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Abstract—Sensor-based behavioral detection and classification can
improve dog health and welfare. Since continuous monitoring is required,
an energy-efficient solution is needed. The number of logging axes,
sampling rate, and selected features of accelerometer data not only have
a significant impact on classification accuracy in activity recognition but
also on the sensor’s energy needs. Three models are designed for detecting
dog’s activities namely, a Random Forest classifier (RF), a Convolutional
Neural Network (CNN) and a hybrid CNN, i.e. a CNN fused with
statistical features that retain knowledge about the global time series
form. The models are validated using an experimental dataset consisting
of six different dogs performing in eight different activities i.e. lying,
sitting, standing, walking, running, sprinting, eating and drinking. The
results indicate that using neck and chest accelerometer data sampled at
10 Hz is sufficient for high overall classification accuracies (96.44%) for
the three models. The hybrid CNN is capable of excellent performance,
detecting nearly 97.87% of the behaviours at 10 Hz with a class accuracy
of 80% or higher.

Index Terms—Resampling, dogs, accelerometer, convolutional neural
networks, random forest classifier, behaviour classification, internet-of-
animals.

I. INTRODUCTION

Tracking a dog’s movements may disclose critical information
about its health and welfare. Accurate data collection permits ob-
jective assessment of a dog’s fitness status based on daily activities,
food habits, and sleeping patterns [1]. For extended periods of time, it
is difficult to supervise dogs in natural outdoor surroundings or multi-
room structures. Sensors that monitor animal behavior automatically
are an excellent solution for these purposes [2]. Additionally, machine
learning enables novel methods for detecting potential health con-
cerns early on by detecting indicators concealed in dogs’ actions that
are not obvious to the human eye. For instance, pet activity monitors
have been shown to be effective in identifying and diagnosing pruritis
[3], as well as in predicting early obesity [4].

Numerous sensor-based products are already available on the mar-
ket that collect biometric data in a variety of ways [5]. They are often
worn on the pet’s collar and employ an accelerometer (sometimes in
conjunction with a gyroscope, magnetometer, GPS, or other sensors)
to accurately estimate the pet’s activity level, step count, and distance
traveled. Recent improvements in machine learning have enabled pet
activity monitors to go beyond predicting general activity levels. Not
only can one predict when and how long a pet will engage in basic
behaviors like walking, running, lying down, or resting, but also a
broader variety of actions such as drinking, feeding, scratching, and
head shaking [6].

Because dog activity must be tracked over an extended length
of time, the wearable device’s energy consumption is an impor-
tant parameter. Battery life can be increased by reducing sample
rates, logging fewer accelerometer axes, or reducing the amount
of features [7]. A recent study examining cows’ laying, standing,

and feeding behavior revealed that the use of fewer logging axes
had little effect on the categorization performance [8]. However,
several studies have demonstrated that reducing the sample rate has a
detrimental effect on the performance of traditional machine learning
tools such as Support Vector Machines, Random Forest, and Naive
Bayes classifiers [9], [10]. Moreover, when sheep behaviors were
monitored at a sample rate of 16 Hz versus 32 Hz, the capacity
of machine learning algorithms to identify standing, walking, and
lying behavior patterns increased [9]. A well-informed choice of the
optimal sensor measurement settings, such as sampling rate, logging
axis, and feature selection, will result in considerable reductions in
the energy consumption of wearables. While there are studies in
the literature that examine these features of accelerometer data for
human activity classification, there are none in dog tracking that
examine the effect of these variables on behavior recognition accuracy
concurrently.

Three supervised machine learning (ML) classifiers – a Convo-
lutional Neural Network (CNN), a hybrid CNN, and a Random
Forest (RF) – are used in this study to generate and compare
training models for predicting different activity types based on
accelerometer data. Hybrid CNNs, which combine a CNN for local
feature extraction with simple statistical features (mean, standard
deviation, etc.) that preserve information about the global form of
time series, outperform baseline approaches and achieve state-of-the-
art performance on major activity classification tasks while reducing
computational cost [11]. A CNN has the advantage of automatically
extracting features because to its low computing complexity, whereas
RFs require manual feature extraction. However, Random Forest
analysis is a prominent machine learning approach that has been
effectively applied to classifying behaviors in a number of animals
using accelerometer data, but not yet to detecting dog behaviors [12].

To summarize, the novelty and major contributions of this paper are
the following: for the first time (i) a performance assessment of three
machine learning algorithms detecting eight distinct behaviors from
six different dogs is carried out simultaneously with determination
of the (ii) optimal sampling rate (5 Hz, 10 Hz, 12.5 Hz, 25 Hz and
50 Hz) and (iii) necessary number of accelerometers.

II. MATERIALS AND METHOD

A. Animals and study site

Measurements were carried out during a training session for sheep
herding in Vorselaar, Belgium with five different Border Collie dogs.
In addition, a second data collection campaign was performed, mainly
focused on the detection of eating. Detailed information about the
selected subjects is presented in Table I.



TABLE I
PARTICIPATING DOGS WITH BREED CLASS, GENDER, AGE AND WEIGHT.

No. Breed Gender Age Weight (kg)
class

1 Border Collie Male 2 17
2 Border Collie Male 2 22
3 Border Collie Male 11 24
4 Border Collie Male 6 24
5 Border Collie Male 5 20
6 Golden Retriever Female 5 40

Fig. 1. Left: Position and orientation (X, Y, and Z axes) of the sensors. Right:
top view of orientation of front and top sensor.

B. Data collection procedure

Sensor data are collected utilizing Axivity AX6 inertial move-
ment sensors (Axivity Ltd, Newcastle, United Kingdom) with a
dimension of 23 × 32.5 × 8.9 mm and a weight of 11 g. These
log data with configurable sampling rates ranging from 12.5 Hz to
3200 Hz are powered by a 250 mAh lithium-polymer battery which is
rechargeable via USB connection. Acceleration and angular velocity
are measurable on x-, y-, z-axes with a maximum sensitivity of
±16g [g = m/s2] and ±2000 [dps], respectively. The AX6 OMGUI
Configuration and Analysis Tool, an open source application, is used
to set up and configure the AX6 sensors for data recording. Data is
registered on an embedded 1024 MB memory.

Each dog was fitted with two sensors. As indicated in Fig. 1, the
first sensor was mounted to the top of a dog harness, while the
second was attached to the front of the dog harness. The sensors
were securely fastened with tape, with minimal room for vibration,
slip or twist; to ensure that only the dog’s motions are captured. All
devices were fixed using the orientation illustrated in Fig. 1 with
the three colored axes indicating the orientation of the accelerometer
axes.

In this study, the device sensors were set to collect data from all
the considered activities as listed in Table II with their descriptive
definitions. Observations of the activities of the dogs were made with
video recordings simultaneously with the collection of sensor data.
After recording, the data was transferred to a computer via USB and
stored in a Continuous Wave Accelerometer format. All the data is
labelled by a trained observer based on the video recordings using
ELAN, which is a specialized video annotation software, since it is
difficult to use direct observation in conjunction with training of the
dog [13].

The class discretization of each sample was determined by looking
at the class labels of the individual data samples within each window.
If all data samples within a window shared the same activity class,
the collective label for the entire window was set to that particular
activity class. Windows that contained data points with more than one
activity class label were dropped. Following frames overlap by 50%,

which is consistent with the state-of-the-art in sliding window activity
recognition [15]. Finally, the data is normalized between 0 and 1
per batch of measurements along every axis with the normalization
function of the Scikit-learn Python library [16]. In Table II the number
of 2.4 s instances for all dogs and the class proportions are presented.
As can be concluded from this table, the activity running is the most
present with a class proportion of 53% and drinking is the least
present behavior in the dataset with only 21 instances.

C. Machine learning models

To categorize dog behavior, a two-phase approach is devised since
it was found that this resulted in higher classification accuracies.
The first phase classified six dog movements with an optimal 2.4 s
time window i.e., sitting, walking, running, sprinting, eating and
drinking and one superclass ’steady’ containing all standing and lying
movements. Afterwards, a second classifier with an optimal 1.2 s time
window is applied to determine whether the steady state of the dog is
standing or lying. Both classification phases employ one of the three
following models:

1) CNN: A multilayer convolutional network with two convolu-
tional layers and a max-pooling layer is employed. The output of the
last fully connected layer is sent into a softmax layer that provides
a distribution over class labels.

The class proportions of the eight studied activities are not spread
uniformly, therefore the class-wise weights are balanced in the
training phase [17]. It penalizes loss more severely for underrepre-
sented classes, allowing the model to better adjust to minority class
characteristics.

The first convolutional layer filters the n×6×1 input accelerometer
data with 64 kernels of size 3 × 1 and a step size of 1. This layer
uses L2 regularization with a weight decay coefficient of 0.01
[18]. To ensure the output is the same length as the input, the first
convolutional layer uses zero padding. Following that, a max-pooling
operation is carried out. With 16 kernels of size 5× 1 and stride 1,
the second convolutional layer filters the first convolutional layer’s
(pooled) output. Both layers include an activation layer composed
of Rectified Linear Units (ReLUs) with a dropout of 0.55 [19]. The
Adam optimizer is used for back propagation training. The training is
done across 400 epochs, with a 60 epoch cutoff for halting the training
[20]. The validation set is used to assess the model’s performance
after training.

2) Hybrid CNN: For the hybrid CNN the same convolutional
network as the for CNN model is used but the max-pooling layer
output is then flattened and fused with additional time domain
features: mean, maximum, minimum, signal magnitude average and
standard deviation.

3) RF: A random forest algorithm is a flexible ensemble classifier
that is characterized by merging numerous decision trees trained on
the training set. To classify a new instance from an input feature
vector, it descends for each tree in the forest. Each forest forecasts
a class termed a vote. The random forest chooses the class with the
most votes. Random forest algorithms have the advantage of produc-
ing consistent and predictable outputs even without hyperparameter
adjustment [21]. The input vector of the RF consists of a subset of
selected features calculated from raw accelerometer data. The features
employed in this study were shown to be important for categorizing
animal activities using accelerometer data [8], [22]. Those features
include thirteen time domain features namely, average (Average x,
Average y, Average z), maximum (Max x, Max y, Max z), minimum
(Min x, Min y, Min z), signal magnitude average (SMA) and standard
deviation (Std x, Std y, Std z).



TABLE II
DESCRIPTION OF THE OBSERVED ACTIVITIES [14].

Observed Description Samples (# and %)
activities
Lying The movement between when the belly makes contact with the floor and when it no longer does. 372 (18%)
Sitting The movement between when the bump makes contact with the floor and when it leaves. In comparison to lying down, 32 (2%)

the belly should not come into contact with the floor.
Standing Movement is described as the dog stands on all four legs and does not change positions. 28 (1%)
Walking Movement is described as the dog moving forward at a pace comparable to the owner walking the dog. 75 (4%)
Running Includes galloping and trotting actions that result in the dog moving ahead. 1095 (53%)
Sprinting Movement is described as the dog moving forward at a high pace in galop. 296 (14%)
Eating The series of actions that begin with the dog’s tongue making contact with the meal and end with the food being 137 (7%)

swallowed. Additionally, the dog may pause between meals to breathe.
Drinking The series of actions that begins with the dog’s tongue touching the liquid and continues until the dog comes to a halt. 21 (1%)

Additionally, the dog may pause between drinks to breathe. The head bobbles.

Correct selection of the evaluation criteria is crucial for evaluating
the merits of a model. In this work, the overall model accuracy, con-
fusion matrices and class accuracy of validation data are considered
for the model performance assessment.

III. RESULTS

The machine learning models in this work are developed and eval-
uated in Python language using Keras with Tensorflow as backend.
The experiments are conducted on a Dell inc. computer equipped
with an Intel(R) Core(TM) i7-8650U CPU (1.90GHz).

Fig. 2 shows 2.4 second data windows of the eight activities,
from the top and front accelerometer mounted to the dog’s harness.
Lying, sitting and standing data typically appear as constant signals
indicating less movement while faster gait data (walking, running and
sprinting) consist of fluctuating movements.

First, the effect of sampling rate reduction on the classification
accuracy is evaluated using the three machine learning models.
Additionally, the models are evaluated using a reduced number of
logging axes. Finally, the most important features are identified, and
their impact on the classification accuracy of the random forest model
is examined.

A. Resampling

The first topic which we investigate is the effect of resampling
on the classification accuracy of the three machine learning models.
Existing data measured at 50 Hz was resampled to lower sampling
rates i.e., 5 Hz, 10 Hz, 12.5 Hz, 25 Hz. The training data for
the machine learning models is obtained by automatically splitting
the dataset in two parts: two thirds for training and one third for
validation. Fig. 3 shows the performance of the three models using
chest and neck accelerometer data with increasing sampling rate. For
the RF, CNN and hybrid CNN models, the accuracy decreases sharply
(with 2.3%, 4.3% and 2.4%, respectively) when the sampling rate is
decreased from 10 Hz to 5 Hz. For a sampling rate of 5 Hz, the hybrid
CNN performs the best, reaching an accuracy of 95.44% while the
RF and CNN models only reach an average accuracy of 93.23%
and 91.67%, respectively. Table III shows the class performance of
the three models at two classification phases using both neck and
chest accelerometer data with increasing sampling rate. It is clear
that this reduction in accuracy is mainly due to the misclassification
of the classes ’walking’ and ’sprinting’. For all the sampling rates
the Hybrid CNN classifier is best performing reaching with an
average accuracy of 96.90% versus 95.44% for the RF and 95.26%
for the CNN. For all sampling rates, the RF classifier misclassifies
20% or more of the sitting, walking and standing instances. All

Fig. 2. Typical accelerometer patterns from top to bottom: lying, sitting,
standing, walking, running, sprinting, eating and drinking in a 2.4 s window.
The green, blue and red dashed lines represent X,Y,Z signals from the chest
accelerometer and the red, green, blue solid lines represent X,Y,Z signals from
the neck accelerometer , respectively.



Fig. 3. Performance of the classification of the three machine learning models:
a Random Forest, a CNN and a hybrid CNN with increasing sampling rate
using neck and chest accelerometer data.

Fig. 4. Performance of the classification of the three machine learning models:
a Random Forest, a CNN and a hybrid CNN with increasing sampling rate
using neck, chest or both 50 Hz accelerometer data.

the models classify drinking, eating, running and lying with high
accuracies (≥95%) at any sampling rate.

B. Number of sensors

The second question concerned the effect of the number of sensors
on the model’s performance. To account for the effect of the number
of sensors on classification accuracy, the neck, chest or both tri-axial
accelerometer data measured at 50 Hz were selected. Once again,
training and validation data are automatically split into two thirds for
training and one third for validation.

As can be concluded from Fig. 4, the models validated on two
sensors reach a higher mean accuracy then when only data from the
neck or chest sensor is used (96.41% vs. 95.7% or 95.6%). Table IV
shows the class performance of the three models at two classification
phases using accelerometer data of the neck, chest and both at a
50 Hz sampling rate. When using only chest sensor data, sitting is
misclassified by all models as steady. For the CNN and hybrid CNN
models more instances of standing are misclassified as lying when
only data of one sensor is used.

C. Logging axes

To take the effect of the logging axes on the classification accuracy
into account, existing axes from accelerometer data measured at 50
Hz were selected ranging from one to six logging axes (neck and
chest tri-axial leg accelerometer data). Fig. 5 depicts the accuracy of
the hybrid CNN model while adding more axes. If information from

Fig. 5. Performance of the classification of the hybrid CNN model as function
of the accelerometer axes for 50 Hz neck and chest accelerometer data. The
striped line indicates an accuracy of 95%. (XN and XC, YN and YC and
ZN and ZC are x, y and z-axis accelerometer data of the neck and chest,
respectively.)

one axis is used, the model is best performing (93.13%) for infor-
mation from the neck x-direction (forward direction along the dog).
Good results (95.62%) are reached when x-direction information from
the neck and chest (XNXC) are taken into account. The model reaches
the highest accuracy of 97.52% when five axes (XNYNZNYCZC) are
taken into account.

D. Feature importance

The third topic was on the impact of the amount of features on the
RF’s performance. Only the first phase of classification is discussed
here, as the RF model does not perform well at differentiating
between ’standing’ and ’lying,’ and hence the features for this second
classification phase are irrelevant to examine. A subset of thirteen
features is extracted from each 2.4 s segment of labelled sensor data
to account for the effect of the number and type of features on
classification accuracy. To systematically determine the usefulness
and identify the most important features for classifying distinct
activities, a random forest ranking of importance was undertaken.
In addition, Fig. 6 depicts the accuracy of the random forest model
while adding more features in order of decreasing feature relevance.

As can be concluded from the results that are presented in Fig. 6,
the maximum acceleration in the x-direction of the neck (max acc x
N) has the most important role (relative feature importance of 11%) in
predicting the behaviours, followed by the mean of the acceleration in
the x-direction of the neck (mean acc x N), the standard deviation of
the acceleration in the x-direction of the neck (std acc x N), the mean
of the acceleration in the x-direction of the chest (mean acc x C), etc.
Fig. 1 shows the orientation of the x,y and z axes. Furthermore, Fig.
6 shows the accuracy of the random forest model while adding extra
features according to descending feature importance. An accuracy of
90.14% can already be reached when the only selected feature is the
’max acc x N’. Adding ’mean acc x N’ and ’std acc x N’ results
in the largest increase in overall accuracy to 95.42% which is an
acceptable accuracy (≥ 95%). Fig. 7 shows the confusion matrices
when the features max acc x N, max acc x N + mean acc x N and
max acc x N + mean acc x N + std acc x N are taken into account for
classification. The behaviours ’walking’, ’eating’ and ’drinking’ get
misclassified more often (34%, 24% and 33%) when only the ’max
acc x N’ is selected as feature. Adding ’mean acc x N’ solves this
misclassification problem for drinking. Adding ’std acc x N’ increases
the classification accuracy for all the classes except ’walking’ above
90%.



TABLE III
CLASSIFICATION ACCURACY FOR EACH CLASS AS FUNCTION OF THE SAMPLING RATE FOR NECK AND CHEST ACCELEROMETER DATA FOR THREE
MACHINE LEARNING MODELS: A RANDOM FOREST CLASSIFIER, A CNN AND A HYBRID CNN. THE GREEN CELLS REPRESENT CLASSIFICATION

ACCURACIES ≥ 95% AND THE RED CELLS REPRESENT CLASSIFICATION ACCURACIES <80%.

RF CNN Hybrid CNN
5 Hz 10 Hz 12.5 Hz 25 Hz 50 Hz 5 Hz 10 Hz 12.5 Hz 25 Hz 50 Hz 5 Hz 10 Hz 12.5 Hz 25 Hz 50 Hz

Drinking 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Eating 100.00 98.04 100 100 100 100 100 100 100 100 100 100 100 100 100
Running 96.87 98.17 98.17 98.43 98.43 98.17 98.43 98.43 98.17 98.43 97.65 98.17 98.96 97.65 98.69
Sitting 76.92 76.92 69.23 61.54 69.23 0.00 92.31 100 84.62 84.62 100.00 100 100 84.62 100
Sprinting 85.71 95.60 96.70 93.41 94.51 83.52 94.51 94.51 93.41 91.21 93.40 96.70 95.40 95.60 94.51
Steady 97.83 99.28 99.28 99.28 99.28 97.83 97.10 96.38 94.93 97.83 94.93 97.83 98.55 97.10 93.48

Phase 1

Walking 55.56 55.56 72.22 72.22 77.78 33.33 88.89 88.89 94.44 88.89 77.78 100 83.33 100 88.89
Lying 99.26 99.26 99.63 100 100 100 100 100 99.63 98.53 99.26 99.63 99.63 100 99.26Phase 2 Standing 61.90 61.90 57.14 57.14 52.38 61.90 0.00 0.00 76.19 90.48 66.67 85.71 80.95 85.71 80.95

TABLE IV
CLASSIFICATION ACCURACY FOR EACH CLASS FOR THE 50 HZ ACCELEROMETER DATA OF THE NECK, CHEST AND BOTH FOR THREE MACHINE

LEARNING MODELS: A RANDOM FOREST CLASSIFIER, A CNN AND A HYBRID CNN. THE GREEN CELLS REPRESENT CLASSIFICATION ACCURACIES ≥
95% AND THE RED CELLS REPRESENT CLASSIFICATION ACCURACIES <80%.

RF CNN Hybrid CNN
Neck Chest Both Neck Chest Both Neck Chest Both

Drinking 100 100 100 100 100 100 100 100.00 100
Eating 100 100 100 100 100 100 100 98.03 100
Running 98.43 98.17 98.43 98.96 98.17 98.43 98.96 97.65 98.69
Sitting 100.00 61.54 69.23 100 30.77 84.62 100 53.85 100
Sprinting 95.60 95.60 94.51 93.41 92.31 91.21 92.31 97.80 94.51
Steady 98.55 97.10 99.28 92.75 96.38 97.83 90.58 95.65 93.48

Phase 1

Walking 61.11 83.33 77.78 83.33 94.44 88.89 88.89 88.89 88.89
Lying 98.99 100 100 98.53 99.26 98.53 97.79 99 99.26Phase 2 Standing 52.38 47.62 52.38 71.43 42.86 90.48 57.14 66.67 80.95

Fig. 6. Left axis: the random forest algorithm’s ranking of the features. The importance is determined by which features are the most informative for the
algorithm when it comes to making a choice. Right axis: the random forest algorithm’s overall model accuracy when additional features are added one by
one.

IV. CONCLUSION

In this study we propose a machine learning approach for dog
activity recognition, which is required for monitoring dog health and
welfare. Using an experimental dataset with eight behaviors from six
different dogs, we compared the recognition rate of three machine
learning algorithms. The findings show that the proposed hybrid
CNN-based model outperforms baseline methods and achieves state-
of-the-art results at reduced sample rates. Its advantage is that it can
achieve 97.87 percent accuracy by using low sampling rates of up
to 10 Hz. Future work will include capturing and analyzing more
behaviours at additional sensor locations.
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