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Abstract: Cardiovascular diseases (CVD) represent a serious health problem worldwide, of which
atrial fibrillation (AF) is one of the most common conditions. Early and timely diagnosis of CVD
is essential for successful treatment. When implemented in the healthcare system this can ease
the existing socio-economic burden on health institutions and government. Therefore, developing
technologies and tools to diagnose CVD in a timely way and detect AF is an important research topic.
ECG monitoring patches allowing ambulatory patient monitoring over several days represent a novel
technology, while we witness a significant proliferation of ECG monitoring patches on the market
and in the research labs, their performance over a long period of time is not fully characterized. This
paper analyzes the signal quality of ECG signals obtained using a single-lead ECG patch featuring
self-adhesive dry electrode technology collected from six cardiac patients for 5 days. In particular, we
provide insights into signal quality degradation over time, while changes in the average ECG quality
per day were present, these changes were not statistically significant. It was observed that the quality
was higher during the nights, confirming the link with motion artifacts. These results can improve
CVD diagnosis and AF detection in real-world scenarios.

Keywords: signal quality; electrocardiography; continuous monitoring; lifestyle; health patch; dry
electrodes

1. Introduction

Cardiovascular diseases (CVD) represent a major societal and economic burden [1],
with specific cardiac events and symptoms such as embolic stroke, heart failure, or atrial
fibrillation (AF) incorporating a large portion of healthcare costs [2,3], e.g., Eur 210 billion a
year in Europe (2017) [4]. Considering AF alone, it is predicted that, by 2030, 15.9 million
people in the US and 14–17 million people in Europe will suffer from AF [5]. Electrocardio-
graphy (ECG) is an important tool for the diagnosis and evaluation of patients with CVD.
A 12-lead wired ECG system is currently used in clinical practice to provide the highest
resolution and best visualization of the entire heart for clinical assessment [6]. An exercise
ECG can provide additional information about the heart during stress. Therefore, long-
term monitoring during physical activities in home settings will potentially lead to a more
accurate diagnosis and prevention of CVD in specific populations [7].

The traditional 12-lead design is not well suited for prolonged patient monitoring at
home, while dedicated 12-lead systems for short-term home monitoring start to populate
the market [8–10], they are not designed to provide comfortable and long-term continuous
monitoring in home settings. This problem has been addressed with the use of Holter
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monitors, which are wearable devices for heart rate monitoring that provide ECG signal
acquisition for 24–72 h. Newer Holter devices can record for longer periods of up to
2 weeks [11]. However, the wired framework of the Holter and the use of wet gel electrodes
increases the likelihood of measurement noise during motion [12,13] and reduces wear
possibilities, e.g., it cannot be used during showering and necessitates replacement of the
wet gel electrodes upon drying out of the gel.

In the past few years, sensors and technologies have been proposed to allow mon-
itoring of patients at home and in everyday activities [14–18], with the majority being
single-lead ECG solutions (also known as health patches), which in most cases rely on
using wet resistive gel electrodes. Wet resistive gel electrodes will dehydrate after a few
days of usage, eventually limiting long-term usability and reducing the quality of the signal
over time [19,20]. Therefore, self-adhesive dry electrodes have been explored as alternatives
since they can extend the duration of monitoring [21–25]. Studies show that dry electrodes
behave better in terms of impedance and noise reduction performance than Ag/AgCl
electrodes if properly shielded [26,27]. Within this study, a Vital Signs patch research plat-
form (TNO Holst Centre. https://executivereport.holstcentre.com/innovation-updates/
health-vitality/health-patch/ accessed on 20 January 2023) was used to ensure optimized
skin–electrode contact for longer-term wear within a hybrid printed electronic format.
Self-adhesive dry electrode technology was used and the overall patch was designed to be
thin, durable, and lightweight for use in all daily activities.

Examples of using health patches for CVD monitoring include the detection of
AF/flutter, for example in [28] a patch device was used for AF screening. AF was identified
in 5.7% of patients who did not show any evidence of AF in normal ECG and Holter
monitoring. Other studies with health patches were focused on comparing the performance
of such devices against Holter monitoring systems in detecting CVD, where the single-lead
health patches identified most of the arrhythmia events and showed a beat-per-minute
correlation compared to the Holter system higher than 90% [14–18]. Health patches have
also been reported to correctly identify more cardiac events than the Holter monitor in
remote settings over a prolonged use period [29].

Signal quality monitoring is a paramount initial step for ECG analysis and cardiac
markers or event detection. Currently, different metrics can be used for ECG signal qual-
ity assessment: signal-to-artifact ratio [13], signal-to-noise ratio [30], beats per minute
(BPM) [31], and other derived features such as the slowest, the average, and the fastest
heart rate (HR) [32]. However, previous studies did not assess the change in signal quality
over time, which is an important factor in characterizing single-lead patches and possibly
improving the materials used and the design.

The goal of this work is to analyze the quality of ECG signals recorded in a home
setting during five consecutive days using a Vital Signs patch featuring self-adhesive dry
electrodes technology. The changes in quality were studied between the days and be-
tween daytime and night. To address the goal we have selected a two-step approach.
The first step is the comparison of four algorithms for signal quality assessment. As this
requires a gold standard, a publicly available database with annotated quality was used.
Afterward, the best-performing quality metric was applied to an ECG dataset collected
on six patients with chronic coronary syndrome (CCS) who wore the Vital Signs patch for
5 days continuously.

The paper is organized as follows: Section 2 presents the datasets used and the
experimental setup. Methods and algorithms used are detailed in Section 3, and Section 4
shows the results of our approach. Finally, Sections 5 and 6 discuss the results and provide
conclusions and future work suggestions.

2. Materials

Two datasets have been used in this work. The first is an open dataset with signals
acquired from healthy adults and it was used to validate the proposed methodology.

https://executivereport.holstcentre.com/innovation-updates/health-vitality/health-patch/
https://executivereport.holstcentre.com/innovation-updates/health-vitality/health-patch/
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The second one includes data recorded using a Vital Signs patch based on self-adhesive dry
electrodes from patients suffering from CCS.

2.1. Benchmarking Dataset

The Brno University of Technology open ECG Quality Database (QDB) [33] was selected as
a dataset for benchmarking.

The dataset contains 18 ECG recordings, acquired with a minimum duration of 24 h
from healthy adults, 6 men and 9 women between 21 and 83 years. The sampling frequency
was 1000 Hz, and the data was recorded during daily activities. The ECG segments’ length
can vary between a few seconds and minutes. These segments were annotated by three
experts independently in three quality levels using the following criteria:

• Class 0: Onset–offset beat, P-peak, T-peak, and QRS complex are easily identified.
• Class 1: QRS complex duration is not distinguishable; PR interval and other points in

the ECG are unclear.
• Class 2: The QRS complexes and peaks cannot be identified accurately.

The demographic information of the participants is summarized in Table 1.

Table 1. Demographics of the 15 subjects in the QDB.

Characteristic Values (n = 15)

Age (years) 40.6 ± 19.64
Male (n,%) 6 (40)
BMI (kg/m2) 22.82 ± 3.98

2.2. Clinical Study

Raw ECG signals, raw accelerometer, and respiration were collected for five days
from patients with CCS using a patch featuring self-adhesive dry electrode technology.
The study was conducted following Medical Ethical Committee guidelines for non-WMO
(not required by Medical Research Law) research. More details on the setup, the protocol,
and the patients are described in this section.

2.2.1. Device

The Vital Signs patch research platform, Figure 1, consists of a disposable sensing
patch and a re-usable read-out module (see Figure 2, which shows assembled patch and
marks a disposable part and a re-usable part). For this study, the platform was optimized
with the disposable part containing three self-adhesive dry electrodes for acquiring single-
lead ECG signals within a bipolar format with increased activity and longer duration
in mind. These electrodes are integrated with screen-printed flexible and stretchable
conducting circuitry, printed on conformable thermoplastic polyurethane (TPU) substrate
(at the Holst Centre manufacturing facilities). Overall, a unique stretchable patch stack
allows the skin to breathe and to adapt to the shape of the human body, with all material in
contact with the body ISO 10993 certified for biocompatibility. The re-usable read-out unit
interconnected with the flexible patch has accelerometer incorporated for monitoring of
motion and activity. The read-out unit has a battery time of seven days, and a sampling
rate of 256 Hz for the ECG signal. The device is also shower-proof to accommodate normal
daily usage. The health patch research platform was developed within the TNO Holst
Centre to evaluate wearable design considerations, including materials, printed electronics
design, manufacturing, system architecture, and modularity of sensor platforms, for clinical
diagnosis and monitoring possibilities.
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Figure 1. Single-lead Vital Signs patch exploded view.

Figure 2. Single-lead Vital Signs patch based on self-adhesive dry electrodes.

2.2.2. Dataset

Six adult cardiac patients with CCS were recruited using the patient database of
the Cardiology department of the Máxima Medical Centre (MMC) in Veldhoven, The
Netherlands. These participants underwent a routine exercise stress test (EST), performed
on a bicycle. During this maximum test, the patient is encouraged to reach their maximum
effort. The traditional 12-lead suction electrodes and the Vital Signs patch were positioned
on the chest of the participants, with the Vital Signs patch placed in the 5th intercostal space,
just below precordial leads V4–V6, as shown in Figure 3.

Data was captured for 10–15 min during the EST. Afterward, the patients were in-
structed to wear the patch continuously for five days. Additionally, each patient annotated
their daily activities in a diary, including information such as the time and duration of
walking or exercising. The detailed annotated activities can be seen in the Supplementary
Material in Table S1. The demographics of the patients are summarized in Table 2.
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Figure 3. Cardiac patient during the EST wearing standard 12-lead ECG electrodes and the Vital
Signs patch in the 5th intercostal space.

Table 2. Cardiac patient characteristics.

Characteristic Values (n = 6)

Age (years) 69.8 ± 6.2
Male (n, %) 6 (100)
BMI (kg/m2) 25.3 ± 1.8

In total, 704 h should have been recorded cumulatively for all the patients. However,
due to data loss probably caused by poor skin–electrode contact, 627 h are available for
analysis. In Table 3, a summary of the amount of data per patient is provided, split between
daytime (assumed from 7 a.m. to 11 p.m.) and night (assumed from 11 p.m. to 7 a.m.).

Table 3. Available data in hours, split also into daytime (assumed from 7 a.m. to 11 p.m.) and night
(assumed from 11 p.m. to 7 a.m.). The last column contains the HR max reached during the stress test
by each patient. NA stands for Not Applicable.

Patient ID Usable Data
(Hours) HR Max

2–4 Total Daytime Night
1 118.8 78.9 39.9 151
2 117.03 78.03 39.01 96
3 99.0 67.2 31.8 137
4 119.97 80.08 39.9 127
5 119.6 79.7 39.9 166
6 52.8 36.8 16.0 139

Cumulative 627.19 420.71 206.51 NA

3. Methods

The processing was performed using Python programming language (Python Software
Foundation 3.8.0) [34]. The analysis can be split into two main stages, as shown in Figure 4.
In more detail:

1. The first stage aimed to find an SQI metric. For this purpose, the benchmarking of
four different SQIs on the QDB, introduced in Section 3.2, was performed.
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2. The second stage analyzed the quality of the data collected on cardiac patients.
The best-performing SQI was applied on this dataset and the changes in quality
during the days were analyzed.

Best SQI

1 2
SQIs Comparison Analysis of quality 

changes

Benchmarking Dataset Clinical Dataset

SQI avg SQI QRS SQI hrv

ECG Quality Database (QDB) 
Physionet

SQI fuzzy

Full day

Daytime

Night

Figure 4. Summary of the processing steps.

3.1. Preprocessing

The preprocessing was common to both datasets. Firstly, the baseline drift noise was
removed from the ECG signals with a 0.5 Hz high-pass Butterworth filter (order = 5). In
the QDB dataset, where a single quality annotation is available for each ECG segment,
such a segment was used for the quality analysis. This means that segments with different
lengths were processed. The ECG signals of the cardiac dataset, instead, were further
processed with a sliding window approach with a window size of 60 s and no overlap.
Next, the R-peaks of the ECG signals were detected using the Python toolbox Neurokit [35],
which uses an algorithm based on the slope of the absolute gradient of the ECG signal.
There is a difference in population between the benchmarking dataset and the clinical
dataset, i.e., healthy subjects and cardiac patients. Since abnormal beats can be expected in
the cardiac population, preprocessing steps were added to handle the presence of irregular
QRS complexes. In particular, the method described in [36] was applied. Each QRS
complex was extracted using a window of 60 ms before and 60 ms after each R-peak.
Figure 5a shows an example of this procedure. The variance of each segmented complex
is computed, and thresholds are defined based on the 25th (Q1) and 75th (Q3) percentiles
of the distribution of the variances, as well as on the interquartile range (IQR = Q3 − Q1).
If a segmented QRS complex has a variance outside the interval between Q1−2.5*IQR
and Q3+2.5*IQR, it is considered as irregular and is discarded from further analyses.
An example of the distribution of the variances and the thresholds is shown in Figure 5b.
The QRS complexes corresponding to a variance outside the defined range are discarded.
Figure 5c,d show an example of the segmented QRS complexes within and outside the
limits, respectively.

3.2. Signal Quality Indicators

The four SQIs compared in this work were partially selected based on promising
results from the literature. They are easy to implement, reproducible, common approaches
with available implementations and partially developed based on physiology. There are
many notions of ECG signal quality, such as independent use of skewness, signal-to-noise
ratio, and higher-order statistics, but they have been shown to be biased towards noise-free
ECG signals and therefore cannot be used as a robust noise detection method [37].
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Figure 5. Example results of preprocessing method to reject irregular QRS complexes. (a) Segmented
QRS complexes. (b) Segmented QRS complexes variance distribution and confidence intervals. (c) Accepted
segmented QRS complexes. (d) Rejected segmented QRS complexes. Signal colours are arbitrary to keep
the segmented QRS complexes identifiable.

3.2.1. Sqi Based on the Average Qrs Complex (SqiAvg)

This SQI is part of Neurokit [35] and can be found in the source documentation of the
library. This method, as other SQIs based on an average QRS complex used as a template,
assumes most of the ECG signal’s segment under analysis to have a regular morphology.
Therefore, the average complex will reflect the regular morphology and deviations from it
can be identified. In particular, to calculate the SQIavg of a given ECG segment, the QRS
complexes are isolated starting from the R-peak location. Afterwards, each QRS complex is
standardized by subtracting the average QRS complex and then dividing by the standard
deviation. The average of each standardized QRS complex is computed, and rescaling is
applied so that the output is between 0 and 1, with 1 corresponding to the highest quality.
This represents the SQI of each QRS complex; the average SQI for all the QRS complexes
in the window was calculated and used as the main output. For more details, refer to the
open source implementation [35].

3.2.2. Sqi Based on Fuzzy Classifier (SqiFuzzy)

The second method used in the benchmark is an implementation available in the
Neurokit toolbox [35] based on the method originally proposed in [38]. This SQI uses a
combination of different quality indexes. The data fusion approach is based on a fuzzy
comprehensive evaluation. The Neurokit implementation [35] includes 3 popular statistical
signal quality indexes: power spectrum distribution of QRS wave, baseline relative power,
and kurtosis of the ECG signal. The overall output is then used to classify the signal into
one of three quality levels: excellent, barely acceptable, or unacceptable.
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3.2.3. Sqi Based on Heart Rate Variability (SqiHrv)

This SQI evaluates the statistical characteristics of the variations in heart rate. To com-
pute it, the R-peaks in the ECG are first detected using the Neurokit toolbox [35]. It is
known that populations with cardiac problems usually suffer from arrhythmias. These
might bias the quality evaluation with SQIhrv. The method explained in Section 3.1 re-
moves some of the arrhythmias. However, an additional step was needed to mitigate the
effect that irregular heartbeats might have in this SQI. For this, the R-peaks are adjusted
as explained in [39]. This is a method based on time-varying thresholds that corrects for
irregular heartbeats. Afterwards, the time differences between consecutive R-peaks (RRs)
are calculated to produce a time series known as a tachogram. From the tachogram, one
measurement that allows its characteristics to be evaluated is the square root of the mean
squared differences of successive RR intervals (RMSSD) [40]. The RMSSD is defined as:

RMSSD =

√√√√ 1
N − 2

N−2

∑
i=1

(RRi+1 − RRi), (1)

where N is the number of detected R-peaks and RRi denotes the ith RR interval.
It is expected that the R-peak detection in noisy ECG signals will not work optimally.

In these signals, false positives and false negatively detected peaks are expected. As a result,
the tachogram will contain abnormal oscillations and the RMSSD from a clean ECG signal
is expected to be lower compared to the one of a noisy recording. Therefore, a threshold is
defined for a tolerable RMSSD value as µRMSSD + 2 ∗ σRMSSD. In this work, µRMSSD and
σRMSSD are chosen as 27 and 12, respectively. These values were selected based on [41].
If the absolute value of the difference between RRi+1 and RRi is higher than this threshold,
the ith RR interval is considered an abnormal one. Then, the number of abnormal RR
intervals are used to calculate SQIhrv as:

SQIhrv = 1 − total abnormal RR
N − 2

, (2)

which will be close to 0 for signals with very poor quality and close to 1 otherwise.

3.2.4. Sqi Based on Ecg Morphology (SqiQrs)

ECG morphology is particularly important in applications that not only focus on
HR and HRV analysis but also the detection of cardiac events. Therefore, an SQI should
reflect this by basing the output scores on the morphology of the ECG signals rather
than on the HR. The SQIavg, introduced in Section 3.2.1, also focuses on morphology
and approaches with similar intent have been proposed in the literature, e.g., adaptive
template matching [42]. However, both methods rely on calculating an average QRS
complex template that can then be compared to each QRS complex. The calculation of the
average template is particularly dependent on the R-peak detector performance and on the
window size used. To reduce this dependency, we propose an alternative method that does
not rely on an average template. Instead, the R-peaks of the ECG signals are used to extract
the single QRS complexes. This is done using the ecg_segment method of the Neurokit
Toolbox [35]. Afterwards, the QRS complexes in the current window are compared using
the Pearson correlation coefficient. This comparison is performed by using consecutive
QRS complexes. Therefore, each QRS complex will be compared with the following one.
In particular, let QRSi represent the ith QRS complex in the current window. The correlation
is estimated as:

ρi =

L
∑

t=1
(QRSi(t))(QRSi+1(t))(

L
∑

t=1
(QRSi(t))

2 L
∑

t=1
(QRSi+1(t))

2
)1/2 , (3)
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with L being the duration of the QRS complex. N is the number of R-peaks detected
and, in each window, (N − 1) comparisons will be performed between consecutive QRS
complexes. The use of consecutive QRS complexes for the comparison is the main difference
compared to approaches relying on an average template. The average correlation coefficient
will be used as SQI for each window:

SQIQRS =

N−1
∑

i=1
ρi

N − 1
. (4)

3.3. Sqi Comparison

Each SQI explained in Section 3.2 generates a different output. For this reason, we
harmonize these outputs with the labels given in the QDB dataset. In Table 4, the results
are mapped to the QDB. Since the output of the SQI f uzzy was classified into three options
(quality levels), as was the QDB, the alignment was straightforward. For the remaining
three SQIs, thresholds were empirically determined to map the numeric results to the
annotation of the QDB. We based this decision on a previous work [36], where segments of
ECG with quality > 80 are considered high-quality level signals.

Table 4. Aligning pipeline outputs with QDB labels for evaluation.

QDB SQI f uzzy SQIavg , SQIhrv, SQIQRS

Class 0 Excellent SQI ≥ 0.8

Class 1 Barely Acceptable 0.5 ≤ SQI < 0.8

Class 2 Unacceptable SQI < 0.5

After harmonizing the labels, the performance of the SQIs was assessed in terms of
the accuracy to classify the ECG segments in the categories shown in Table 4. The SQI with
the highest accuracy in the QDB dataset was chosen as the best-performing one and it was
applied to the signals from the clinical study.

3.4. Analysis of Quality Changes

The SQI selected in the QDB as the best-performing one was used to analyze the
quality of the ECG collected from the cardiac patients recorded with the wearable health
patch. The selected SQI’s performance was validated on ECG signals from healthy adults,
whereas our clinical dataset contains data from cardiac patients. Therefore, we can expect
differences in the performance of this SQI. We aimed to compensate for the difference in
population with the preprocessing step to reject irregular QRS complexes.

The evaluation of the quality of the signals was based on different comparisons.
In particular, the quality during full days, and daytime and night, was analyzed separately.
Considering that the patients wore the patch for 5 days starting around 9:00–11:00 and that
the time of removal was not exactly the same as the time of application, partial days are
present in the data at the start and at the end. Figure 6 shows an example of a timeline and
the separations in full day, daytime, and night. The following criteria were used to define
the period of time to which the recording belonged:

• Daytime and night: the ECG data was split into daytime (assumed to be from 7:00 to
23:00) and night (assumed to be from 23:00 to 7:00). Boxplots were used to analyze the
distribution of the quality of all the windows in the daytime and night moments.

• Full days: the average quality and the standard deviation of all the windows in 24 h
were computed. The 24 h were calculated as the hours between 00:00 and 23:59.
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Figure 6. Example protocol timeline and separations used in the analysis. The ∼ symbol indicates
the partial full days and daytime.

A Wilcoxon–Mann–Whitney statistical test was used to gain insight into the statistical
differences between the quality during daytime and night, and between the quality of the
first day compared to the following days.

4. Results

The results obtained in this study are presented in this section.

4.1. Sqi Comparison

The confusion matrices of the SQIs compared using the QDB are shown in Figure 7a–d
for SQIavg, SQI f uzzy, SQIhrv, and SQIQRS, respectively. The overall accuracies for SQIavg
and SQI f uzzy were 37.70% and 55.04%, respectively. Both resulted in higher accuracy
for the classification of “barely acceptable” compared to SQIhrv and SQIQRS. The worst
performing class for SQI f uzzy was “unacceptable”, with 0.14%. SQIhrv yielded an accuracy
of 40.32%, with “unacceptable” outperforming the other classes. Finally, SQIQRS is the
best-performing SQI with an overall accuracy of 76.69%. SQIQRS was, therefore, used for
the analysis of the clinical dataset.

Given that SQIavg was the worst-performing method, we have included its results in
Supplementary Material (Figure S1) as reference for future work using this SQI in signals
from subjects with CCS.

4.2. Analysis of Quality Changes

Changes in ECG signal quality were analyzed daily, distinguishing daytime and night.
Figure 8 shows the distribution of the quality per minute during the days and nights as well
as whether there is a statistical difference between day–night pairs per patient based on the
Wilcoxon–Mann–Whitney test. The results showed that, of the day–night pairs among all
the patients, only three of them were not significantly different: pairs Day 4–Night 4 and
Day 5–Night 5 for patient 1 and pair Day 4–Night 4 for patient 4. In the remaining pairs,
the null hypothesis was rejected with at least p-values ≤ 0.001. Furthermore, as visible in
Figure 8, patients 4 and 5 presented the best quality in the dataset. Patient 3 had poor quality
throughout most days with a median of four out of five days below 0.5. According to the
p-value, the symbols described in Table 5 were used to denote the significant differences in
the figures.
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(d)
Figure 7. Confusion matrices for the SQIs compared using the QDB dataset. (a) Confusion matrix for
SQIavg. (b) Confusion matrix for SQI f uzzy. (c) Confusion matrix for SQIhrv. (d) Confusion matrix for
SQIQRS.

Table 5. Symbols used to report statistical significance.

Symbol Meaning

ns p-value > 0.05
* p-value ≤ 0.05
** p-value ≤ 0.01
*** p-value ≤ 0.001
**** p-value ≤ 0.0001

Changes in the quality of data by activities are identifiable even visually. Figure 9
shows ECG segments recorded by the Vital Signs patch in different settings. It can be seen
that, when the quality is lower than 0.8 (Figure 9d–f), it is difficult to identify the complexes
but when the quality is higher than 0.8 (Figure 9a–c) the complexes can be visualized.
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Figure 8. Distribution and statistical analysis of ECG quality during daytime and night for all patients..
The explanation of *, **, ***, **** and ns correspond to the definitions of Table 5.

Figure 10 shows the average quality and the standard deviation of the quality over full
days for all the patients. Some patients, e.g., patient 3, seem to have a reduction of average
quality during the days. To assess if the changes in quality are statistically significant the
Wilcoxon–Mann–Whitney test was used.

In Table 6, the results of this statistical test between the average quality of the first
day (used as baseline) and the average quality of the following days considering all the
patients are presented. The null hypothesis is not rejected for all the days indicating that
the difference in average quality during the days is not significant.

Table 6. Wilcoxon–Mann–Whitney test between baseline (first day) and the following days, among all
the patients.

Day 2 3 4 5 6

p-value 0.68571 0.4857 1.0 0.48571 0.88571
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(f)
Figure 9. ECG segments of recording segments by Vital Signs patch in different settings (during the
day, night, and exercise) with quality higher and lower than 0.8. (a) ECG segment during the stress
test, quality signal > 0.8. (b) ECG segment during the day, quality signal > 0.8. (c) ECG segment
during the night, quality signal > 0.8. (d) ECG segment during the stress test, quality signal < 0.8.
(e) ECG segment during the day, quality signal < 0.8. (f) ECG segment during the night, quality
signal < 0.8.
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Figure 10. Data quality over time for all patients. Some patients have fewer days due to data loss.

5. Discussion

Four SQIs have been compared in this work using the QDB dataset since quality
annotations were available. SQIQRS was the best performing SQI, with not only the highest
overall accuracy but also a more balanced performance in all the classes compared to the
other three SQIs. It should be considered that the performance of SQIhrv could be improved
with an adaptation of the number of standard deviations. However, considering our
targeted subject group, cardiac patients, an SQI based on HRV may not be suitable due to
the abnormal beats, given the fact that indexes derived from HRV are significantly affected
by irregular heartbeats [43], which commonly occur in heart diseased populations [44].
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Furthermore, HRV is known to change based on many variables, such as ageing, gender,
or medication intake [45,46]. SQI f uzzy resulted in being too optimistic in the quality scores,
misclassifying almost all the segments with unacceptable quality. SQIavg, on the other hand,
was the lowest performing SQI. Approaches based on an average template are implicitly
assuming the overall quality of the segment is acceptable. However, depending on the used
window size this may not be the case, for example, due to the presence of motion artifacts.

Considering the dataset recorded with the cardiac patients, it is worth mentioning that,
as already mentioned in Section 2, data loss was present. There could be a link between the
data loss and the activities performed by the patients. For example, in the case of patient 6,
the data was not recorded after the third day, this could be due to poor electrode contact
and motion artifacts since the patient performed three long cycling sessions for 174, 140,
and 240 min on days 3, 4, and 6, respectively, as visible in Table S1. However, further
analysis and evaluations are required to reach a conclusion on this point.

The best performing SQI, SQIQRS, was applied in the cardiac dataset. The SQIs may
have different performances with cardiac patients since their ECG signals could include for
example arrhythmia, premature ventricular contractions, or premature atrial contractions.
A preprocessing step to discard irregular QRS complexes was indeed included to mitigate
the effect that possible differences in ECG morphology were expected in this population.
To further assess if the performance of the SQI is comparable between the two populations,
quality annotations of the cardiac dataset are required. This should be considered in
future works.

By comparing the distributions of the quality assessed per minute between daytime
and night, differences can be observed. In Figure 8, the median of the quality during the
night is consistently higher compared to the daytime. This was already expected as there
were fewer motion artifacts and resting HR led to a better morphology [47]. Patient 3
is the only one with a median quality below 0.5 for most days (4 out of 5), along with
the lowest quality during the nights. Considering the quality was already poor from day
one, it is possible that the patch was not properly applied. Overall, the median quality
for patient 6 is particularly low during the daytime compared to all the other patients
but not during the night. As mentioned above, this could be associated with the amount
of physical activity performed since, according to the diary visible in Table S1, patient 6
had a total of 650 min of physical activity, being the second most active person after patient
3 (1070 min). In the statistical test performed to compare daytime and night, all patients
had all or a majority of p-values ≤ 0.05. Therefore, the quality during the daytime is not
directly associated with the quality at night and the difference between the quality in the
two cases is statistically significant.

Figure 10 presents the average and the standard deviation of the quality during full
days. Patient 3, as already mentioned, has the worst quality with the average quality in
all the days being below 0.6. The average quality of both patients 2 and 3 decreases after
the third day. The Wilcoxon–Mann–Whitney test was performed to assess whether there
is a significant difference between the average qualities of the baseline (day 1) and the
average qualities of days 2–6 for all the patients. The results suggest there is no statistically
significant change in quality over time. Therefore, even if there are changes in quality
during the days, these changes are not statistically significant in all patients.

This study can be considered a first pilot for the use of the Vital Signs patch in cardiac
patients. The use of wearable technologies in this population could lead to more accurate
CVD screening and diagnosis. However, differences in the ECG morphology in this
population compared to the healthy subjects group need to be expected. By analyzing
patients, we can find the activities that degrade ECG signal quality (such as biking) and
use this to find future solutions from experimental setup to data processing. Therefore,
SQIs, which represent an important initial step for ECG signals evaluation before further
processing (e.g., automated cardiac events detection), should be further developed taking
into account the targeted population. Quality annotations on ECG collected on cardiac
patients are required to further develop in this direction.
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6. Conclusions

This study analyzed the changes in ECG signal quality of a (Vital Signs patch platform
featuring) self-adhesive dry electrodes technology for long-term ECG monitoring, looking
for significant quality differences over days–nights and over time. No significant difference
was found in the quality changes between the days. Therefore, the self-adhesive dry
electrodes could be a promising technology for long-term ECG monitoring. Future studies
shall assess the benefits of this technology in more detail. Particular attention shall be paid
to motion artifacts and physical activities as they seem to be linked to quality changes as
shown by the reduced quality during daytime compared to night. Future developments of
SQIs for ECG should address the limitations of this pilot study including small panel size.
Likewise, our future work consists of analyzing the quality of signals in segments where
CVD were identified.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23042130/s1, Figure S1: Data quality over time for all patients
with SQIavg; Table S1: Questionnaires from the patients during the 5 days recording.
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