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Abstract—Visible light positioning (VLP) systems have ex-
perienced substantial revolutionary progress over the past year
because they can offer great positioning accuracy without needing
any additional infrastructure, as conventional radio-frequency
(RF)-based systems. Received signal strength (RSS)-based VLP
systems are a promising approach to many indoor positioning
estimation problems, but still suffer from difficulty in providing
high accuracy and reliability. A potential solution to these
challenges is to combine VLP systems, and machine learning
(ML) approaches to enhance the position prediction accuracy
in two-dimensional (2-D) spaces, or more complex problems. In
this paper, we propose a ML approach to accurately predict
the 2-D indoor position of a mobile receiver (eg. an automated
guided vehicles-AGV), based on the measured RSS values of 4
photodiodes (PDs) forming a star architecture. We examine and
evaluate the performance of different ML learners applied to the
above-described problem. The proposed ML and Neural Network
(NN) methods exhibit great accuracy results in predicting the 2-D
coordinates of a PD-based receiver.

I. INTRODUCTION

Visible light communication (VLC) technology is
progressing rapidly, thus the accurate estimation of indoor
positioning seems to be essential. Estimating a user’s location
has emerged as a crucial need for wireless augmented and
virtual reality applications [1]. Traditional indoor positioning
techniques, include Wireless Local Area Network (WLAN),
Ultra Wideband Technology (UWB) and Bluetooth are not
only susceptible to electromagnetic signal interference, but
also require additional infrastructure. Thus, VLP system
using RSS technique can be a promising candidate for
solving indoor positioning needs, as it is easy to implement,
interference-free and cost effective [1], [2]. (RSS)-based VLP
systems still struggle to provide high accuracy, due to signal
wave disturbances as well as noise in the environment [3]. To
improve the system’s accuracy and reliability, ML algorithms
have been introduced as a possible solution. ML techniques,
such as weighted k-nearest neighbor (WKNN) and artificial
neural network (ANN), have been introduced to predict the
indoor position in wireless-based VLP systems but in the

literature there are not many applications for multiple PDs in
VPL systems [4].

In [2] a VLP design containing one PD and a light emitting
diode (LED) is introduced and a hybrid ML approach is used
for the indoor positioning estimation. A Random Forest(RF)
approach is used for the classification stage, whereas a density-
based spatial clustering of applications with noise (DBSCAN)
is combined with an extreme learning machine (ELM) learner
for the position stage of the approach. The proposed hybrid
algorithm achieves significant reduce to the maximum and
averaged positioning errors. In [5] authors propose a hy-
brid approach, combining a kernel ridge regression machine
learning (KRRML) learner and second-order linear regression
machine learning (LRML) algorithm, for an RRS-based VLP
system, in which the data have been pre-processed using a
sigmoid function. The proposed approach achieves average
2cm positioning error in horizontal and vertical directions.

In our previous work [1], we examined the impact that the
locations of the Lambertian LEDs have on the positioning per-
formance solely and we performed single objective optimiza-
tion using evolutionary algorithms. In this paper, we propose a
ML approach to accurately predict the 2-D indoor position of
a mobile receiver (eg. an automated guided vehicles-AGV),
based on the measured RSS values of PDs forming a star
architecture. We examine and evaluate the performance of
different ML learners applied to the above-described problem.

The remainder of the paper is organized as follows: Sec-
tion II depicts the formulation of the VLP system and the
proposed positioning algorithms. Section III presents the ML
models that are used for the positioning of the mobile receiver.
In Section IV, simulation metrics and results are presented and
analyzed. Finally, Section V contains conclusions and possible
future work.



II. FORMULATION

We consider as in [1] a room of 5 m by 5 m at height
and a typical VLP configuration, with four LEDs of order
m = 1 placed in star topology. The 2D positioning accuracy
is evaluated using a positioning error metric. The latter is
calculated using the Euclidean distance between estimated and
actual receiver position.

We consider the PD-based receiver to be untilted and has
an active are AR = 13 mm2. The receiver is placed on
5 m by 5 m ground plane, which is 10 cm uniformly spaced.
There are 4 LEDs that are located in 3 m high. We consider
NLED LEDs, LEDj (j = 1, 2, .., NLED) having coordinates
xL = (xL,j , yL,j , zL,j). These are intensity modulated to
broadcast receiver-side demultiplexable beacon signals with
unique frequencies [6]. The j-th LED emits a signal, which
when received at the point of interest has a RSS value of
received radiant power PR,j . A localization technique uses
the received signal strength (RSS) values related to the LED
beacon transmission to estimate the position of the receiver x̂.

The Multilateration-based VLP works in two steps. First
it converts the received radiant power values PR,j into a set
of LEDj - PD distances dj by inverting the VLP channel
model of [1]. Next the receiver position x̂ is calculated through
minimisation of the linearised system relating {dj} to xL,
by using least-squares approach [7], [8]. The computation of
x̂ does not require the inclusion of all LEDs’ PR,j (or dj).
The selection of a subset of K LEDs (in terms of descending
PR,j/Pt,j) with K (K < NLED) could result to a more accurate
x̂. The value of K is assumed to be set to 3 by default. More
details about the localization algorithm can be found in [1].

III. MACHINE LEARNING MODELS

ML techniques offer various solution for indoor positioning
and VLP challenges. In the following subsections, we present
the basic characteristics of the ML algorithms in the multi-LED
RSS based approach for the VLP position estimation [9].

A. Random Forest(RF)

The RF algorithm is an ensemble learning technique that
builds the final model from many different individual decision
trees. A class is being defined and selected from each decision
tree and the most common class is used as the model’s final
prediction and RF can also be used for regression problems,
like VLP. RF is commonly used in recent VLP application and
can achieve great accuracy estimation of the indoor positions.
[10]

B. Adaptive Boosting (AdaBoost)

Adaboost is a widely used algorithm for integrated
learning challenges, and can be used in both classification
and regression problems. The first step in Adaboost is to
train a weak regressor. Next using a construction strategy
Adaboost builds a stronger regressor. Adabbost can achieve
great accuracy results in VLP systems.[11]

C. Gradient-boosted decision tree(GBDT)

GBDT is an ensemble algorithm that sums the predictions
of a series of decision trees, as boosting method . At every step,
GBDT manipulates the errors caused by the previously trained
tree and the formulated decision tree is trained to minimize the
residual between current prediction and true test value. GBDT
can offer satisfactory results in terms of accuracy and efficiency
in many different applications. [12].

D. Support Vector Regressor (SVR)

Support vector machine (SVM) is an algorithm that ex-
ploits any support vectors from the learning data-set to cal-
culute an optimum margin from the classes and realize the
best hyper-plane for the classification. SVR is a SVM-based
approach, in which high and low mis-estimations are equally
penalized, forming symmetrical loss function for the training
of the model [13]

E. MLP

The MLP is a feedforward artificial neural network (ANN)
with different layers: an input layer, a set of hidden layers,
and an output layer. The nodes of each layers, are fully
connected to one another and define the architecture of the
MLP approach. The inputs and outputs of each neuron are
mapped by an activation function. MLP is developed to mostly
solve non-linearly input patterns. [4].

IV. PERFORMANCE MEASURES AND RESULTS

A. Metrics

Suitable error measurement metrics can define the accuracy
of the ML algorithms that are used for the position estimation.
A comparison between the predicted positioning values and the
real values of the test set is used for the error metrics. Suitable
error measurement metrics in machine learning approaches are
the Mean Absolute Error (MAE), the Root Mean Squared Error
(RMSE) and the Mean Absolute Percent Error (MAPE). The
formulas of the error measurement metrics are given below in
equations (1)-(3):
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where n denotes the test set number of input records, y are the
real measured data and ŷ the predicted ones of the i-th data
record. As the models use multiple output regression methods,
other useful performance metrics are the Relative Root Mean
Squared Error (RRMSE) and the average Relative Root Mean
Squared Error (aRRMSE) [14]. Their definitions are given in
the following equations :
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(5)

where ȳ is the average of the true values for that target and t
is the number of output variables.

B. ML Modeling

The main objective of this work is to achieve accurate
predictions of the 2-D position of the receiver. This is accom-
plished by comparing the performance of different machine
learning learners and by obtaining the best. A collection of
22500 position measurements, was prepared for each coordi-
nate x and y of receiver position and RSS values were acquired
for the 4 LEDs forming a star topology.

Modeling this kind of problem presents a first difficulty,
the input values are four, while the target outputs are two.
ML models require more inputs to compute this model with
high accuracy. Thus, noise data augmentation was performed
by inducing various noise levels to the measured RSS values
from the four LEDs. The additive Gaussian noise level values
applied to the measured RSS with different variances. There-
fore, we obtained four measured and twelve pseudo RSS values
(with induced noise level values were induced as training
features in each of the ML models. Thus, the input parameters
consist of the calculated and the RSS values with induced
values as inputs and the 2-D position of the receiver as outputs.
This results to a total number of sixteen input parameters.
Additionally, the number of target output parameters is two
(x and y coordinate of the receiver’s indoor position).

The total collection of 2-D position and RSS values were
divided into two data-sets, in a random manner: the training
data-set, containing the 80% of the total data values and the
remaining 20% defined the testing set, for the validation of
every learner. A k = 5 k-fold cross-validation GridSearchCV
was used for the hyperparameters tuning to tune in each ML
model.

C. Numerical Results

In order to obtain the best suitable model for this case, we
have trained different popular ML learners such as RF,SVR,
AdaBoost, GTBD and MLP using Python language and eval-
uated them using suitable conventional error measurement
metrics as shown in Table I and Table II, as well as multi-
output regression error measurement metrics as shown in
Table III.

We notice from Table I and Table II that SVR performs
better than the other algorithms in terms of positioning errors
in x as well as in y coordinates. The problem at hand is a multi-
output regression problem and so, for Table III it is clear that
SVR obtained the best results concerning the aRRMSE. The
RF approach obtained the second best result, whereas GBTD
and Adaboost results were pretty close but slightly worse than
the previous models. The MLP approach is the less suitable
for these problems, as it achieved the worst accuracy among
the learners. The SVR method achieved small MAPE values
for each of the 2-D position coordinates and with an aRRMSE
value of 0.3811, is highly accurate. If aRRMSE approaches or
its close to zero, then we have much better model performance
[14]. The other approaches achieved aRRMSE values greater

than 1 (the MLP value was > 2 ), so the SVR model is
by far the most accurate and suitable for 2-D indoor position
estimation of the receiver by using RSS values.

The graphical representations of the MAPE in each dimen-
sion and the aRRMSE of each model approach, are depicted
as histograms in Figs 1-2 .

Fig. 1. MAPE for 2-D positioning.

Fig. 2. aRRMSE for 2-D positioning.

TABLE I. ERROR MEASUREMENT METRICS FOR COORDINATES X

Algorithm MAE MSE RMSE MAPE %
RF 0.0078 0.0001 0.011 0.9321

SVR 0.003 0.000013 0.00372 0.3504
GBDT 0.009 0.00017 0.013 0.7851

Adaboost 0.0058 0.0002 0.014 0.5127
MLP 0.0157 0.00051 0.02256 2.5687

TABLE II. ERROR MEASUREMENT METRICS FOR COORDINATES Y

Algorithm MAE MSE RMSE MAPE %
RF 0.0086 0.00017 0.013 0.856

SVR 0.0086 0.00017 0.013 0.56
GBDT 0.0112 0.00097 0.0312 1.032

Adaboost 0.0061 0.00022 0.015 0.62
MLP 0.0166 0.00052 0.02281 2.5213

-4 present the correlation between the (real) measured
values and the estimated values obtained by the SVR learner,



TABLE III. ERROR MEASUREMENT METRICS MULTI-OUTPUT
REGRESSION

Algorithm RRMSE x RRMSE y Model’s aRRMSE
RF 0.0043 0.0051 1.1831

SVR 0.0015 0.00155 0.3811
GBDT 0.0056 0.0059 1.44434

Adaboost 0.0057 0.0059 1.444
MLP 0.00903 0.0089 2.2526

for the x and y coordinates of the receiver respectively, The
green dots represent the measurement values, while the line
the fitting and accuracy of our model. The correlation shows a
diminutive difference between real and predicted values, due to
the small MAPE values for estimating the x and y coordinates
for the 2-D positioning estimation.

Fig. 3. Estimated versus real measurement x values.

Fig. 4. Estimated versus real measurement y values.

V. CONCLUSION AND FUTURE WORK

In this paper, a modeling methodology to predict the 2-
D position of a mobile receiver in an indoor environment
is proposed. First we generate data using a LED positioning
algorithm These data are given as input to train various ML
learners. To determine which ML model perform best in this
situation, we compare their performances. The SVR approach
delivered results with high accuracy, with the aRRMSE in the
2-D coordinates reaching the value of 0.3811. In conclusion,
machine learning techniques can make accurate predictions of
the 2-D indoor position of a mobile receiver. In our future
work, we will expand and generalize the ML approach to
model 3-D position, use different architectures (e.g. 4 square
LEDs with a center LED), use more LEDs and possible
tilt prediction for the mobile receiver in the star and square
topologies.
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