containing dimVλ copies of the same entry.

Proof. Write n = dimVλ, let v11, . . . , v1n, v21, . . . , v2n, . . . , vn1, . . . , vnn be a
reduced basis of Wλ, and let

0 ≤ r11 ≤ . . . ≤ r1n ≤ r21 ≤ . . . ≤ r2n ≤ . . . ≤ rn1 ≤ . . . ≤ rnn

be the corresponding scrollar invariants. Using the notation from Lemma 23,
we know that dim k(t)W−3

λ = 0 and dim k(t)W rnn
λ = n2. By Lemma 23 it

suffices to show that whenever

(19) k(t)W r−1
λ ( k(t)W r

λ

for some r = 0, . . . , rnn, the dimensions differ by a multiple of n. By assump-
tion there exists a basis element vij with scrollar invariant exactly r. The
conjugates of vij span a space Vij ∼= Vλ of dimension n which is contained

in k(t)W r
λ and which intersects k(t)W r−1

λ trivially. We can repeat this ar-

gument with k(t)W r−1
λ replaced by k(t)W r−1

λ + Vij until (19) becomes an
equality, at which moment the dimension has indeed increased with a mul-
tiple of n. �

(4.6). Resolvent curves and their scrollar invariants. For every sub-
group H ⊆ Sd we call the fixed field LH the “resolvent” of K with respect to
H. Geometrically, this corresponds to a curve, denoted by RH C, equipped
with a morphism RH ϕ : RH C ! P1 of degree [Sd : H]. Its isomorphism
class as a P1-cover is only dependent on the conjugacy class of H. We now
prove Theorem 4, expressing the scrollar invariants of LH in terms of those
of L.

Proof of Theorem 4. Fix a partition λ and write n = dimVλ and r =

mult(Vλ, Ind
Sd
H 1). By the proof of Corollary 26 we can write Wλ = V1 ⊕

. . .⊕ Vn as an internal direct sum of irreducible subrepresentations Vi ∼= Vλ,
in such a way that a reduced basis of Wλ is obtained from reduced bases
{vi1, . . . , vin} of the Vi’s by simply taking the union. As before, we denote
by eλ,i the unique scrollar invariant of Vi, which appears with multiplicity

n. From Lemma 7 we see that the fixed subspaces V H
i have dimension r,

and by applying the lemma over k rather than k(t), we find that V H
i admits

a k(t)-basis consisting of k-linear combinations of the vij ’s. It is immediate
that this basis is reduced, with again eλ,i as the unique corresponding scrol-
lar invariant, now appearing with multiplicity r. The union of these reduced
bases is a reduced basis for WH

λ = V H
1 ⊕ . . .⊕ V H

n (e.g., because it extends
to a reduced basis for Wλ), so the scrollar invariants of Wλ are obtained by
considering r horizontal slices in (3).
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We claim that taking the union over all partitions λ ⊢ d produces a
reduced basis of LH . For every partition λ of d, let {ωλ,i}i be the reduced

basis of WH
λ just constructed. (For some λ, this set may be empty.) This is

clearly a k(t)-basis for LH . Let us first prove that it also concerns a k[t]-basis
of OLH . Let ω ∈ OLH and write

ω =
∑

partitions λ

∑

i

aλ,iωλ,i,

for some aλ,i ∈ k(t); it suffices to prove that aλ,i ∈ k[t] for any λ, i. Fix λ
and let ρ ∈ Z(k[Sd]) be the corresponding element from Lemma 8. As ρ is
defined over k, it maps OL to itself and

ρ(ω) =
∑

i

aλ,iωλ,i ∈ OL ∩WH
λ = OH

Wλ
.

But the set {ωλ,i}i is a basis for OWλ
and so aλ,i ∈ k[t] for all i. An identical

argument proves that the set {t−eλi ωλ,i}λ,i is a k[t−1]-basis for O∞
L , with eλi

the scrollar invariant associated with the basis element ωλ,i. �

(4.7). Some first examples of partitions and their scrollar invariants are:
the trivial partition (d), with scrollar invariant {0}, and the partition (d −
1, 1), with scrollar invariants {e1, e2, . . . , ed−1}. To see the latter claim: one
can view our given cover ϕ : C ! P1 as its own resolvent with respect to
Sd−1, and then the claim follows from Theorem 4 along with

IndSd
Sd−1

1 ∼= V(d) ⊕ V(d−1,1).

Alternatively, if 1, α1, . . . , αd−1 is a reduced basis forOK then after a replace-
ment of αi with αi − 1

d TrK/k(t)(αi) we may assume that TrK/k(t)(αi) = 0.
Then the α1, . . . , αd−1 form a reduced basis for V1 = W(d−1,1) ∩ K from
which it follows that (d− 1, 1) has scrollar invariants e1, . . . , ed−1 in L.

Another basic case is the partition (1d), with scrollar invariant {g′ + 1},
where g′ denotes the genus of RAd

C. This again follows from Theorem 4,

now using IndSd
Ad

1 ∼= V(d)⊕V(1d). From Theorem 27 below it will follow that

g′ = g + d− 2 as soon as ϕ is simply branched.

(4.8). A genus formula for resolvent curves. From this section onward
we assume that the morphism ϕ : C ! P1 is simply branched, i.e. all
non-trivial ramification is of the form (2, 1d−2); recall that this implies that
Gal(K/k(t)) ∼= Sd. Under this assumption, we can express the genus of RH ϕ
in terms of that of C. This may be known to specialists,8 but we could not
find it explicitly in the existing literature, so let us include a proof.

Theorem 27. Let ϕ : C ! P1 be a simply branched morphism of degree d ≥
2 over a field k with char k = 0 or char k > 2 and let H be a proper subgroup
of Sd. The morphism RH ϕ : RH C ! P1 is branched over exactly the same

8E.g., a special case is covered by [24, pp. 111-113] and a number theoretic analogue is
discussed in mathoverflow question 6674.

https://mathoverflow.net/questions/6674/how-do-i-calculate-the-discriminant-of-a-galois-closure-and-its-other-subfields
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points as ϕ. Each such point ramifies with pattern (2p(H), 1[Sd:H]−2p(H)),
where

p(H) = (d− 2)! · |{transpositions σ ∈ Sd |σ /∈ H}|
|H| .

In particular, the genus of RH C is p(H)(g + d− 1) + 1− [Sd : H].

Note that the excluded case H = Sd corresponds to the identity morphism
P1

! P1. Here p(H) = 0 so the theorem remains valid, except for the
second sentence. At the other extreme, for H = {id} which corresponds
to the Galois closure ϕ : C ! P1, we have p(H) = d!/2. In this case the

theorem says that all ramification patterns of R{id} ϕ are (2d!/2).

Lemma 28. Let H be a subgroup of Sd and let α ∈ L have stabilizer H
under the Galois action. Let σ ∈ Sd be a transposition. Then the number of
ω in the orbit of α for which σ(ω) 6= ω equals 2p(H).

Proof. The map Sd ! {transpositions in Sd} : τ 7! τ−1στ is surjective
and 2(d − 2)!-to-1. Therefore the number of τ ∈ Sd such that τ−1στ /∈ H
equals 2 · |H| · p(H). Thus the number of cosets τH ∈ Sd/H for which
σ(τ(α)) 6= τ(α) equals 2p(H), from which the lemma follows. �

Proof of Theorem 27. By Riemann–Hurwitz it suffices to prove that RH ϕ
is branched over the same points as ϕ with the stated ramification patterns.
Because these properties are local, we can work around 0 ∈ P1 without loss
of generality.

Let dK ⊆ k[t] denote the discriminant ideal of K/k(t), i.e., the princi-
pal ideal generated by the field discriminant ∆K/k(t)(α1, α2, . . . , αd), where
α1, α2, . . . , αd denotes any k[t]-basis of OK . Similarly consider the integral
closure OLH of k[t] inside LH along with its discriminant ideal dLH ⊆ k[t].
We will first show that

(20) dLH = d
p(H)
K .

For this, we rely on a discriminant formula due to Lenstra, Pila and Pomer-
ance [37, Thm. 4.4], which in our case states that

(21) dd!LH =
∏

σ∈Sd\{id}

NormL/k(t)(Iσ)
|{ τ :LH

!֒L | σ◦τ 6=τ }|

with Iσ denoting the ideal generated by all expressions of the form σ(x)−x
for x ∈ OL. Note that a non-zero prime ideal P ⊆ OL divides Iσ if and
only if σ is in the inertia group of P. Using that ϕ is simply branched,
from [51, Sz. 1] we see that this inertia group is either trivial or consists of two
elements. Therefore whenever σ is not a transposition, the corresponding
factor in (21) contributes trivially. On the other hand, if σ is a transposition,
then the number of embeddings τ : LH !֒ L for which σ ◦ τ 6= τ equals
2p(H): this follows from Lemma 28 when applied to a primitive element ρ
of LH over k(t), which can be chosen to be a polynomial expression in the
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conjugates α(1), α(2), . . . , α(d) of a primitive element α = α(1) of K over k(t).
We find that

dd!LH =
∏

transpositions
σ∈Sd

NormL/k(t)(Iσ)
2p(H).

This formula in combination with the same formula applied to the group
H = Sd−1 of permutations fixing 1 yields (20).

It then follows from [39, III, Thm. 2.6 & 2.9] that RH ϕ is branched
over the same points as ϕ. It also follows that, degree-wise, each branch
point contributes p(H) to the ramification divisor. Here we have used that
char k = 0 or char k > 2, which ensures tame ramification. For H = {id},
corresponding to the Galois closure, we know that all ramification indices
must be equal to each other. But since p(H) = d!/2 and the Galois closure
has degree d!, we conclude that these ramification indices must in fact be 2.
Consequently, the ramification indices must also be 1 or 2 for every resolvent
cover, from which the theorem follows. �

(4.9). Volume and duality. We prove two general facts about the scrollar
invariants of a partition λ of d, still under the assumption that ϕ is simply
branched. Firstly, we prove a closed formula for their sum

volK(λ) = eλ,1 + eλ,2 + . . .+ eλ,dimVλ .

We call this the “volume” of λ with respect to K/k(t).9 This generalizes the
well-known formula g+d−1 for the sum of the scrollar invariants e1, . . . , ed−1

of C with respect to ϕ, i.e. the scrollar invariants of the partition (d− 1, 1).

Proposition 29 (volume formula). Assume that ϕ : C ! P1 is simply
branched. Let λ be a partition of d. Then

volK(λ) = p(λ) · (g + d− 1),

where p(λ) = 1
2(dimVλ − χλ((1 2))).

The quantity p(λ) admits several other characterizations:

p(λ) = 〈V(12),ResSd
S2
λ〉S2 = mult(λ, IndSd

S2
V(12)).

One can also verify the inductive formula p(λ) =
∑

λ′<λ p(λ
′) for d ≥ 3,

where the sum is over all partitions of d− 1 which are smaller than λ (i.e.,
which are obtained from λ by removing a box from the Young diagram).

Proof of Proposition 29. We claim that
∑

λ∈Ind
Sd
H 1

volK(λ) = p(H)(g + d− 1).

9This is in view of Minkowski’s second theorem and the analogy between the scrol-
lar invariants and the successive minima of the Minkowski lattice attached to a number
field [30, §7]; in fact calling it the “log-volume” would make the analogy more precise.
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for each subgroup H ⊆ Sd, where the sum is understood to run over all

partitions λ of d, counted with multiplicity mult(Vλ, Ind
Sd
H 1). Assuming the

claim, we note that

p(H) =
1

2
(dim IndSd

H 1− χ
Ind

Sd
H 1

((1 2))),

therefore

p(H) =
∑

λ∈Ind
Sd
H 1

p(λ),

allowing us to conclude that the linear system of equations
∑

λ∈Ind
Sd
H 1

Xλ =
∑

λ∈Ind
Sd
H 1

p(λ)(g + d− 1)

(one equation for each H ⊆ Sd) in the variables Xλ (one variable for each λ ⊢
d) admits the solution Xλ = volK(λ). But, clearly, also Xλ = p(λ)(g+d−1)
is a solution, so it suffices to see that the solution is unique. For this, restrict
to those equations for which H = Sρ is a Young subgroup, with ρ a partition
of d. By [44, p. 88] the resulting coefficient matrix is upper triangular (with
respect to a certain ordering on all partitions) and all diagonal elements are
1. Hence our system indeed has a unique solution, as wanted.

To prove the claim, we consider a reduced basis {ωλi }λ,i of LH/k(t)
as in the proof of Theorem 4. That is: for every fixed partition λ of
d the elements ωλi , i = 1, . . . , r dimVλ form a reduced basis of Wλ, and
the corresponding scrollar invariants eλi are the eλ,j ’s, each counted with
multiplicity r. The discriminant ideal dLH ⊆ k[t] is generated by detT ,

where T = (TrL/k(t)(ω
λ
i ω

λ′
j ))λ,λ′,i,j. If λ 6= λ′ are two partitions of Sd

then TrL/k(t)(ω
λ
i ω

λ′
j ) = 0, as Vλ ⊗ Vλ′ does not contain a copy of the

trivial representation. Thus T falls apart into the block matrices Tλ =
(TrL/k(t)(ω

λ
i ω

λ
j ))i,j. We obtain that

d
p(H)
K = dLH = (detT ) =

(
∏

λ

detTλ

)

where the first equality follows from the proof of Theorem 27; note that this
uses the simple branching assumption (also note that this equality remains
true for H = Sd). We now repeat this argument above infinity, where we
write d∞K , d

∞
LH ⊆ k[t−1] to denote the discriminant ideals of O∞

K ,O∞
LH . Since

the ωλi ’s form a reduced basis, the corresponding matrices T∞
λ are equal to

(TrL/k(t)(t
−eλi −e

λ
j ωλi ω

λ
j ))i,j .

We similarly find

(d∞K )p(H) = d∞LH =

(
∏

λ

detT∞
λ

)

=

(
∏

λ

t−2
∑

i e
λ
i detTλ

)

.
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Using that a generator of d∞K is obtained from a generator of dK by scaling

with t−2(g+d−1) we find that

−2p(H)(g + d− 1) =
∑

λ

−2
∑

i

eλi = −2
∑

λ∈Ind
Sd
H 1

eλ,j

from which the claim follows. �

(4.10). Secondly, we can explicitly relate the scrollar invariants of a parti-
tion λ to those of the dual partition λ∗, which is obtained by transposing
the corresponding Young diagram.

Proposition 30 (duality). Let λ be a partition of d and consider its multi-
set of scrollar invariants {eλ,i}i. Then the multi-set of scrollar invariants
of λ∗ is given by {g + d− 1− eλ,i}i.

Proof. It suffices to show that the scrollar invariants of Wλ and Wλ∗ are
obtained from each other through the map e 7! g + d − 1 − e. Let ωi,
i = 1, . . . , (dim Vλ)

2, be a reduced basis for Wλ with corresponding scrollar
invariants eλ,i and let δ be a generator of W(1d) as in (3.2). By Theorem 27
the scrollar invariant of W(1d) is g + d− 1. Let DL/k(t) denote the different

ideal of the extension L/k(t) and note that this is just the principal ideal
generated by δ because all branch points have ramification pattern (2d!/2)
by Theorem 27. Let ω∗

i be the dual basis of Wλ with respect to the trace
pairing, i.e., TrL/k(t)(ωiω

∗
j ) = δij where δij is the Kronecker delta. We claim

that the elements δω∗
i form a reduced basis of Wλ∗ . To prove this, we use

Lemma 24. First of all, note that the elements

δω∗
i ∈ δD−1

L/k(t) = OL

are integral over k[t]. Also, it is clear that they form a k(t)-basis for Wλ∗ .
Playing the same game above infinity, so starting with t−eλ,iωi, we find
the elements t−(g+d−1−eλ,i)−2δω∗

i , which are all integral over k[t−1]. Using
Proposition 29 for λ, we compute

∑

i

(g + d− 1− eλ,i) =
1

2
(dimVλ + χλ((1 2)))(g + d− 1),

from which the desired result follows, as dimVλ = dimVλ∗ and χλ∗((1 2)) =
−χλ((1 2)). �

(4.11). Scrollar invariants of hooks. Recall from (4.7) that the scrol-
lar invariants of the standard partition (d − 1, 1) are simply the scrollar
invariants e1, . . . , ed−1 of our input map ϕ : C ! P1, and that the sign
representation (1d) has g+d−1 as its unique scrollar invariant. These facts
are part of the more general statement from Proposition 2, which we now
prove:
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Proof of Proposition 2. Note that indeed

dimVλ =

(
d− 1

i

)

is the number of i-element subsets of {1, 2, . . . , d− 1}. Take a reduced basis
α1, . . . , αd−1 of V1 = W(d−1,1) ∩ LSd−1 , with scrollar invariants e1, . . . , ed−1.

Then {α(m)
j | 1 ≤ j,m ≤ d − 1} is a reduced basis for W(d−1,1). The

determinant of the matrix

D =






α
(1)
1 α

(2)
1 . . . α

(d−1)
1

...
...

. . .
...

α
(1)
d−1 α

(2)
d−1 . . . α

(d−1)
d−1






appears, up to sign, as a summand in the expansion of the determinant
of (15) along the first row. Since the latter determinant is non-zero and all
these summands are conjugate to each other, we see that detD 6= 0. We
claim that the i × i minors of D form a reduced basis for Wλ. First note
that acting with Sd on such a minor generates a representation isomorphic
to Vλ, so it is indeed contained in Wλ. Secondly, we have

dimWλ = (dimVλ)
2 =

(
d− 1

i

)2

minors and they are linearly independent because the (d−1)×(d−1) matrix
whose entries are these minors has determinant

det(D)(
d−2
i−1) 6= 0

by the Sylvester–Franke theorem. Thus our minors form a basis of Wλ, and
clearly they are all integral over k[t]. Now repeat this construction starting
from the basis t−e1α1, . . . , t

−ed−1αd−1, in order to obtain another basis of
Wλ consisting of i× i minors which are integral over k[t−1]. The statement
then follows through an application of Lemma 24. �

(4.12). As a first non-trivial application of the work done above, we can
describe the scrollar invariants of RAd−1

ϕ : RAd−1
C ! P1, where Ad−1

denotes the subgroup of Sd consisting of all even permutations fixing 1.

Corollary 31. The scrollar invariants of the curve RAd−1
C with respect to

RAd−1
ϕ are e1, . . . , ed−1, g + d− 1− e1, . . . , g + d− 1− ed−1 and g + d− 1.

Proof. We have that IndSd
Ad−1

1 = V(d)⊕V(d−1,1)⊕V(2,1d−2)⊕V(1d). Thus the
result follows from Proposition 30 (or from Proposition 2), together with
Theorem 4. �

We believe that, as soon as d ≥ 4, the only resolvent covers whose scrollar
invariants admit a description completely in terms of the scrollar invariants
of ϕ : C ! P1 are those with respect to Sd−1, Ad−1, Ad (and the degenerate
case Sd), although we do not have a proof for this.
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(4.13). The case of (3, 1d−3) ramification. For use in Section 5 we extend
our proof of the volume formula for the partition (d− 2, 2) such that it also
covers the case of (3, 1d−3) ramification. This allows for a slight general-
ization of our results. We say that a degree d ≥ 4 morphism ϕ : C ! P1

has “good ramification” if all non-trivial ramification is of type (2, 1d−2) or
(3, 1d−3) and the Galois closure of ϕ has the full symmetric group Sd as its
Galois group; the latter property no longer follows automatically.

Lemma 32. If ϕ has good ramification, then

volK((d− 2, 2)) = p((d− 2, 2))(g + d− 1).

Proof. We start by modifying the proof of Theorem 27 for the subgroup
H = S2 × Sd−2, in such a way that it covers the case of good ramification,
rather than just simple branching. Remember that this proof boiled down
to showing that
∣
∣{ τ : LH !֒ L | σ ◦ τ 6= τ }

∣
∣ = p(H) ·

∣
∣{ τ : LSd−1

!֒ L | σ ◦ τ 6= τ }
∣
∣

for every transposition σ ∈ Sd. It suffices to show that this is also true in
the case where σ is a 3-cycle, in which case the right-hand side becomes
3p(H) = 3(d− 2). Let us rewrite the left-hand side as

|{τ ∈ Sd | τ−1στ /∈ H}|
|H| = χ

Ind
Sd
H 1

(id)− χ
Ind

Sd
H 1

(σ).

Since we know that IndSd
H 1 ∼= V(d)⊕V(d−1,1)⊕V(d−2,2) it suffices to prove that

β1−χ(d−2,2)(σ) = 3(d−3) for every 3-cycle σ. The character χ(d−2,2)(σ) can
be computed using the Murnaghan–Nakayama rule [44, Thm. 4.10.2] and is
found to be equal to

χ(d−2,2)(σ) =







−1 if d = 4, 5,

0 if d = 6,

dimV(d−5,2) if d ≥ 7.

A small calculation then proves the desired genus formula for LH .
To conclude, the proof of Proposition 29 shows that

∑

λ∈Ind
Sd
H 1

volK(λ) = p(H)(g + d− 1),

so the result follows from the fact that volK((d − 1, 1)) = g + d − 1 and

IndSd
H 1 ∼= V(d) ⊕ V(d−1,1) ⊕ V(d−2,2). �

In general, we expect that for every partition λ ⊢ d there is a list of
“allowed” ramification patterns, such that Proposition 29 holds. For λ =
(d− 1, 1) any ramification type is allowed, while for λ = (d − 2, 2) we have
just proven that (2, 1d−2) and (3, 1d−3) are both good. We expect that no
other non-trivial ramification is good for (d− 2, 2). We will say more about
this in (7.7)–(7.8).
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5. Schreyer’s invariants are scrollar

(5.1). This section is devoted to proving Theorem 3, reinterpreting the
Schreyer invariants of a simply branched degree d ≥ 4 morphism ϕ : C ! P1

as scrollar invariants of the partitions λi+1 = (d − i − 1, 2, 1i−1), where
i = 1, . . . , d− 3. The proof can be found in (5.5). We begin with gathering
some facts on the relative canonical embedding.

(5.2). Defining equations of C inside P(E) and their syzygies. We
know from (7) that the relative canonical embedding realizes C inside P(E)
as the intersection of β1 divisors

(22) Dj ∈ 2H − b
(1)
j R

and this is a minimal set of generators. Equipping the fibers of our Pd−2-
bundle π : P(E) ! P1 with homogeneous coordinates x1, x2, . . . , xd−1 and
similarly providing P1 with homogeneous coordinates s, t, it makes sense to
talk about defining equations. Being in the class (22) then amounts to being
defined by a quadratic form

(23)
∑

j1+j2+...+jd−1=2

ϕj1,j2,...,jd−1
· xj11 x

j2
2 · · · xjd−1

d−1

where each coefficient ϕj1,j2,...,jd−1
∈ k[s, t] is homogeneous of degree

(24) j1e1 + j2e2 + . . . + jd−1ed−1 − b
(1)
j

(the coefficient is zero if this quantity is negative). The morphism ϕ is
just the restriction of π to C, i.e., it amounts to projection on the (s, t)-
coordinates.

The next steps of the resolution (7) can be made explicit as well, in terms
of syzygies. Concretely, for 1 ≤ i ≤ d− 4 the map

βi+1⊕

j=1

OP(E)(−(i+ 2)H + b
(i+1)
j R) !

βi⊕

j=1

OP(E)(−(i+ 1)H + b
(i)
j R)

can be represented by a βi×βi+1 matrix whose entry on row j1 and column
j2 is a linear form ϕ1x1 + ϕ2x2 + . . . + ϕd−1xd−1 where each ϕℓ ∈ k[s, t] is
homogeneous of degree

eℓ + b
(i)
j1

− b
(i+1)
j2

.

The last step of the resolution is then again described by βd−3 = β1 quadratic
forms as in (23), where now the coefficients ϕj1,j2,...,jd−1

∈ k[s, t] are seen to
be homogeneous of degree

j1e1 + j2e2 + . . .+ jd−1ed−1 + b
(d−3)
j + d+ 1− g,

which in fact just equals (24) for an appropriate ordering of the Schreyer
invariants, because of duality: see (26) below.
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(5.3). The geometric generic fiber of ϕ is the configuration of d points in
Pd−2 over k(t) cut out by the quadrics

∑

j1+j2+...+jd−1=2

ϕj1,j2,...,jd−1
(1, t) · xj11 x

j2
2 · · · xjd−1

d−1 ∈ k(t)[x1, x2, . . . , xd−1]

for j = 1, 2, . . . , β1. Let us become more precise about our claim from (1.9)
that this geometric generic fiber is in fact a point configuration of Bhargava
type.

Proposition 33. Consider a morphism ϕ : C ! P1 of degree d ≥ 3 and
consider a reduced basis 1, α1, . . . , αd−1 of the corresponding function field
extension k(t) ⊆ k(C). The geometric generic fiber of ϕ, when viewed as a
configuration of d points in Pd−2 through the relative canonical embedding,
can be identified with Bhargava’s point set

[α
∗(1)
1 : . . . : α

∗(1)
d−1], [α

∗(2)
1 : . . . : α

∗(2)
d−1], . . . , [α

∗(d)
1 : . . . : α

∗(d)
d−1]

attached to 1, α1, . . . , αd−1 as in (1.8).

Proof. Recall from (4.2) that our reduced basis 1, α1, . . . , αd−1 is a k[t]-basis
of Ok(C) such that 1, t−e1α1, . . . , t

−ed−1αd−1 is a basis of O∞
k(C) over k[t

−1],

and that this property is tantamount to the decomposition

ϕ∗OC
∼= OP1 ⊕ E∨, E = OP1(e1)⊕ · · · ⊕ OP1(ed−1)

from (1). Also, remember from (4.7) that the αi can be assumed to have
trace zero, i.e., they form a reduced basis of V1. Then the dual basis is of
the form 1, α∗

1, . . . , α
∗
d−1. We claim that this dual basis plays a similar role

in the decomposition

ϕ∗OC(KC/P1) ∼= OP1 ⊕ E
withKC/P1 the ramification divisor of ϕ (this is a relative canonical divisor).
Indeed, the explicit formulae α∗

i = detDi+1,1/detD from (3.9) imply that
1, α∗

1, . . . , α
∗
d−1 forms a k[t]-basis of OC(KC/P1)(A1), while the counterparts

of these formulae above infinity show that 1, te1α∗
1, . . . , t

ed−1α∗
d−1 is a k[t

−1]-

basis of OC(KC/P1)(P1 \ {0}).10
The relative canonical embedding is the map ι : C !֒ P(E) induced by

the morphism ϕ∗E ! ϕ∗ϕ∗OC(KC/P1) ! OC(KC/P1) (which turns out to
be surjective) coming from the natural inclusion E ! ϕ∗OC(KC/P1); see
Casnati–Ekedahl [12, Thm. 2.1] or the recent treatment due to Landesman–
Vakil–Wood [36, §3.1] for details. In view of the above, in explicit terms this
means that on the patch above A1, the morphism ι is given by

ϕ−1(A1) ! A1 ×Pd−2 : p 7! (ϕ(p), [α∗
1(p) : α

∗
2(p) : . . . : α

∗
d−1(p)] ),

10The same reasoning for the absolute canonical divisor KC = KC/P1 − 2(t)∞ = (dt)

shows that 1, α∗
1, . . . , α

∗

d−1 and t−2, te1−2α∗
1, . . . , t

ed−1−2α∗

d−1 are respective bases for

OC(KC)(A
1) and OC(KC)(P

1 \ {0}). This yields the decomposition ϕ∗OC(KC) ∼=
OP1(−2)⊕ E(−2) mentioned in (1.2).
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from which the proposition follows. �

(5.4). Schreyer’s invariants are scrollar. A key role in the proof of The-
orem 3 will be played by the following formula, saying that the volume of
the partition λi+1 is as it should be:

Lemma 34. Let 1 ≤ i ≤ d− 3. Then we have that

volk(C)(λi+1) =

βi∑

j=1

b
(i)
j .

Proof. Firstly, we claim that p(λi+1) = (d−2− i)
(d−2
i−1

)
. To prove this claim,

define

β
(e)
i =

e

i+ 1
(e− 2− i)

(
e− 2

i− 1

)

.

Using the Murnaghan–Nakayama rule [44, Thm. 4.10.2], one computes that

χ(d−2,2)((1 2)) =







0 d = 4,

1 d = 5,

1 + β
(d−2)
1 d ≥ 6,

χ(d−3,2,1)((1 2)) =







−1 d = 5,

0 d = 6,

β
(d−2)
2 d ≥ 7,

while for 3 ≤ i ≤ d − 5 we have χλi+1
((1 2)) = β

(d−2)
i − β

(d−2)
i−2 . The values

of χλd−3
((1 2)) and χλd−2

((1 2)) can be determined by duality. The claim
follows by an explicit calculation.

On the other hand, by [8, Prop. 2.9] we have that

(25)

βi∑

j=1

b
(i)
j = (d− 2− i)

(
d− 2

i− 1

)

(g + d− 1),

where we caution the reader that [8, Prop. 2.9] uses the different conven-

tion for the b
(i)
j that was discussed in (1.11). So the lemma follows from

Proposition 29. �

(5.5). We are now ready to prove Theorem 3.

Proof of Theorem 3. For i = 1, . . . , d−3, write e
(i)
1 ≤ e

(i)
2 ≤ . . . ≤ e

(i)
βi

for the

scrollar invariants of λi+1 with respect to ϕ, and likewise sort the Schreyer
invariants such that

b
(i)
1 ≤ b

(i)
2 ≤ . . . ≤ b

(i)
βi
.

Our aim is to prove that e
(i)
j = b

(i)
j for all i and j.

We follow the notation from Section 3. In regards to bases, we now assume
that α1, . . . , αd−1 is a reduced basis for V1 and similarly that ωi1, . . . , ω

i
βi−1

is a reduced basis for Vi, i = 2, . . . , d − 2. Note that the scrollar invariants
of V1 are simply the scrollar invariants e1, . . . , ed−1 of C with respect to ϕ,
while those of Vi are

e
(i−1)
1 , e

(i−1)
2 , . . . , e

(i−1)
βi−1
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for i = 2, . . . , d− 2. This follows, for instance, from the proof of Theorem 4.
Applying the construction from Section 3, in view of Proposition 33 we

obtain a minimal graded free resolution

...! V ∗
4 ⊗R(−4)

ψ∗
3

−! V ∗
3 ⊗R(−3)

ψ∗
2

−! V ∗
2 ⊗R(−2)

ψ∗
1

−! R! R/I ! 0.

of the homogeneous coordinate ring of the geometric generic fiber of ϕ as
a graded module over the polynomial ring R = k(t)[x1, . . . , xd−1]. We can
assume that the polynomials p1, . . . , pd−3, used to define the maps

ψ1 : Sym
2 V1 ! V2, ψi : Vi ⊗ V1 ! Vi+1, i = 2, 3, . . . , d− 3,

have coefficients in k: indeed, we can find them using representation theory
over k, rather than k(t). Consequently, the maps ψ1, . . . , ψd−3 send tensors
of elements that are integral over k[t], resp. k[t−1], to elements that are
integral over k[t], resp. k[t−1].

Let us first discuss the implications for ψ1. Because α1, . . . , αd−1 and
ω2
1, . . . , ω

2
β1

are k[t]-bases we must have

ψ1(αm ⊗ αn) =

β1∑

ℓ=1

Qℓmnω
2
ℓ ,

with Qℓmn ∈ k[t], for all 1 ≤ m ≤ n ≤ d− 1. By linearity, it follows that

ψ1(t
−emαm ⊗ t−enαn) =

β1∑

ℓ=1

t−em−en+e
(1)
ℓ Qℓmn(t

−e
(1)
ℓ ω2

ℓ ).

But t−e1α1, . . . , t
−ed−1αd−1 and t

−e
(1)
1 ω2

1, . . . , t
−e

(1)
β1 ω2

β1
are k[t−1]-bases, so by

our reasoning we must also have

t−em−en+e
(1)
ℓ Qℓmn ∈ k[t−1]

for all ℓ, which shows that

degQℓmn ≤ em + en − e
(1)
ℓ ,

or in other words that the quadric Qℓ defines an element of 2H − e
(1)
ℓ R

containing C. By the minimality of (7) we must have

e
(1)
ℓ ≤ b

(1)
ℓ

for all ℓ. But from Lemma 34 we already know that

β1∑

ℓ=1

e
(1)
ℓ =

β1∑

ℓ=1

b
(1)
ℓ ,

from which Theorem 3 follows in the case i = 1.
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The idea for the following steps is similar. Let 2 ≤ i ≤ d − 3. By our
choice of bases we can write

ψi(ω
i
m ⊗ αn) =

βi∑

ℓ=1

Lℓmnω
i+1
m ,

for certain Lℓmn ∈ k[t]. Above infinity we find

ψi(t
−e

(i−1)
m ωim ⊗ t−enαn) =

βi∑

ℓ=1

t−e
(i−1)
m −en+e

(i)
ℓ Lℓmn(t

−e
(i)
ℓ ωi+1

ℓ )

and we conclude as above that

t−e
(i−1)
m −en+e

(i)
ℓ Lℓmn ∈ k[t−1],

or in other words that

degLℓmn ≤ e(i−1)
m + en − e

(i)
ℓ = b(i−1)

m + en − e
(i)
ℓ ,

where the equality follows by induction on i. Again, the minimality of (7)
implies that

e
(i)
ℓ ≤ b

(i)
ℓ ,

which in view of Lemma 34 allows us to conclude that b
(i)
ℓ = e

(i)
ℓ . �

(5.6). A well-known consequence to the self-duality of the relative minimal
resolution, see [12, Thm. 1.3] or [45, Cor. 4.4], reads that

(26)
{

b
(d−2−i)
j

}

j
=
{

g + d− 1− b
(i)
j

}

j

as multi-sets. Assuming simple branching, one can view this as a special
case of Proposition 30. Indeed, because the partitions λi+1 and λd−i−1 are
dual to each other, i.e., they are obtained from one another by transposing
Young diagrams, this proposition along with Theorem 3 immediately implies
the duality statement.

(5.7). We end this section with a proof of our exemplary Theorem 5:

Proof of Theorem 5. This follows from the decomposition

IndSd
S2×Sd

1 ∼= V(d) ⊕ V(d−1,1) ⊕ V(d−2,2).

along with Proposition 2, Theorem 3 and Theorem 4. �

(5.8). The case i = 1 of Theorem 3 remains true under the weaker assump-
tion of good ramification, as defined in (4.13).

Proposition 35 (addendum to Theorem 3). Consider a degree d ≥ 4 cover
C ! P1 with good ramification. The multi-set of scrollar invariants of
(d− 2, 2) with respect to ϕ is given by

{ bj }j=1,2,...,β1
,

the splitting type of the first syzygy bundle in the relative minimal resolution
of C with respect to ϕ.
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Proof. This is an exact copy of the proof of Theorem 3, except that now one
needs to use Lemma 32 as a substitute for Proposition 29 in establishing
Lemma 34. �

6. Examples

(6.1). Low degree examples. We have made a repository containing ex-
plicit descriptions of the scrollar invariants of any resolvent of any sim-
ply branched morphism ϕ : C ! P1 of degree d ≤ 6. It can be found
at https://homes.esat.kuleuven.be/~wcastryc/. Let us highlight three
examples: Lagrange’s cubic resolvent in degree d = 4, Cayley’s sextic resol-
vent in degree d = 5, and an “exotic resolvent” in degree d = 6.

(6.2). Up to conjugation, D4 = 〈(1 2), (1 3 2 4)〉 is the unique subgroup of
S4 which is isomorphic to the dihedral group of order 8. In Galois theory, the
resolvent of a quartic polynomial f(x) with respect to D4 is also known as
“Lagrange’s cubic resolvent” and is best known as a tool for solving f(x) = 0
in terms of radicals. When applied to a simply branched degree 4 cover of
P1 by a curve of genus g, the resolvent construction results in a degree 3
cover of P1 by a curve of genus g+1, having the following scrollar invariants:

Corollary 36 (Casnati). Consider a degree 4 simply branched cover ϕ :
C ! P1 having Schreyer invariants b1, b2. The scrollar invariants of RD4 ϕ :
RD4 C ! P1 are equal to the Schreyer invariants of C with respect to ϕ.

Proof. One checks that

IndS4
D4

1 ∼= V(4) ⊕ V(22)

so, in the case where ϕ is simply branched, this is an immediate consequence
of Theorem 3 and Theorem 4. �

Both Casnati [11, Def. 6.3-6.4] and Deopurkar–Patel [21, Prop. 4.6] use
the language of Recillas’ trigonal construction [42], rather than the cubic re-
solvent. This construction applies to arbitrary degree 4 covers and produces
smooth and geometrically integral curves as soon as there is no ramification
of type (22) or (4), even in the case of a smaller Galois group (the only
other option being A4). Therefore Casnati’s result is slightly stronger than
Corollary 36. Note that the case of an S4-cover without ramification of
type (22) or (4) can in fact be settled by invoking Proposition 35 instead of
Theorem 3.

(6.3). For the sake of exposition, let us briefly recall the connection between
Lagrange’s cubic resolvent and Recillas’ trigonal construction. This can be
found in e.g. [52, §8.6], [50] or [42]. Recall that our curve C arises as the
complete intersection of two divisors

D1 ∈ 2H − b1R and D2 ∈ 2H − b2R

inside P(E). Every fiber of the bundle map π : P(E) ! P1 is a P2, in which
our curve cuts out 4 points, counting multiplicities. Given a configuration of

https://homes.esat.kuleuven.be/~wcastryc/
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4 generally positioned points in P2, there are three ways in which these can
be viewed as a union of two pairs. If each time we take the intersection point
of the two lines spanned by these pairs then we find a “dual” configuration of
3 points in the same P2, see Figure 2. By applying this procedure, or rather

Figure 2. “Dual” points associated with 4 points in P2 in gen-
eral position.

a scheme-theoretic version of it (to cope with multiplicities), to the fibers of
ϕ in P(E) we find a family of point triples that swipe out a new curve C ′

which naturally comes equipped with a degree 3 map ϕ′ : C ′
! P1; whence

the trigonal construction. If we let A1, A2 ∈ k[s, t]3×3 denote symmetric
matrices with homogeneous entries corresponding to the ternary quadratic
forms defining D1 and D2, then it is easy to see that

(27) det(A2x1 +A1x2) = 0

is a defining binary cubic form for C ′ in P(E). Indeed, this follows by noting
that 4 points in P2 in general position define a pencil of quadrics, and that
the 3 dual points are in a natural bijection with the degenerate members
of this pencil. From expression (27) one explicitly checks that the scrollar
invariants of ϕ′ are b1, b2, e.g., using [14, Thm. 9.1]. One can also use (27)
to verify that C ′ is indeed the geometric counterpart of Lagrange’s cubic
resolvent, using the formulas from [3, p. 1351].

(6.4). Next, we consider the subgroup

AGL1(F5) = 〈(1 2 3 4 5), (1 2 4 3)〉 ⊆ S5.

In Galois theory, the resolvent of a quintic polynomial f(x) with respect
to AGL1(F5) is known as “Cayley’s sextic resolvent”; its main use lies
in determining whether the equation f(x) = 0 is solvable by radicals [20,
Cor. 13.2.11]. When applied to a simply branched degree 5 cover of P1 by
a curve of genus g, we obtain a degree 6 cover of P1 by a curve of genus
3g + 7, with the following scrollar invariants:

Corollary 37. Consider a simply branched degree 5 cover ϕ : C ! P1. The
degree 6 cover RAGL1(F5) ϕ : RAGL1(F5) C ! P1 has scrollar invariants

{b(2)1 , b
(2)
2 , b

(2)
3 , b

(2)
4 , b

(2)
5 },
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where the b
(2)
j ’s denote the elements of the splitting type of the second syzygy

bundle in the relative minimal resolution of ϕ.

Proof. Use IndS5

AGL1(F5)
1 ∼= V(5) ⊕ V(22,1) in combination with Theorems 3

and 4. �

Cayley’s sextic resolvent also appears in Bhargava’s work on quintic ring
parametrizations [4], and a proof of Corollary 37 can also be deduced from
that work. The details of this approach can be found in the master thesis
of the second-listed author [54, Thm. 4.13], where this was studied in the
context of lifting pentagonal curves from finite fields to characteristic zero,
for use in Tuitman’s point counting algorithm [15, §5]. As in the case of
Recillas’ trigonal construction, this approach in fact allows for a relaxation
of the simple branching assumption.

(6.5). From degree 6 onward, there exist resolvents whose scrollar invari-
ants we can no longer relate to known data of ϕ : C ! P1. For d = 6, these
scrollar invariants arise from the partitions (23) and (32); note that these
partitions are dual to each other. Since dimV(23) = 5, the scrollar invariants

of (23) are certain integers 1 ≤ a1 ≤ . . . ≤ a5, which sum up to 3g + 15
by Proposition 29. By Proposition 30 the scrollar invariants of (32) are
g+5−a1, . . . , g+5−a5, which sum up to 2g+10. We call a1, a2, . . . , a5 the
“exotic invariants” of C with respect to ϕ. The terminology comes from the
exotic embedding S5 !֒ S6 realizing S5 as a transitive subgroup of S6; we
denote this subgroup by S′

5. It is unique up to conjugation; one realization
is 〈(1 2 3 4), (1 5 6 2)〉. With respect to S′

5, the resolvent of a simply branched
degree 6 cover of P1 by a curve of genus g is another degree 6 cover of P1,
now by a curve of genus 3g + 10.

Corollary 38. Consider a simply branched degree 6 cover ϕ : C ! P1.
The scrollar invariants of the degree 6 cover RS′

5
C with respect to RS′

5
ϕ are

given by the exotic invariants of C with respect to ϕ.

Proof. This follows from IndS6

S′
5
1 ∼= V(6) ⊕ V(23) along with Theorem 4. �

We wonder whether a deeper understanding of these exotic invariants
could be key towards a better understanding of the Hurwitz spaces H6,g,
where the most pressing question is whether they are unirational or not [46,
§1]. Here are two concrete first problems:

Problem 39. Find an alternative interpretation for the exotic invariants
ai, directly in terms of the morphism ϕ : C ! P1.

Problem 40. Find simply branched degree 6 morphisms C ! P1 and C ′
!

P1 having the same scrollar invariants, the same Schreyer invariants, but
different exotic invariants.
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(6.6). Some further infinite families. In arbitrary degree d ≥ 2, we have
already discussed the resolvent with respect to Ad−1 in Corollary 31, as well
as the resolvent with respect to S2 ×Sd−2 in Theorem 5. Let us extend this
list somewhat further:

Corollary 41. Consider a simply branched cover ϕ : C ! P1 of degree d ≥
4. Let {e1, e2, . . . , ed−1} be its scrollar invariants and let {b1, b2, . . . , bd(d−1)/3}
be the splitting type of the first syzygy bundle of its relative minimal resolu-
tion. Then:

• the scrollar invariants of RSd−2
C with respect to RSd−2

ϕ are

{ei}i ∪ {ei}i ∪ {ei + ej}i<j ∪ {bi}i,
• the scrollar invariants of RS2×Ad−2

C with respect to RS2×Ad−2
ϕ are

{ei}i ∪ {bi}i ∪ {g + d− 1− ei}i ∪ {g + d− 1− ei − ej}i<j ,
• the scrollar invariants of RAd−2

C with respect to RAd−2
ϕ are

{ei}i ∪ {ei}i ∪ {ei + ej}i<j ∪ {bi}i
∪ {g + d− 1− ei}i ∪ {g + d− 1− ei}i

∪ {g + d− 1− ei − ej}i<j ∪ {g + d− 1− bi}i ∪ {g + d− 1},
where the unions are as multi-sets and where g denotes the genus of C.

Proof. This follows from the decompositions11

IndSd
Sd−2

1 ∼= V(d) ⊕ V 2
(d−1,1) ⊕ V(d−2,12) ⊕ V(d−2,2),

IndSd
S2×Ad−2

1 ∼= V(d) ⊕ V(d−1,1) ⊕ V(d−2,2) ⊕ V(3,1d−3) ⊕ V(2,1d−2),

IndSd
Ad−2

1 ∼= V(d) ⊕ V 2
(d−1,1) ⊕ V(d−2,12) ⊕ V(d−2,2)

⊕ V(3,1d−3) ⊕ V 2
(2,1d−2) ⊕ V(22,1d−4) ⊕ V(1d)

along with Proposition 2 and Theorems 3 and 4; in the case of Ad−2 we also
used duality. �

(6.7). For the sake of illustration, we also include an infinite family of
resolvents whose scrollar invariants we cannot express purely in terms of
{ei}i and {bi}i (unless these would turn out to be related to the scrollar
invariants of (d− 3, 3); this is related to Problem 40).

Corollary 42. Consider a simply branched cover ϕ : C ! P1 of degree
d ≥ 6. Let {e1, e2, . . . , ed−1} be its scrollar invariants, let

{b(1)1 , b
(1)
2 , . . . , b

(1)
d(d−1)/3}, resp. {b(2)1 , b

(2)
2 , . . . , b

(2)
d(d−1)/3},

11Note that, for d = 4, 5, some terms may coincide. E.g., for d = 4 the terms V(d−1,1)

and V(3,1d−3) are the same, and then so are the corresponding multi-sets of scrollar invari-

ants {ei}i and {g + d− 1− ei − ej}i<j .
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be the splitting types of the first, resp. second, syzygy bundle of its relative
minimal resolution, and let {c1, c2, . . . , cd(d−1)(d−5)/6} be the scrollar invari-
ants of the partition (d − 3, 3) with respect to ϕ. The scrollar invariants of
RS2×Sd−3

C with respect to RS2×Sd−3
ϕ are given by

{ei}i ∪ {ei}i ∪ {ei + ej}i<j ∪ {b(1)i }i ∪ {b(1)i }i ∪ {b(2)i }i ∪ {ci}i,
as a union of multi-sets.

Proof. This follows from

IndSd
S2×Sd−3

1 ∼= V(d) ⊕ V 2
(d−1,1) ⊕ V(d−2,12) ⊕ V 2

(d−2,2) ⊕ V(d−3,2,1) ⊕ V(d−3,3)

together with Proposition 2, Theorem 3 and Theorem 4. The fact that
(d− 3, 3) comes equipped with d(d − 1)(d − 5)/6 scrollar invariants follows
from the hook length formula. �

Note that the invariants ci sum up to (d − 2)(d − 5)(g + d − 1)/2 in view
of Proposition 29. If d = 6 then these invariants are dual to the exotic
invariants discussed in (6.5).

(6.8). Curves on Hirzebruch surfaces. Consider a smooth curve C on
the Hirzebruch surface Fe = P(OP1 ⊕OP1(e)) of invariant e ≥ 0, along with
the morphism ϕ : C ! P1 induced by the bundle map π : Fe ! P1. Assume
that this morphism is dominant of degree d ≥ 2, and simply branched. We
will give a conjectural description of the scrollar invariants of each partition
of d with respect to ϕ in terms of the “bidegree” of C, by which we mean
the tuple (c, d) ∈ Z2 such that C ∼ dE + (c+ de)F , with F a fiber of π and
E a section with self-intersection −e. Equivalently, one can view Fe as the
projective toric surface polarized by the lattice polygon ∆c,d,e from Figure 3,
and then C is defined by a sufficiently general bivariate polynomial that is

(0, 0)

(0, d) (c, d)

(c+ de, 0)
∆c,d,e

Figure 3. The lattice polygon corresponding to bidegree (c, d)
on Fe.

supported on this polygon (with ϕ corresponding to projection on the first
coordinate). The most interesting special cases are e = 0, in which case we
are looking at smooth curves on P1×P1 of bidegree (c, d) in the traditional
sense, and e = c = 1, corresponding to smooth plane curves of degree d+1.
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The scrollar invariants of C with respect to ϕ are given by

ei = c+ ie, i = 1, . . . , d− 1.

This follows from [14, Thm. 9.1], since ei equals the length of the longest
line segment having lattice end points in the interior of ∆c,d,e at height d− i.
Consequently, the genus of C equals (d−1)(c+de/2−1). This is the number
of lattice points in the interior of ∆c,d,e.

(6.9). Let λ be a partition of d, and consider the following recipe for at-
taching an integer e(T ) to a standard Young tableau T of shape λ. Start by
writing down the “reading word” of T , which is obtained by concatenating
its rows, starting from the bottom row. For example, the reading word of
the tableau

6

2

1

4

3 5 7

of shape (4, 2, 1) is 6 2 4 1 3 5 7. Consider the set I(T ) of indices i ∈ {1, . . . , d−
1} for which i+ 1 appears to the left of i in this reading word. Then we let

e(T ) =
∑

i∈I(T )

ei

which for the above example equals e1 + e3 + e5 = c+ 9e. We propose:

Conjecture 43. Let e ≥ 0 be an integer and let C be a smooth curve on
Fe. Let C ∼ dE+(c+ de)F for integers d ≥ 2, c ≥ 0. Assume that the map
ϕ : C ! P1 induced by the bundle map Fe ! P1 is simply branched. Then
the multi-set of scrollar invariants of any partition λ ⊢ d with respect to ϕ
is given by

{ e(T ) |T is a Young tableau of shape λ }.

Note that this multi-set is typically not consecutive, let alone balanced.
Of course, this does not contradict [35, Ex. 1.3.7] since smooth curves on
Hirzebruch surfaces have a very small locus inside Hurwitz space.

(6.10). For the partition (d − 1, 1) the conjecture just returns the scrollar
invariants {e1, e2, . . . , ed−1} of C with respect to ϕ, as wanted. By Propo-
sition 2 the conjecture is also true for hooks. It also holds for the parti-
tion (d − 2, 2) thanks to Theorem 3 and [13, Thm. 16]; by duality, the case
(22, 1d−4) is covered as well.

Thus the first open cases appear in degree d = 6. We have carried out
several experiments in Magma [9]. Each experiment amounted to computing
well-chosen resolvents of some random curve of given bidegree over a large
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finite field, and recovering the scrollar invariants of these resolvent curves us-
ing the command ShortBasis(); our code is available at https://homes.esat.kuleuven.be/~wcastryc/.

12

Each time the output matched with the prediction from Conjecture 43, when
combined with Theorem 4. Our choices covered the three remaining parti-
tions (23), (3, 2, 1), (32) of d = 6, as well as some new partitions of d = 7, 8.

Let us emphasize that Conjecture 43 is more than just a guess interpo-
lating between all known cases: these numerics naturally show up when
studying scrollar invariants of the Sd-closure of monogenic extensions [5,
§6], and this is how we came up with Conjecture 43 in the first place. In
fact, we believe that the direct analogue of our conjecture applies to curves
in a much more general class of toric surfaces than Hirzebruch surfaces;
however, for arbitrary toric surfaces the combinatorics becomes more subtle
and we expect the need for certain correction terms, as is already apparent
from [13].

7. Applications and concluding remarks

(7.1). Curves with highly non-balanced scrollar invariants. Using
our results, many new multi-sets of integers can be shown to be realizable
as the multi-set of scrollar invariants of some P1-cover. Here is an example
statement:

Proposition 44. Consider integers d ≥ 2 and g ≥ d − 1, and let k be an
algebraically closed field with char k = 0 or char k > d. Let e1 ≤ . . . ≤ ed−1

be integers summing to g + d − 1 such that ed−1 − e1 ≤ 1. There exists a
genus g curve C over k along with a morphism ϕ : C ! P1 whose multi-set
of scrollar invariants is given by

{e1, e2, . . . , ed−1, g+ d− 1− e1, g+ d− 1− e2, . . . , g+ d− 1− ed−1, g+ d− 1}.
Proof. Let ϕ′ : C ′

! P1 be a general element of Hd,g. It is simply branched,
and by a result of Ballico [1] its multi-set of scrollar invariants is balanced,
i.e., it is given by {e1, e2, . . . , ed−1}. Then take ϕ to be RAd−1

ϕ′ : RAd−1
C ′

!

P1 and apply Corollary 31. �

Similar results can be obtained using the resolvents with respect to Ad−2,
Sd−2, S2×Ad−2 and S2×Sd−2, whose scrollar invariants were determined in
Corollary 41 and Theorem 5, using generic balancedness of the first syzygy
bundle [10, Main Thm.] in addition to Ballico’s result.

(7.2). The typical resolvent curve is expected to have highly non-balanced
scrollar invariants. Indeed, by Theorem 4 the multi-set of scrollar invariants
of the resolvent with respect to some subgroup H ⊆ Sd is naturally sub-

divided into subsets, one for every partition λ appearing in IndSd
H 1. From

12Defining equations for these resolvents are found using a fast t-adic method that was
suggested to us by Frederik Vercauteren and which may be found interesting in its own
right.

https://homes.esat.kuleuven.be/~wcastryc/
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Landesman–Litt [35, Ex. 1.3.7] we know that, generically, the scrollar invari-
ants corresponding to λ are all contained in the interval

[
volK(λ)

dimVλ
− dimVλ − 1

2
,
volK(λ)

dimVλ
+

dimVλ − 1

2

]

.

These values live in regimes that vary strongly with λ. Thus, statements
like Proposition 44 contrast with previously known ways of constructing
curves with prescribed scrollar invariants, such as [14, 17, 22], which produce
instances that are close to being balanced.

(7.3). New bounds on Schreyer invariants. The existing literature re-
ports on several bounds on scrollar invariants. The most important such
bound is the Maroni bound, but see e.g. [21, Prop. 2.6], [40, Cond. 1–3]
and [53] for other examples. These results can be combined with Theorem 3
for obtaining bounds on the Schreyer invariants of a simply branched cover.

For instance, applying the Maroni bound to a resolvent cover gives the
following:

Lemma 45. Let ϕ : C ! P1 be a simply branched cover of degree d ≥ 2
over a field k with char k = 0 or char k > d. Let H be a proper subgroup

of Sd and let λ ⊢ d be such that Vλ appears in IndSd
H 1. Then the scrollar

invariants eλ,j of λ with respect to ϕ satisfy

eλ,j ≤
|{transpositions σ /∈ H}|

(
d
2

) (g + d− 1),

where g denotes the genus of C.

Proof. By Theorem 4 the scrollar invariants of λ appear among those of
RH C with respect to RH ϕ. The Maroni bound for RH C yields that

eλ,j ≤
2g(RH C) + 2[Sd : H]− 2

[Sd : H]
.

The genus formula from Theorem 27 then gives the stated result. �

Applying this lemma to a well-chosen subgroup of Sd, we get the following
bounds on the scrollar and Schreyer invariants. This gives some general
range in which the scrollar invariants of a partition λ can live. However,
determining the actual range of possibilities seems very difficult, as this is
not even known for the usual scrollar invariants e1, . . . , ed−1.

Theorem 46. Let ϕ : C ! P1 be a simply branched cover of degree d ≥ 4
over a field k with char k = 0 or char k > d. Let λ = (d1, . . . , dr) be a
partition of d. Then the scrollar invariants eλ,j of λ with respect to ϕ satisfy

eλ,j ≤
d2 −∑i d

2
i

d(d− 1)
(g + d− 1).
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Proof. By [44, Cor. 2.4.7], the representation Vλ appears in IndSd
Sλ

1. Hence
we may apply Lemma 45 with H = Sλ. The result then follows from the
fact that the number of transpositions in Sλ is equal to

(
d1
2

)

+

(
d2
2

)

+ . . .+

(
dr
2

)

. �

Corollary 47. For i ∈ {1, 2, . . . , d − 3}, the elements b
(i)
j of the splitting

type of the ith syzygy bundle in the relative minimal resolution of C with
respect to ϕ are contained in

[
i(i+1)+2
d(d−1) (g + d− 1), (i+1)(2d−i−2)−2

d(d−1) (g + d− 1)
]

.

In particular, all b
(i)
j are non-negative.

Proof. For the upper bound, we apply the previous theorem to λi for i =
2, . . . , d − 2 in combination with Theorem 3. For the lower bound, we use
the duality of the Schreyer invariants discussed in (5.6). �

We believe that this result remains valid under weaker conditions than sim-
ple branching.

(7.4). The proof of Corollary 47 used the resolvent with respect to S2 ×
Sd−i−1. In general however, it is unclear which resolvent gives the best
upper bound. E.g., using the maximal resolvent (i.e., the Galois closure)
would only give an upper bound of the form

b
(i)
j . g,

which is always worse than the bound given here. To obtain a good bound
on the scrollar invariants eλ,i, one wants a subgroup H ⊆ Sd such that

Vλ appears in IndSd
H 1 and such that H contains as many transpositions

as possible, in view of Lemma 45. For the partitions λi, the reader can
check that the optimal Young subgroups are indeed S2 × Sd−i. One can
also apply Lemma 45 to non-Young subgroups to obtain bounds on the
scrollar invariants. However, it seems that Young subgroups always give the
strongest possible bounds.

(7.5). If C is a general curve in the Hurwitz space Hd,g then we can give
stronger upper bounds on the scrollar invariants of C.

Theorem 48. Let ϕ : C ! P1 be a general element in the Hurwitz space
Hd,g and let λ be a partition of d. Let i be the number of boxes outside the
first row of the Young diagram of λ. Then the scrollar invariants eλ,j of λ
with respect to ϕ satisfy

eλ,j ≤
i

d− 1
g + 2i.
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In particular, if d ≥ 4 then the splitting types b
(i)
j satisfy

b
(i)
j ∈

[
i

d− 1
g + 2(i+ 1)− d− 1,

i+ 1

d− 1
g + 2(i+ 1)

]

for i = 1, . . . , d− 3.

Proof. Let L be the Galois closure of the function field k(C)/k(t) and recall
that we denote by Wλ the isotypic component. An adaptation of the proof
of Lemma 20 shows that Wλ ⊂ W i

(d−1,1). So if α1, . . . , αd−1 is a reduced

basis for V1 = W(d−1,1) ∩ LSd−1 , then Wλ has a basis consisting of elements
which are k[t]-linear combinations of conjugates of elements of the form

α
(m1)
j1

· · ·α(mi)
ji

.

Note that such elements are integral over k[t] and hence the scrollar invari-
ants of λ satisfy

eλ,j ≤ imax
ℓ
eℓ,

where e1, . . . , ed−1 are the usual scrollar invariants of C ! P1. The condition
that C is general implies that the eℓ are balanced, so eℓ ≤ g

d−1 +2 for every
ℓ. This gives the desired statement.

The upper bound on the splitting types b
(i)
j follows from Theorem 3, while

the lower bound follows from duality as in Section (5.6). �

(7.6). Gassmann equivalence implies scrollar equivalence. Two sub-
groups H1,H2 of a finite group G are called “Gassmann equivalent” if for
every conjugacy class C of G it holds that |H1 ∩C| = |H2 ∩C|. For example,
the subgroups H1 = 〈(1 2)(3 4), (1 3)(2 4)〉 and H2 = 〈(1 2)(3 4), (1 2)(5 6)〉 of
S6 are Gassmann equivalent, despite the fact that they are not conjugate.
A classical result by Gassmann states that if L is a finite Galois extension
of Q with Galois group G, then H1,H2 are Gassmann equivalent if and only
if LH1 and LH2 are “arithmetically equivalent”, i.e., they have the same
Dedekind zeta function [48, Thm. 1.23]. In that case, they necessarily have
the same degree and discriminant.

This story partly breaks down in the function field setting, see [48, §3.1.1]
for a discussion. However, without much effort we can conclude:

Theorem 49. Let ϕ : C ! P1 be a simply branched degree d cover, and
let H1,H2 be two Gassmann equivalent subgroups of Sd. Then the resolvent
covers RH1 ϕ : RH1 C ! P1 and RH2 ϕ : RH2 C ! P1 have the same degree,
genus, and scrollar invariants.

Proof. IndSd
H1

1 ∼= IndSd
H2

1 by [48, §1.4.2], so the claim about the scrollar
invariants follows from Theorem 4. This implies the claims about degree
and genus. �

Equality of degree and genus has a clear counterpart for number fields (de-
gree resp. discriminant), while the scrollar invariants of a curve correspond
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to the successive minima of the Minkowski lattice of a number field. An
analogue of Theorem 49 in the number field setting was recently proved by
the second-listed author [55].

(7.7). On the simple branching assumption. Our first crucial use of
the simple branching assumption was in the proof of Theorem 27, giving a
formula for the genus of a resolvent curve. We recall that this genus formula
was used to prove our volume formula from Proposition 29, therefore the
assumption is an important ingredient in the proof of Theorem 3. How-
ever, by using a more careful notion of “resolvent cover”, we believe that it
should be possible to get rid of the simple branching assumption. On the
geometry side, this begs for a vast generalization of Recillas’ trigonal con-
struction. Here, an interesting first problem is to reinterpret some existing
generalizations, e.g., as discussed in [23, §4.4] and [33], in terms of Galois
theory. On the algebraic side, we seem to require a theory of resolvents
on the level of rings, rather than fields, which is reminiscent of Lagrange’s
classical theory of resolvent polynomials [20, §12.1]. For degrees d = 4 and
d = 5 it should be possible to extract such a theory from Bhargava’s work
on ring parametrizations [3, 4], see also [57]. In the general case, the key
ingredient seems to be Bhargava and Satriano’s notion of “Sd-closure” [5].
In particular, we still expect the relevant representation theory to be that
of Sd, even in the case of a smaller Galois closure.

In some more detail, if ϕ : C ! P1 is an Sd-cover with arbitrary ramifica-
tion, then for certain subgroups H ⊆ Sd the genus of RH C might be smaller
than what is predicted by Theorem 27. The proof of Theorem 3 suggests
that, in order to fix this, one should allow for the use of non-maximal orders
in LH , i.e., singular models of RH C. This is also apparent from Recillas’
trigonal construction applied to arbitrary S4-covers of degree 4, which pro-
duces singular curves in the presence of ramification of type (22) or (4).
More generally, the trigonal construction suggests that if ϕ is a G-cover for
some arbitrary G ⊆ Sd, then the “correct” resolvent curve with respect to
H ⊆ Sd may be singular and/or reducible. Algebraically, the corresponding
resolvent cover is described in terms of orders in an étale algebra that may
not be a field. However, the notions of reduced bases and scrollar invariants
naturally carry over to this setting, and we expect that all our main results
continue to hold for this generalized notion of scrollar invariants.

(7.8). Even in the case of non-simple branching, it might still happen that
this more carefully constructed resolvent curve is smooth and geometrically
integral, in which case statements like in Section 6 should continue to hold
without modification. For example, both Casnati’s result [11, Def. 6.3-6.4]
and Proposition 35 are illustrations of this phenomenon. However, we ex-
pect that most subgroups H ⊆ Sd tolerate a small number of ramification
patterns only. Furthermore, we expect that this is again determined by rep-
resentation theory. In more detail, for every partition λ ⊢ d there should be
a list of “good ramification” patterns, and then the resolvent associated to
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H will be smooth and geometrically integral if and only if there is good ram-

ification for every λ appearing in IndSd
H 1. For instance, simple branching is

good for all partitions of d, and all ramification patterns should be good for
the partition (d − 1, 1). For λ = (d − 2, 2) we expect that also (3, 1d−3) is
good; this is true for Recillas’ trigonal construction in case d = 4, while for
arbitrary d ≥ 4 this follows from Lemma 32 under the assumption that ϕ is
an Sd-cover.

(7.9). If we indeed manage to get rid of the simple branching assumption,
then the resulting generalization of Theorem 3 will provide us with an al-
ternative, syzygy-free way of defining the Schreyer invariants of any cover
ϕ : C ! P1. We remark that this definition would have a natural counter-
part for number fields, in terms of successive minima of sublattices of the
Sd-closure of their ring of integers.

(7.10). Counting function fields. We end by noting that this project
started with a rediscovery of Casnati’s result during an investigation of the
secondary term in the counting function for quartic extensions of Fq(t) hav-
ing bounded discriminant, where Fq denotes a finite field whose cardinality
q satisfies gcd(q, 6) = 1. This study was motivated by the Ph.D. work of
the third-listed author [59] who determined the secondary term in the cubic
case, thereby settling the Fq(t)-counterpart of Roberts’ conjecture [43],13

which reads that

N3(X) =
1

3ζ(3)
︸ ︷︷ ︸

=0.277...

X +
4(1 +

√
3)ζ(1/3)

5Γ(2/3)3ζ(5/3)
︸ ︷︷ ︸

=−0.403...

X5/6 + o(X5/6),

where X is a real parameter tending to infinity and N3(X) denotes the num-
ber of non-isomorphic cubic extensionsK ⊇ Q for which |∆K | ≤ X. Proving
the Fq(t)-analogue of this statement essentially boils down to estimating the
number of non-isomorphic degree 3 covers of P1 over Fq by curves of a given
genus g, which can be done in bulks by first enumerating all possibilities for
the scrollar invariants e1, e2. As it turns out, the appearance of a negative
term in X5/6 is naturally related to the offset in this enumeration coming
from the Maroni bound e2 ≤ (2g + 4)/3.

A heuristic reasoning à la Roberts makes it reasonable14 to expect a sim-
ilar negative term of order X5/6 in the counting function N4(X) for quartic
number fields K with |∆K | ≤ X. However, it seems a hard open problem
to make this prediction precise, and valuable support in its favour would
be lended by a proof of its Fq(t)-analogue, which essentially amounts to
estimating the number of non-isomorphic degree 4 covers of P1 by curves
with a given genus g. If this can be done by mimicking the ideas of [59],

13Now a theorem thanks to independent work of Bhargava–Shankar–Tsimerman [7]
and Taniguchi–Thorne [49].

14This is based on Yukie’s analysis [58] of the quartic Shintani zeta function, as was
explained to us by Takashi Taniguchi in personal communication.
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it will involve several technical sieving steps, dealing with covers that are
not necessarily simply branched, so this lies beyond the scope of this article.
However, it is possible to make a rough back-of-the-envelope analysis sug-
gesting that the exponent 5/6 is again naturally related to a bound of Maroni
type, but now on Schreyer’s invariants b1, b2 rather than on the scrollar in-
variants e1, e2, e3. And, of course, the best reason for the existence of such
a bound is that Schreyer’s invariants are scrollar invariants, by Theorem 3.
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la Sociedad Matemática Mexicana 19 (1974), no. 1, 9–13.

43. D. Roberts, Density of cubic field discriminants, Mathematics of Computation 70

(2001), no. 236, 1699–1705.
44. B. E. Sagan, The symmetric group. Representations, combinatorial algorithms, and

symmetric functions, Springer, 2000.
45. F.-O. Schreyer, Syzygies of canonical curves and special linear series, Mathematische

Annalen 275 (1986), 105–137.

https://arxiv.org/abs/1608.01711
https://mathstats.uncg.edu/sites/number-theory/summerschool/2016/uncg-hess-comments.pdf
https://arxiv.org/pdf/2209.00718
https://arxiv.org/abs/2202.00039
https://arxiv.org/pdf/2203.01840
https://eprint.iacr.org/2006/444


56 SCROLLAR INVARIANTS, SYZYGIES AND REPRESENTATIONS OF Sd

46. F.-O. Schreyer and F. Tanturri, Matrix factorizations and curves in P
4, Documenta

Mathematica 23 (2018), 1895–1924.
47. J.-P. Serre, Linear representations of finite groups, Springer New York, NY, 1977.
48. P. Solomatin, Global fields and their L-functions, Ph.D. thesis, Leiden University,

2021.
49. T. Taniguchi and F. Thorne, Secondary terms in counting functions for cubic fields,

Duke Mathematical Journal 162 (2013), no. 13, 2451–2508.
50. Ravi Vakil, Twelve points on the projective line, branched covers, and rational elliptic

fibrations, Mathematische Annalen 320 (1999), 33–54.
51. B. L. van der Waerden, Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen,
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