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Abstract: Aim: To evaluate the MONA.health artificial intelligence screening software for detecting
referable diabetic retinopathy (DR) and diabetic macular edema (DME), including subgroup analysis.
Methods: The algorithm’s threshold value was fixed at the 90% sensitivity operating point on the
receiver operating curve to perform the disease classification. Diagnostic performance was appraised
on a private test set and publicly available datasets. Stratification analysis was executed on the private
test set considering age, ethnicity, sex, insulin dependency, year of examination, camera type, image
quality, and dilatation status. Results: The software displayed an area under the curve (AUC) of
97.28% for DR and 98.08% for DME on the private test set. The specificity and sensitivity for combined
DR and DME predictions were 94.24 and 90.91%, respectively. The AUC ranged from 96.91 to 97.99%
on the publicly available datasets for DR. AUC values were above 95% in all subgroups, with lower
predictive values found for individuals above the age of 65 (82.51% sensitivity) and Caucasians
(84.03% sensitivity). Conclusion: We report good overall performance of the MONA.health screening
software for DR and DME. The software performance remains stable with no significant deterioration
of the deep learning models in any studied strata.

Keywords: diabetes complication; diabetic retinopathy; retina; artificial intelligence; deep learning

1. Introduction

The number of people with diabetes mellitus (DM) is rapidly increasing, with up
to 642 million cases expected by 2040 [1,2]. More than 40% of these diagnosed persons
will develop retinopathy. Diabetic retinopathy (DR) and diabetic macular edema (DME)
are the main ophthalmological complications of DM, with DR being the leading cause of
blindness and visual disability in the working-age population. The risk of such vision loss
can be reduced by annual retinal screening and early retinopathy detection to refer cases
for follow-up and treatment. The necessary fundus photographs for such screening can
be easily obtained non-invasively in an outpatient setting. Implementing a nationwide
screening program based on fundus photography resulted in DR no longer being the
leading cause of blindness certification in the United Kingdom [3–5].

However, as long as an ophthalmologist interprets retinal images manually, this
screening procedure will always be labor-intensive and expensive, thereby complicating
large-scale accessible implementation in many countries. New technologies facilitate the
development of care solutions that keep our health system manageable and affordable,
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especially for diseases of affluence such as DM and associated eye health complications.
To realize this ambition, experts in technology and medicine collaborate on solutions to
reduce the workload caused by manual grading, a task for which artificial intelligence (AI)
is well suited [4,5].

AI research in healthcare accelerates with applications achieving human-level perfor-
mance across various fields of medicine. The use of AI can range from organizational help
to surgical applications, with image classification for diagnostic support being one of the
main areas of interest [6,7]. IB Neuro™ (Imaging Biometrics, Elm Grove, WI, USA) was
the first FDA-approved AI application in 2008 for detecting brain tumors on MRI images.
Multiple applications have been approved since then, many in medical imaging domains
such as radiology. Some applications go beyond diagnosis and enter therapeutic fields such
as radiotherapy [7].

Deep learning, a subtype of AI, was introduced not so long ago for the automated
analysis and classification of images. In 2016, Gulshan et al. published a landmark paper
on a deep learning algorithm with high sensitivity and specificity to classify referable
DR [8]. Later papers showed that deep learning algorithms’ diagnostic accuracy is at
least comparable to the assessments done by clinicians [9–12]. Abràmoff and colleagues
published their paper on an autonomous AI-based diagnostic system for detecting diabetic
retinopathy in 2018 (IDx-DR (Digital Diagnostics, Coralville, IA, USA)). This work led
to the first FDA-permitted marketing of an AI-based medical device for automated DR
referral [13]. Since then, multiple AI devices have been developed around the world [14].

These developments are exciting, but the clinical community is not yet widely adopting
the new tools. Several bottlenecks are at the basis of this hesitation. First, most algorithms
are reported by the scientific community and have not been developed into easy-to-use
software for primary or secondary care. Second, algorithms mostly report on DR perfor-
mance, but when considering diabetic eye screening, both DR and DME are relevant. Third,
the performance evaluation of the algorithms is done under limited test conditions. Finally,
discussions are ongoing at different levels in the healthcare sector about the medico-legal
position of AI-based screening and its integration into the patient care path.

AI accomplishes a specific task on previously curated data, typically from one setting.
Ideally, datasets to develop an algorithm are sufficiently diverse to represent the popu-
lation, with metadata such as age, ethnicity, and sex to allow for performance analysis.
In reality, health data lack standardization and contain a bias due to variance in human
grading. The actual patient populations are more diverse than those in commonly used
datasets [15,16]. Medical data with high-quality labels is challenging to collect, and the Gen-
eral Data Protection Regulation (GDPR) and other privacy-preserving regulations restrict
medical data usage. Therefore, most AI models are trained with datasets that have limited
heterogeneity. Predictions often do not generalize to different populations or settings. Anal-
yses on subpopulations (e.g., ethnicity) are seldom done, leaving uncertainty that model
performance can be reliably extrapolated to new, unseen patient populations [17]. As a
result, the performance promised in scientific publications is often not reached in clinical
practice, and existing inequalities and biases in healthcare might be exacerbated [17]. Some
of these problems can be overcome by executing a prospective clinical trial incorporating
pre-chosen metadata and ensuring a relevant distribution amongst specific subpopula-
tions [13]. However, this is a time-consuming and expensive solution, and this approach
only allows model evaluation in a limited number of clinical centers.

International organizations such as the International Diabetes Federation, the Interna-
tional Council of Ophthalmology, the World Council of Optometry, and the International
Agency for the Prevention of Blindness support the vast clinical need for widespread and
convenient eye health screening tools for persons with diabetes as part of integrated dia-
betes care [18]. From this perspective, we present an evaluation of a diabetic eye screening
software available as a certified medical device for automated DR and DME detection. We
report the performance of the deep learning model underlying the software using private
and publicly available datasets. Using stratification analyses, we studied the performance
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in predefined subgroups based on clinically relevant parameters, thereby taking an es-
sential step toward improving the model evaluation process and its robustness during
deployment.

2. Materials and Methods
2.1. MONA.health AI-Based Screening Software

The MONA.health diabetic eye screening software MONA DR DME (Version 1.0.0;
MONA.health, Leuven, Belgium) (https://mona.health/, accessed on 31 January 2023)
evaluated in this paper is commercially available as a Class 1 certified medical device
under the European Union Medical Device Directive (MDD, Council Directive 93/42/EEC
of 14 June 1993 concerning medical devices, OJ No L 169/1 of 7 December 1993). The
software needs one fundus image per eye centered between the macula and optic disc for
algorithmic processing and reporting three diabetic eye screening results per patient (DR,
DME, and a combination of both). The essential processing steps are presented in Figure 1.
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Figure 1. Graphical representation of the MONA.health diabetic eye screening software. A fundus
image of each eye is preprocessed, after which an image quality control is executed. The images of
sufficient quality are the input to an ensemble of DR models and an ensemble of DME models. L/R:
fundus image of the left/right eye.

Before presenting the images to the models, they are preprocessed to increase unifor-
mity. This consists mainly of resizing and contrast enhancements, thereby reducing the
effects of illumination and fundus pigmentation. Next, the quality of an image is assessed
by two models: a model analyzing whether the image is a fundus image or not and a
second model evaluating the quality of the image. The second model is trained based on
image quality labels according to the EyePACS protocol [19]. An image passing this quality
control step is analyzed for referable DR and DME.

The core of the MONA.health screening software consists of two sets of deep learning
models, a DR ensemble and a DME ensemble. Each ensemble is a set of models differing in
model architecture and training details such as optimizer, learning rate, and the number of
epochs trained. All models used are convolutional neural networks (CNN), with different
architectures (ResNet, EfficientNet, Xception, InceptionV3, DenseNet, and VGG). More
specifications can be found in Figure A1 [20–25]. The results of these individual models are
averaged to generate a final output. The resulting output of each ensemble is fundamentally
different: an estimation of grade by regression in the case of DR versus a probability of
having the disease for DME. Therefore, the models run in parallel instead of having one
model that makes all predictions.

A threshold value was computed for each ensemble to achieve an operating point on
the receiver operating curve (ROC) with a sensitivity of 90% for diagnosing referable DR or
the presence of DME. These thresholds remained fixed for all subsequent analyses. If the
maximal predicted value for at least one eye is higher than these fixed threshold values,
the individual is marked for referral for one or both diseases.

https://mona.health/
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2.2. Private Test Set for Algorithm Testing

The fundus images for evaluating the MONA.health diabetic eye screening software
originates from the EyePACS telemedicine platform containing patient visits from screening
centers in the USA. The characteristics are documented in Table 1. Note that the disease
gradings originate from the telemedicine platform without regrading [26].

Table 1. An overview of the study population. The category other consists of invalid values, errors,
impossible values, etc.

Characteristics Dataset DR Dataset DME

Unique patient visits 16,772 16,833

Diagnosis
Non-referable DR (n = 8581) DME (n = 1979)

Referable DR (n = 8191) No DME (n = 14,854)

Age at examination

18–39 (n = 1575) 18–39 (n = 1572)

40–49 (n = 3532) 40–49 (n = 3539)

50–54 (n = 2858) 50–54 (n = 2870)

55–59 (n = 3309) 55–59 (n = 3323)

60–64 (n = 3062) 60–64 (n = 3080)

>65 (n = 2436) >65 (n = 2449)

Sex

Female (n = 8431) Female (n = 8460)

Male (n = 7410) Male (n = 7439)

Other (n = 931) Other (n = 934)

Ethnicity

African (n = 506) African (n = 512)

Asian (n = 461) Asian (n = 463)

Caucasian (n = 3040) Caucasian (n = 3048)

Latin American (n = 6394) Latin American (n = 6418)

Not specified (n = 5769) Not specified (n = 5790)

Other (n = 602) Other (n = 602)

Insulin dependency

Yes (n = 5567) Yes (n = 5574)

No (n = 11,058) No (n = 11,113)

Other (n = 147) Other (n = 146)

Dilatation

Yes (n = 7411) Yes (n = 7858)

No (n = 8725) No (n = 8975)

Other (n = 636) Other (n = 0)

Camera type

Canon CR-1 (n = 1194) Canon CR-1 (n = 1196)

Canon CR-2 AF (n = 1007) Canon CR-2 AF (n = 1009)

Canon DGi (n = 2468) Canon DGi (n = 2478)

Crystalvue (n = 470) Crystalvue (n = 473)

Optovue iCam (n = 1462) Optovue iCam (n = 1468)

Topcon NW400 (n = 3107) Topcon NW400 (n = 3125)

Not specified (n = 6374) Not specified (n = 6399)

Other (n = 690) Other (n = 685)

Image quality grading [18]

Adequate (n = 5810) Adequate (n = 5829)

Good (n = 6767) Good (n = 6787)

Excellent (n = 4195) Excellent (n = 4217)
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Table 1. Cont.

Characteristics Dataset DR Dataset DME

Year of examination

2013 (n = 699) 2013 (n = 667)

2014 (n = 1422) 2014 (n = 1432)

2015 (n = 2549) 2015 (n = 2561)

2016 (n = 2818) 2016 (n = 2830)

2017 (n = 3169) 2017 (n = 3173)

2018 (n = 2627) 2018 (n = 2638)

2019 (n = 2791) 2019 (n = 2802)

2020 (n = 727) 2020 (n = 730)

One fundus image per eye, centered between the optic disc and macula, was used for
each patient encounter. Relevant metadata, such as age, sex, ethnicity, insulin dependency,
and camera type, are available for stratification analysis. The DR grading is consistent with
the internationally adopted International Clinical Diabetic Retinopathy (ICDR) severity
level [20]. Macular thickening is used in ICDR and Early Treatment Diabetic Retinopathy
Study (ETDRS) classification for DME, but cannot be appreciated on standard fundus
photographs. Therefore, the presence of hard exudates within one disc diameter of the
macula is the surrogate parameter for DME [27,28].

We implemented a filtering procedure to remove images from persons under 18 years,
with laser scars, signs of vascular occlusion or cataracts, and images that the image qual-
ity models rejected. The image quality models reject poor-quality images for which no
interpretation would be possible for a human or an algorithm. Examples of images of
sufficient (adequate, good, and excellent) and insufficient quality can be found in Figure A1.
The resulting test sets comprised 16,772 patient encounters suitable for DR evaluation
(prevalence of referable DR: 48.8%) and 16,833 patient encounters for DME evaluation
(prevalence of DME: 11.8%). A total of 16,733 patient encounters were suitable for both
evaluations accounting for the large overlap between both datasets.

The MONA.health software performance was evaluated by calculating sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), and area under
the curve (AUC). These values were calculated for DR, DME, and the combined prediction.
The dataset of overlapping patient encounters was used for the combined analysis. Addi-
tional analyses were done on ICDR grade 3 and grade 4 retinopathy subgroups since these
consist of patients with vision-threatening DR.

2.3. Publicly Available Datasets for Algorithm Testing

The second series of evaluations used publicly available datasets containing DR
and DME labels at the level of the screened individual. The following datasets were
available: the Kaggle DR test set (population: USA; n = 5000 patients; multiple cameras) [29],
Messidor-2 (population: France; n = 874 patients; Topcon NW6) [30,31], and the Messidor-2
Iowa reference (population: France; n = 874 patients; Topcon NW6) [32]. The Messidor-2
and Messidor-2 Iowa references use the same image data set but a different grading
protocol [32].

2.4. Stratification Analysis

We performed stratification analyses for patient-based detection of referable DR and
DME. The subgroup investigations were done for ethnicity, age, sex, insulin dependency,
dilatation status, year of examination, camera type, and image quality. The 95% CIs were
calculated via the Percentile Bootstrap Method. The dataset was sampled with replacement
for 10,000 repetitions. The size of the sample was always the same size as the data sampled
it was from. A sample size calculation was done for the stratified groups based on a
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pre-specified FDA inferiority hypothesis, namely 75% sensitivity and 78% specificity [13].
A one-sided hypothesis test with binomial distribution was carried out with an overall
one-sided 5% Type 1 error, 90% power, and an effect size of 10%. A sample size of 541
evaluated subjects is needed, including 338 subjects with the disease and 203 subjects
without the disease to ensure the calculated metrics represent the group. Results for
stratified groups with a sample size lower than the computed sample size should be
interpreted cautiously since this could be a chance finding. Computations were done in R
with the pwr package [33].

3. Results
3.1. Test Set and Public Datasets

The MONA.health diabetic eye screening software had an excellent performance on
the private test set when predicting referable DR and the presence of DME. The area under
the curve (AUC) was the primary metric to evaluate the diagnostic prediction, with a
patient-based prediction of referable DR of 97.28%. A specificity of 94.62%, a sensitivity
of 90.67%, a PPV of 94.14%, and an NPV of 91.40% were recorded for the 90% sensitivity
setpoint. The sensitivity was 99.39 and 99.54% when predicting DR grade 3 (severe non-
proliferative DR) and grade 4 (proliferative DR), respectively. For DME prediction, the
AUC was 98.08% with a specificity of 94.53%, a sensitivity of 90.75%, a PPV of 68.57%,
and an NPV of 98.71%. The specificity and sensitivity for the combined DR and DME
predictions were 94.24 and 90.91%, respectively. An overview of the performance metrics
can be found in Table 2.

Table 2. Performance evaluation results (given in %) for the test set and the public datasets. Results
are for the selected 90% sensitivity operating point. AUC: area under the curve; Spec.: specificity;
Sens.: sensitivity; Acc.: accuracy; N/A: not applicable; NR: not relevant. DR grade 3 refers to severe
non-proliferative DR and grade 4 to proliferative DR.

Dataset Disease AUC %
(95% CI)

Spec. %
(95% CI)

Sens. %
(95% CI)

Acc. %
(95% CI)

Sens. DR
Grade 3 %
(95% CI)

Sens. DR
Grade 4 %
(95% CI)

Private test
set

DR
(n = 16,772)

97.28
(97.50–97.52)

94.62
(94.12–95.08)

90.67
(90.03–91.31)

92.69
(92.28–93.09)

99.39
(98.88–99.80)

99.54
(98.83–100.00)

DME
(n = 16,833)

98.08
(97.85–98.30)

94.46
(94.08–94.83)

90.75
(89.46–92.01)

94.02
(93.66–94.39) NR NR

DR + DME
(n = 16,733) N/A 94.24

(93.75–94.73)
90.91

(90.28–91.54)
92.62

(92.22–93.02)
99.39

(98.87–99.80)
99.54

(98.80–100.00)

Kaggle test
set

(n = 26,788)

DR 96.91
(96.63–97.18)

95.16
(94.87–95.44)

88.45
(87.63–89.28)

93.68
(93.39–93.97)

98.81
(97.92–99.56)

99.74
(99.32–100)

DME N/A N/A N/A N/A NR NR

Messidor-2
(n = 870)

DR 97.99
(97.08–98.76)

92.86
(90.73–94.83)

93.66
(90.62–96.46)

93.10
(91.38–94.71) 100 (100–100) 100 (100–100)

DME 98.98
(98.31–99.50)

99.35
(98.70–99.87)

74.04
(65.26–82.29)

96.34
(94.94–97.47) NR NR

DR + DME N/A 93.00
(90.92–94.97)

93.70
(90.68–96.48)

93.22
(91.49–94.83) 100 (100–100) 100 (100–100)

Messidor-2
Iowa’s

reference
(n = 874)

DR + DME N/A 84.06
(81.30–86.72)

97.89
(95.65–99.51)

87.07
(84.90–89.24) NR NR

The AUCs obtained on the public datasets were equally high. The values ranged from
96.91 to 97.99% for referable DR. A minimal change in the operating point corresponding
to the predefined threshold is noted, as can be observed by inspecting the sensitivity and
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specificity metrics in Table 2. Similar observations are made for DME on the Messidor-2
dataset. All results are above the proposed minimum requirements set by the FDA in
the pre-specified inferiority hypothesis. The evaluation of DME classification could not
be reported for the Kaggle test set and Messidor-2 Iowa’s reference because the relevant
disease labels are unavailable for these datasets. The referable label in the Iowa reference
was based on the assessment of DR and DME and only indicated being referable for either of
these diseases. All publicly available datasets were used in their entirety without selection.

3.2. Stratification Analysis

We report the sensitivity and specificity for detecting referable DR (Figure 2) and DME
(Figure 3) when dividing the private test set into subgroups according to attributes relevant
to the persons with diabetes and the eye screening procedure. The results are for the model
with the fixed threshold computed for the 90% sensitivity setpoint. Detailed numerical
values of the analysis are in Appendix A (Tables A1–A8).
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Figure 3. Stratification results: sensitivity (orange), specificity (blue) and AUC (red cross) for DME
detection for different subgroups of the test set. The subgroups were created based on presented
metadata, namely age at the exam (in years), ethnicity, year of exam, and camera model.

A high sensitivity (exceeding 90% on average) for detecting referable DR is obtained
for most age groups, with only a decreased sensitivity of 82.51% (95% confidence intervals
can be found in Appendix A) in the 65+ age group. Specificity remained high at 94.24% in
this age group. No differences between the age groups are encountered for DME detection.

DR referral in the groups defined based on ethnicity (Figure 2B) had a high AUC of
96.38% observed in the Caucasian group, with lower values in the Asian (95.26%) and
African (94.80%) subpopulations. However, sensitivity values are lower in the Caucasian
(84.03%) and higher in the Latin American (91.95%) populations. The AUC was high for all
subgroups (range 96.67–99.34%) for DME referral (Figure 3B). Decreased sensitivity and
specificity are noted in the Asian population and lower specificity in the Latin American
population.

The diabetic eye screening software showed excellent overall performance, without
any relevant differences when the dataset was divided according to the sex or insulin
dependency status of the patients. A difference in sensitivity/specificity division can be
perceived at the 90% sensitivity operating point in the latter group for DR. Considering
DME, a lower specificity of 91.72% was noted in the insulin-dependent group compared to
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95.74% in the non-insulin-dependent group. We refer the reader to Appendix A for detailed
reports on this analysis.

Stratifying the data according to the year of examination showed good performances
for DR referral, with a slight decrease in sensitivity to 89.32% for the oldest images
(Figure 2C). A high sensitivity but lower specificity is observed in this group for DME
(Figure 3C). The dilatation status during fundus photographing did not affect the model
performance (Appendix A).

The AUCs were comparable between the different fundus cameras, with values be-
tween 96.30 and 98.22%, except for the Optovue iCam 100 (Visionix, Pont-de-l’-Arche,
France) (94.46%). High sensitivity is observed for DME using the Canon CR-2 camera
(Canon, Tokyo, Japan) (96.84%), while the values for the other cameras ranged from 83.04
to 91.25% (Figure 3D). Sensitivity for DME is lower for images obtained on the Canon CR-1
(Canon, Tokyo, Japan) (83.04%) camera.

4. Discussion

We report a systematic retrospective evaluation of the MONA.health diabetic eye
screening software that analyzes fundus images using artificial intelligence and summarizes
DR and DME classification outputs as a single result to assess the patient referral status.
Our investigations were performed on a large, multi-center, private test set from a US-based
screening network and publicly available datasets regularly used to benchmark diabetic eye
detection algorithms. The private test set reported 90.91% sensitivity and 94.24% specificity
for referring a person because of DR or DME. These values are higher than the pre-specified
superiority endpoints of 85% sensitivity and 82.5% specificity proposed in the work of
Abràmoff and coworkers [13]. It is relevant to say that the latter values are for a prospective
study while we performed a retrospective study. Nevertheless, our performances are
comparable to previously published work [13,34–41]. Our study adds value to the research
field by reporting the results of data stratification to study differences in model performance
in subpopulations. Such an analysis is essential to assess the usability of the software in
clinical practice, thereby providing a starting point for better insights into potential hurdles
when incorporating AI-based decision support software in clinical practice.

All DR grades beyond mild DR are considered referable and justify a physical exam-
ination by an ophthalmologist. However, the higher the retinopathy grade, the higher
the risk of vision loss and the more urgent the need for referral. Therefore, high sensitivi-
ties are even more critical for detecting severe non-proliferative DR and proliferative DR.
Sensitivities of 99.39 and 99.54% were obtained for these cases of vision-threatening DR,
indicating that the vast majority of cases will be accurately referred by the software. A
substantial difference in PPV, the probability that subjects with a positive screening test
truly have the disease, is noted when considering the diagnosis of DME (68.75%) compared
to DR (94.14%). This difference is likely attributed to the lower disease prevalence of DME
(11.76%) in the test set.

The performance was analyzed on the publicly available Kaggle, Messidor-2, and
Messidor-2 Iowa reference datasets. The algorithm has a robust performance, with only
slight decreases in AUC and sensitivity for DR on the publicly available Kaggle test set.
This observation may be attributed to the fact that the Kaggle test set only contains images
dating before 2015 [29]. We observed a comparable decrease in sensitivity in our test set for
older images (Figure 2C). For the Messidor-2 dataset, AUC values are comparable to those
reported on the test set for the regular and Iowa reference. However, a decrease in specificity
and an increase in sensitivity are noted for DR. This rebalance between sensitivity and
specificity indicates that the chosen threshold is suboptimal for this specific dataset. These
findings are consistent with those of Gulshan et al. [8]. A possible explanation for this shift
in operating point is the homogeneity of the dataset (one camera type and only patients
from France with a less diverse ethnic mix) [30,31]. However, the chosen threshold might
still result in a performance closer to the 90% sensitivity operating point in a more variable
real-life setting than shown on the Messidor-2 dataset. This hypothesis is supported by the



J. Clin. Med. 2023, 12, 1408 10 of 19

analysis results on the more extensive test set. A decreased sensitivity for DME is observed
on the Messidor-2 data compared to our own test set. A shift in operating point is the most
likely explanation for this observation. This effect is larger in the Iowa reference labeling.
This might be attributed to a difference in labeling between these two references. For the
same images, the patient level prevalence is 21.7% in the Iowa labeling [32] compared to
30.9% in the standard labeling (calculated based on [8]).

The performance evaluations of AI algorithms detecting DR and DME can yield good
results, but guaranteeing high model performance for all relevant subpopulations is still a
significant challenge. We performed an extensive stratification analysis in the current study
to investigate possible differences in performance. This evaluation has not been reported to
our knowledge.

The algorithm’s performance for DR and DME classification was stable in the different
age categories up to 65 years. Beyond the patient age of 65 years, a decrease in sensitivity
for DR detection to 82.51% was recorded. Acquiring high-quality fundus images can be
more challenging in the elderly due to patient-related factors such as corneal changes,
vitreous floaters, and cataract formation. However, the lower sensitivity in DR detection
cannot be solely attributed to this factor since no remarkable differences were noted in the
stratification analysis based on image quality. No alternative explanations could be found
based on the performed stratifications.

The MONA.health software is registered as diabetic eye screening software in Europe.
Of note, ethnicity distribution is different between the European and USA-based popula-
tions of the private test set. An ethnicity stratification was performed to aid the software
performance evaluation. The biggest relevant deviations were found for sensitivity in the
Caucasian subgroup (84.03%) and specificity in the Latin American subgroup (91.33%). A
detailed analysis of the positive cases in this Caucasian group was done, showing that for
Caucasians, 33.3% of the referable cases are based on the presence of retinal hemorrhages
with/without micro-aneurysms without any other lesion types (such as cotton wool spots,
hard exudates, IRMA, venous beading, new vessels, fibrous proliferation, preretinal, or
vitreous hemorrhage). By comparison, this is only the case in 23.5% of all non-Caucasian
cases and 22.2% of Latin American cases (the largest subgroup amongst positive cases).
We assume DR detection is more difficult in the Caucasian population due to a lower
prevalence of other signs besides hemorrhages. Our medical retina experts’ analysis of
all Caucasian false negatives revealed that dust spots and shadows had been mislabeled
as hemorrhages. Previous research showed that artifacts might be an important reason
for intra- and interobserver variability and mislabeling [15]. Nevertheless, the achieved
performances remain above the non-inferiority hypothesis [13].

The prevalence of referable DR is higher in the Latin American population than in
the Caucasian population [42]. Increased prevalence may be associated with a higher
likelihood of more severe disease, which is more easily detected [43,44]. This might
contribute to the observed differences. Furthermore, 30% of patients are of “unspecified”
ethnic origin, making many images unavailable for the stratification analysis. A drop
in specificity for the Latin American subgroup is observed. Considering that the AUC
remains high in this group, this observation may indicate that there is a more optimal
threshold for this subgroup. The high disease prevalence might reinforce this effect in this
subgroup. Sensitivity and specificity metrics for the Asian and African subgroups should
be interpreted cautiously. The sample size of these two groups was under the minimal
sample size of 541, making it hard to draw any meaningful conclusion.

Multiple parameters were explored to stratify the analysis for disease severity. Due
to the low quality of specific labels such as HbA1c values and years since diagnosis
(missing data, impossible values), these parameters were not kept for analysis. Therefore,
insulin dependency was selected as a surrogate parameter for disease severity. This
stratification showed a difference in sensitivity/specificity division for DR (93.94/88.55%
vs. 87.81/96.22%), meaning that the ideal operating point for 90% sensitivity differs
between the two groups. In real life, only one threshold can be used, and a mix between
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insulin-dependent and independent patients is expected, balancing the differences between
both groups.

Considering the year of examination, intuitively, one would expect a lower perfor-
mance when analyzing older images since image quality, resolution, and ease of use have
increased over the years due to technological improvements. This statement appears to
hold for DR. However, for DME, increased sensitivity and decreased specificity are seen for
the older images. At the same time, the AUC remained high, indicating that older images
might also benefit from a different threshold. No notable discrepancies between results
were recorded when considering camera type. Regarding DME, a lower sensitivity was
observed for the Canon CR-1 camera (Canon, Tokyo, Japan).

This study comes with strengths and limitations. We report the performance of the
MONA.health software that uses one fundus image of the left eye and one of the right eye
to generate a report about the patient’s referral status for DR and DME. One fundus image
per eye results in higher patient comfort and lower operational costs, making the software
easy to use. This software was developed explicitly for diabetic eye screening, and its
operational settings balance sensitivity, specificity, and cost-effectiveness [45]. The referral
threshold was computed and subsequently fixed for subsequent usage in the software [45].
An additional study strength is the evaluation of the software using a sizable private test
set and publicly available datasets. Furthermore, the stratification analysis investigated
the diagnostic performance of such an AI-based algorithm for the first time. Overall, we
report stable high-performance results using widely used metrics such as AUC, sensitivity,
and specificity. We highlight the importance of stratification from a research and clinical
perspective by illustrating potential hurdles to overcome before implementing AI in daily
practice. The stratification illustrates that comparisons based on AUC can be deceiving
since most strata have a very high AUC, but the resulting performances for a predefined
threshold may shift. In a production setting, one cannot tailor this threshold to the specific
needs of the context since this would require a new and elaborate validation study to prove
effectiveness [45].

The most critical limitation of stratification is that results depend on the initial label’s
quality both for the ground truth of the diagnosis and for the metadata. Our research
team obtained the private test set from the well-established EyePACS telemedicine plat-
form. The EyePACS protocols for collecting fundus images and diabetic eye screening
are reliable. However, the protocols were initially not designed to organize metadata for
later use in a stratification analysis to assess AI-based image analysis. We noted several
problems regarding this quality during our study, such as impossible numerical values
and missing data. A more robust higher quality dataset would be necessary to further
improve research on this subject. Nonetheless, patient consent and privacy issues limit
obtaining such a dataset, and a post hoc curation of an existing dataset is extremely difficult.
A second limitation is the difference between prevalence in the dataset (48.8%) and real-
life prevalence, of which reports vary but are considerably lower [46–51]. We considered
correcting for this difference in our study, but it was decided not to rebalance the dataset
to maintain a sufficient number of images. Finally, prospective studies and post-market
clinical evaluations are needed to evaluate MONA-health software performance further
and support our conclusions. Such studies are currently underway and indexed as clinical
trials NCT05260281 and NCT05391659.

5. Conclusions

We present a detailed evaluation of the MONA.health AI screening software for de-
tecting referable DR and DME using a single fundus image per eye. Performance analysis
shows good overall results. An extensive stratification analysis considered patient char-
acteristics and parameters related to eye screening. We observed variability between the
results of the subgroups, but overall performance remained stable with no significant
deterioration of the deep learning model in any of the studied strata. We advocate that re-
porting stratification performances is essential when envisioning a DR screening algorithm
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in clinical practice, but such results are typically not reported. Our research highlights the
importance of high-quality data, thereby forming a basis for the improvement of future
research in medical AI by bringing to attention some of its current shortcomings.
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Table A1. Stratification results for detecting referable retinopathy and diabetic macular edema on the
patient level per age group.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

18–39 years 1575 9.39 48.89 97.23
(96.48–97.93)

91.56
(89.58–93.48)

93.17
(91.35–94.87)

40–49 years 3532 21.06 56.43 98.20
(97.83–98.56)

93.63
(92.54–94.69)

94.35
(93.16–95.46)

50–54 years 2858 17.04 54.76 97.73
(97.21–98.23)

91.82
(90.44–93.17)

95.05
(93.84–96.18)

55–59 years 3309 19.73 48.35 97.58
(97.07–98.06)

91.94
(90.56–93.28)

95.08
(94.06–96.09)

60–64 years 3062 18.26 43.66 96.92
(96.30–97.49)

88.56
(86.86–90.27)

95.07
(94.03–96.08)

≥65 years 2436 14.52 38.01 94.73
(93.78–95.59)

82.51
(80.00–84.89)

94.24
(93.06–95.38)

DME

18–39 years 1572 9.34 9.41 97.79
(96.91–98.54)

88.51
(83.03–93.43)

94.80
(93.63–95.92)

40–49 years 3539 21.02 13.90 97.70
(97.16–98.20)

90.65
(87.99–93.13)

92.98
(92.04–93.87)

50–54 years 2870 17.04 14.67 98.10
(97.56–98.57)

93.82
(91.40–96.01)

93.34
(92.36–94.30)

55–59 years 3323 19.74 12.82 97.85
(97.29–98.34)

88.50
(85.40–91.38)

93.92
(93.04–94.77)

60–64 years 3080 18.30 9.94 98.51
(97.99–98.95)

91.50
(88.24–94.48)

95.57
(94.78–96.32)

≥65 years 2449 14.55 7.59 98.40
(97.63–99.03)

89.78
(85.19–93.99)

96.77
(96.04–97.48)
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Table A2. Stratification results for detecting referable retinopathy and diabetic macular edema on the
patient level for ethnicity.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

African
Descent 506 3.02 71.94 94.80

(92.60–96.68)
87.91

(94.45–91.12)
92.96

(88.49–96.88)

Asian 461 2.75 73.32 95.26
(93.23–97.03)

86.39
(82.69–90.00)

90.24
(84.62–95.28)

Caucasian 3040 18.13 18.95 96.38
(95.39–97.27)

84.03
(80.97–86.94)

96.27
(95.50–97.00)

Latin
American 6394 38.12 84.13 95.86

(95.09–96.57)
91.95

(91.22–92.67)
91.33

(89.52–93.03)

Not specified 5769 34.40 17.80 97.16
(96.57–97.71)

90.07
(88.18–91.89)

94.73
(94.08–95.35)

DME

African
Descent 512 3.04 21.88 97.01

(95.36–98.38)
88.39

(81.98–94.07)
94.00

(91.56–96.17)

Asian 463 2.75 14.47 96.67
(94.70–98.29)

85.08
(76.12–93.15)

92.42
(89.75–94.95)

Caucasian 3048 18.11 4.36 99.34
(99.04–99.60)

91.73
(86.82–96.06)

97.74
(97.18–98.27)

Latin
American 6418 38.13 20.02 96.74

(96.26–97.17)
91.44

(89.86–92.98)
89.46

(88.61–90.28)

Not specified 5790 34.40 4.46 98.91
(98.43–99.31)

88.76
(84.72–92.43)

98.05
(97.67–98.41)

Table A3. Stratification results for the detection of referable retinopathy and diabetic macular edema
on the patient level for sex.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

Female 8431 50.27 46.98 97.05
(96.70–97.39)

89.78
(88.82–90.72)

94.77
(94.10–95.41)

Male 7410 44.18 53.52 97.49
(97.14–97.81)

91.40
(90.52–92.26)

94.60
(93.83–95.33)

DME

Female 8460 50.26 10.87 98.19
(97.84–95.81)

90.65
(88.71–92.48)

95.23
(94.74–95.70)

Male 7439 44.19 13.28 97.84
(97.48–98.17)

90.89
(89.08–92.61)

93.35
(92.73–93.94)

Table A4. Stratification results for the detection of referable retinopathy and diabetic macular edema
on the patient level for insulin dependency.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

Insulin-
dependent 5567 33.19 67.83 96.70

(96.21–97.17)
93.94

(93.15–94.69)
88.55

(87.08–89.98)

Not insulin-
dependent 11,058 65.93 39.25 97.11

(96.79–97.42)
87.81

(86.83–88.77)
96.22

(95.76–96.67)

DME

Insulin-
dependent 5574 33.11 17.19 97.01

(96.53–97.45)
90.50

(88.56–92.32)
91.72

(90.92–92.51)

Not insulin-
dependent 11,113 66.02 9.04 98.57

(98.29–98.82)
90.95

(89.15–92.74)
95.74

(95.35–96.12)
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Table A5. Stratification results for the detection of referable retinopathy and diabetic macular edema
on the patient level for year of exam.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

2013 669 3.99 89.54 96.14
(93.91–97.96)

89.32
(86.79–91.74)

92.86
(86.05–98.46)

2014 1422 8.48 64.49 97.56
(96.77–98.27)

91.28
(89.35–93.08)

93.27
(91.04–95.36)

2015 2549 15.20 47.82 97.18
(96.57–97.77)

90.73
(89.04–92.33)

94.44
(93.20–95.65)

2016 2818 16.80 46.56 97.20
(96.60–97.78)

90.55
(88.94–92.16)

95.09
(93.96–96.18)

2017 3169 18.89 43.01 97.33
(96.78–97.83)

90.54
(88.97–92.07)

94.63
(93.56–95.63)

2018 2627 15.66 48.38 97.12
(96.48–97.70)

90.56
(88.93–92.14)

94.47
(93.20–95.65)

2019 2791 16.64 44.25 97.44
(96.86–97.97)

91.17
(89.58–92.74)

95.05
(93.94–96.12)

2020 727 4.33 37.83 97.22
(95.91–98.30)

90.91
(87.37–94.16)

94.25
(92.01–96.30)

DME

2013 667 3.96 24.29 97.36
(95.97–98.46)

95.06
(91.33–98.12)

86.54
(83.50–89.43)

2014 1432 8.51 14.94 97.76
(96.98–98.43)

93.46
(90.00–96.52)

91.05
(89.40–92.65)

2015 2561 15.21 11.64 97.90
(97.25–98.47)

90.27
(86.83–93.42)

94.22
(93.24–95.14)

2016 2830 16.81 12.08 98.54
(98.03–98.97)

91.52
(88.45–94.30)

95.14
(94.28–95.97)

2017 3173 18.85 10.12 98.36
(97.95–98.76)

88.79
(85.29–92.13)

95.58
(94.79–96.32)

2018 2638 15.67 11.22 97.16
(96.35–97.88)

87.50
(83.56–91.22)

94.32
(93.36–95.25)

2019 2802 16.65 10.10 98.22
(97.55–98.79)

91.17
(87.72–94.38)

95.51
(94.71–96.30)

2020 730 4.34 8.63 99.40
(98.94–99.76)

92.06
(84.75–98.28)

96.70
(95.29–97.94)

Table A6. Stratification results for the detection of referable retinopathy and diabetic macular edema
on the patient level per camera model.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

Canon CR-1 1194 7.12 37.60 96.82
(95.72–97.82)

88.42
(85.49–91.28)

95.44
(93.91–96.87)

Canon CR-2 1007 6.00 53.72 97.60
(96.65–98.43)

89.28
(86.57–91.88)

96.14
(94.31–97.84)

Canon Dgi 2468 14.72 43.40 98.02
(97.52–98.49)

90.94
(89.23–92.66)

95.92
(94.83–96.93)

Crystalvue 470 2.80 29.36 98.22
(96.61–99.44)

91.30
(86.33–95.65)

96.99
(94.94–98.75)

Optovue iCam 1462 8.72 86.66 94.46
(92.43–96.24)

90.61
(88.94–92.17)

92.31
(88.44–95.71)

Topcon NW400 3107 18.52 45.41 96.30
(95.62–96.92)

88.66
(87.01–90.26)

93.87
(92.70–94.96)

Not specified 6374 38.00 48.10 97.60
(91.11–93.03)

92.07
(91.11–93.03)

93.77
(92.92–94.58)
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Table A6. Cont.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DME

Canon CR-1 1196 7.11 9.36 97.21
(95.75–98.42)

83.04
(75.68–89.82)

95.39
(94.08–96.60)

Canon CR-2 1009 5.99 15.66 98.80
(98.23–99.28)

96.84
(93.92–99.35)

94.60
(93.01–96.05)

Canon Dgi 2478 14.72 11.74 98.02
(97.40–98.58)

90.72
(87.31–93.94)

94.28
(93.31–95.25)

Crystalvue 473 2.81 9.94 98.63
(97.82–98.83)

87.23
(76.74–95.92)

96.71
(94.87–98.32)

Optovue iCam 1468 8.72 21.80 97.17
(96.27–97.97)

91.25
(88.04–94.26)

91.38
(89.70–92.96)

Topcon NW400 3125 18.56 6.21 98.36
(97.82–98.83)

90.21
(85.79–94.24)

96.35
(95.67–97.01)

Not specified 6399 38.01 12.74 97.94
(97.53–98.31)

90.92
(88.93–92.81)

93.70
(93.07–94.32)

Table A7. Stratification results for the detection of referable retinopathy and diabetic macular edema
on the patient level for image quality.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

Adequate 5810 34.64 49.07 97.04
(96.61–97.44)

91.06
(89.98–92.08)

93.82
(92.94–94.68)

Good 6767 40.35 49.12 97.19
(96.81–97.55)

90.28
(89.27–91.25)

94.89
(94.14–95.60)

Excellent 4195 25.01 48.06 97.79
(97.39–98.17)

90.77
(89.50–92.00)

95.27
(94.35–96.13)

DME

Adequate 5829 34.63 11.75 97.22
(96.71–97.71)

87.88
(85.42–90.29)

93.66
(92.98–94.32)

Good 6787 40.32 12.30 98.60
(98.33–98.85)

92.22
(90.36–94.00)

95.03
(94.48–95.56)

Excellent 4217 25.05 10.88 98.28
(97.79–98.72)

92.38
(89.91–94.71)

94.65
(93.91–95.37)

Table A8. Stratification results for the detection of referable retinopathy and diabetic macula edema
on the patient level for dilation status.

Disease Group Sample Size Sample Size % Prevalence % AUC %
(95% CI)

Sensitivity %
(95% CI)

Specificity %
(95% CI)

DR

Dilated 7820 46.63 53.96 96.88
(96.51–97.24)

91.07
(90.19–91.90)

93.14
(92.30–93.94)

Undilated 8952 53.37 44.36 97.67
(97.38–97.95)

90.25
(89.30–91.18)

95.68
(95.12–96.25)

DME

Dilated 7858 46.68 12.66 98.20
(97.89–98.49)

92.26
(90.55–93.86)

94.40
(93.85–94.94)

Undilated 8975 53.32 10.96 97.97
(97.62–98.29)

89.23
(87.26–91.12)

94.51
(94.00–94.99)
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