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Abstract— Accurate estimation of Propagation Path Loss is 

important for reliable and optimized coverage of a service. In 

literature, a diversity of theoretically or experimentally based 

propagation models have been documented to estimate the 

received signal level. The goal of this work is to estimate the 

effective coverage area of service, predict the Path Loss, and build 

a Radio Environment Map (REM) using a sensor network. To this 

end, a sensor’s correlation area is defined. By using Machine 

Learning (ML), the received signal level variation in this area can 

be estimated correctly 92.3% of the time, with a Mean Absolute 

Error (MAE) of 1.57 dB. Finally, a proper distribution of sensors 

based on the correlation area, and ML tools leads to building a 

REM for the effective coverage area. This approach is applied to 

a Long-Term Evolution network.  

Keywords— Coverage, Estimation, Machine Learning, Received 

Signal, REM 

I. INTRODUCTION 

Accurate estimation of Propagation Path Loss (PL) is 
important for reliable and optimized coverage of service to grant 
access to the radiofrequency spectrum. To improve the 
utilization of radio resources Radio Environment Maps (REMs) 
can contribute to representing and understanding the 
propagation environment.  REMs can be used for a variety of 
analyses, such as available services, geographical features, 
grades of Quality of Service (QoS), and areas served under a 
specific service. However, the main challenge in building a 
REM is the method to collect the information for a large area.  

 In literature, a diversity of theoretically or experimentally 
based propagation models have been documented to estimate 
signal coverage path loss [1]. Several research works have 
investigated the proper way to deploy sensor nodes, the 
accurate 

measurement of the spectrum, and the prediction of signal levels 
[2][3][4][5][6].  

In [2], the authors proposed an analytic framework based on 
spectrum data gathered by spatially distributed sensors to 
construct a REM. In places without sensors, they used signal 
strength interpolation by composition sampling. The estimation 
was made using two distributions of the sensors, i.e., randomly 
distributed, and square lattice located distribution. The results 
revealed that both sensor distribution methods are suitable for 
Received Signal Strength (RSS) estimation. It was proven that 
better performance was obtained with the sensors distributed in 
squared lattice mode in terms of the average inference 
performance, but the performance was not analyzed when the 
sensors are close to the transmitter. In our work, we analyze the 
performance when the sensors are close to each other and close 
to the source.  

In [3], the authors presented how to place sensor nodes (SNs) 
to guarantee the performance of machine learning based on 
cooperative sensing schemes. They proposed a strategy on how 
to place a few SNs to cover the whole area of the PU. In the 
research, the problem caused by a hidden transmitter (is when 
the transmitted signal is not covered by a sensor) appeared 
because the authors do not prevent the deployment of sensors in 
an area where the transmitter can be placed. In [4], a 
heterogeneous network formed by a traditional cellular network 
and a Wireless Sensor Network (WSN) was considered. In this 
scenario, the role of the WSN was to estimate the REM of the 
cell using a Kriging geostatistical interpolation technique. The 
results show that for reducing the Minimum Square Error more 
nodes (sensors) had to be added. To reduce the number of 
sensors to deploy we introduce and define in our research the 
“sensor correlation area”. It allows us to cover the entire area 
and used the measured information by the sensors to estimate 
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the received signal level in places where no sensors are 
deployed.  

In [5], a method for constructing a REM combining residual 
maximum likelihood-based radio propagation parameter 
estimation with Kriging-based transmission power prediction 
was proposed. With the Monte Carlo simulation, the result 
indicates that the authors’ proposal provides a standard 
deviation of 4.8 dB, and the performance compared with 
different methods was improved by 2 dB. In [6], the authors built 
a REM using Mobile Crowd Sensing (MCS) to collect the 
information. To infer the missing information from the radio 
environment in the unsensed areas they used the Kriging 
algorithm. The results have shown that the interpolation error 
with the Kriging algorithm was around 5 dB outperforming by 
2 dB and 5 dB the Nearest Neighbor and IDW algorithms 
respectively. In [5] and [6] was demonstrated that it is possible 
to use a Machine Learning (ML) algorithm to estimate the 
received signal level and build a REM. Furthermore, in our 
research, the performance is improved by at least 3 dB compared 
to the aforementioned research.    

In the present research, the sensor’s correlation area is 
obtained. This is an area where the received signal level at any 
point inside it, correlates equal to or higher than 0.5 with the 
received signal level measured by a sensor. Then, a proper 
distribution of sensors based on the correlation area, and ML 
tools will lead to a reduction in the number of sensors needed to 
reliably characterize the services’ coverage. In this way, fewer 
sensors will be required to estimate the effective coverage area 
of service, predict the PL, and build a REM. This approach will 
be used to estimate the effective coverage area of a Long-Term 
Evolution (LTE) network in a suburban area. 

The rest of the paper is organized as follows. Section II 
presents the methods used to collect the information with the 
sensor and obtains the sensor coverage area. It presents how the 
ML is trained/validated, and how the resulting model is 
combined with the sensor coverage area to estimate the received 
signal level for building a REM of an LTE network. Section III 
presents the main results of our research. Finally, Section IV 
presents the conclusions and future work. 

II. METHODS 

In this section, we present a methodology to build a REM 
of an LTE network using a sensor deployment and ML. We 
define the sensor correlation area, train/validate an ML model 
to estimate the received signal level in the areas without 
sensors, and analyze where to deploy sensors to properly 
estimate the effective coverage area of service. To define the 
sensor correlation area and to train/validate and test the ML 
model we conduct the field measurement of a Digital 
Television Broadcast transmitter working in a frequency close 
to the low LTE Band. Then, we used the results to build the 
REM in a simulated LTE network.  

A. Study Area 

We conduct the field measurements based on a Digital 
Television (DTV) transmitter. Field measurements were 
conducted in channel 45, central frequency 659 MHz, 
bandwidth BW 6 MHz in Jagüey Grande (suburban area), 

Matanzas province, Cuba. Using the sensor measurements and 
the measurements in the vicinity, we account for the variation of 
the received signal level as a function of the distance over 24 
hours. Table I defines the link budget for the TV technology in 
the selected area. As can be noticed, the Receiver Height is 
above the average ground terrain (5m) for which at least 60% of 
the first Fresnel zone is not obstructed. For these conditions, 
direct visibility (Line of Sight) can be fairly assumed [7].  

TABLE I: Link budget parameters 

Parameter Value 

Tx Height [m] 346  
BS Frequency [MHz] 509  
Tx Power [dBm] 67  
TV Standard DTMB  
Bandwidth [MHz] 6  
Rx Height [m] 5  
Receiver Antenna Gain [dBi] 0  
Transmitter Antenna Gain [dBi] 6  

 

For measurements, we used the sensor developed in [8]. It 
measures the received signal level in dBm, Signal to Noise Ratio 
(SNR) in dB, and calculates the signal level variation (fading) in 
dB. To calculate the fading, we follow the procedure described 
in [9], where the received signal level is measured 26 times in 
one second (it was proved by laboratory tests) to avoid the 
Doppler effect caused by vehicles. Then, assuming that the mean 
value of the fading is zero dB, the fading in one second is 
calculated as the difference between the 50-percentile minus the 
first sample. Finally, the variation in one minute is obtained as 
the average of the 60 fading calculated each second. 

B. Sensor Correlation Area: Definition 

First, we define the sensor correlation area. The idea is to 
determine the correlation between the signal measured at the 
sensor location and the signal measured in its vicinity. Then the 
received signal level at any point inside this area can be 
estimated using the sensor measurement. The three available 
sensors were re-used to take measurements at all 22 locations, 
thus taking place over several days. For the analysis, the 
measured values need to be organized according to the 
timestamp of the day they were taken, i.e., we guarantee that all 
measurements were taken at the same timestamp of the day in 
every location. Finally, to find the maximum distance at which 
two measurements of the received signal level are still 
correlated, we analyze the variance of the differences between 
the measurements on the sensor and the measurements in the 
vicinity. The variance gives an idea of the difference between 
the reference (the place where the sensor is located) and the 
sampling points (measured locations around the reference), 
then to have a good performance we look for a variance lower 
or equal to 3 dB. This only can be achieved if the correlation 
coefficient (relationship between the measured signal level at 
the sensor location and the measured signal level in the vicinity) 
is higher than or equal to 0.5 [10]. 

C. Measurement and Data Collection 

The methodology proposed in this research has been 
developed using field measurements in an area of 3.5 km2.      



Fig. 1 shows the DTV measurement locations with 22 
measurement locations around the sensor at distances from 50 
m to 2500 m.   

 

0 ---- sensor (red circle) 
1------ 50 m  
2----- 100m 
3----- 140m 
4----- 180m 
5----- 230m 
6----- 270m 
7----- 310m 
8----- 400m 
9----- 440m 
10—- 500m 
11—- 550m 
12—- 610m 
13—- 660m 
14—- 700m 
15—- 830m 
15—- 900m 
16—1000m 
18—1400m 
19—1700m 
20—2000m 
21—2200m 
22—2500m 
 

Fig. 1. DTV field measurement points distribution. The red circle represents the 
sensor, the blue circles are the measurement points, and the green arrow shows 
the transmitter direction, 42 km far away (Northwest direction). 

 

For the measurement process, we used three sensors in every 
iteration, always keeping one sensor in the same position while 
the other two were moved among the 22 locations represented 
in Fig. 1. The sensors were adjusted and calibrated, so 
measurements were comparable with the professional 
instruments. We measured and registered in time the received 
signal level, the SNR, and the fading (calculation procedure 
explained in [9]). Then we organize the samples in our dataset 
so, we can process samples taken at the same timestamp of the 
day on different days at each of the 22 locations together.   

D. Proposed model  

To estimate the temporal and spatial signal variation around 
the sensor, we propose a method based on ML. In (1) we present 
the formula to model the received signal level.  

 

�����,�� 	  ������ � ��,��� (1) 

 

Where, �����,��is the received signal at a certain point in the 

vicinity at a distance d from the sensor and at a given time t, 

������ is the sensor’s received signal at the same time t, and 

��,��� is the correction factor for the received signal level as a 

function of the distance and the different time of the day, 
obtained as part of the process to determine the correlation area.  
 

1) Machine Learning Algorithm 

To model ��,��� , we use different ML Classification and 

Regression algorithms [11]. Fig. 2 shows the diagram used for 

the ��,��� calculation. The most important supervised learning 

algorithms are detailed in [12], and they are, among others, k 

Nearest Neighbor (kNN), Naive Bayes (NB), Support Vector 

Machine (SVM), Decision Trees (DT), Random Forest (RF), 

and Neural Networks (NN). As inputs, we used the measured 

signal level vectors.at the same timestamp of the day in all 

sensor locations and the distance between them. The whole 

dataset has 1440 samples in 24 hours per each of 22 sensors’ 

locations (one sample per minute containing the measured 

signal level, SNR, and fading), then we divided it into samples 

for training (80%), samples for validation (15%), and samples 

for testing (5%). We compared the performance of 10 ML 

algorithms. The Classification algorithms are used to estimate 

if the correction should be negative or positive. On the other 

hand, we use a Regression algorithm to estimate the correction 

value (��,���).   

 

 
Fig. 2. Machine learning diagram for (��,���) estimation 

E. LTE network 

To evaluate this approach in an LTE network, the received 

signal level at the sensors’ locations (������) is simulated using 

the deployment tool GRAND [13] and the ��,���  correction 

factor is estimated using the ML model trained/validated with 
the field measurements in Section II-A. The GRAND tool is 
capacity-based, which means, that the traffic density and end-
devices density are input parameters. The software also 
receives as input parameters the target area and all possible BS 
geo-locations including the BS antenna height. Fig. 3 shows the 
LTE network deployment. 

The real BS settings are adopted in the tool: the radiated 
power of the BS was 36 dBm, Okumura-Hata as PL model for 
a suburban area [14], and a frequency of 800 MHz. The LTE 
network simulation is executed for an extraordinary situation 
(i.e., festivity day) where there are many users (i.e., 
650@2Mbps) connected at the same time in a small area (4.8 
km2). Finally, 3 BSs are needed to cover 95% of the users.  

 
Fig. 3. LTE network deployment with 3 BS (red dots) for covering 4.8 km2 and 
650 users at 2Mbps. Green small dots represent the points where the received 
signal is estimated using equation 1. 

 The optimal sensors’ deployment location to build a REM 
depends on the area to be covered, the sensor correlation area, 
and the distance between the BSs and the sensors. The signal 
level varies much faster for the distances closest to the BS than 

Transmitter 
direction 



far away from it (log-distance dependence). Finally, we use the 
simulated received signal on the sensors and equation (1) to 
estimate the received signal level in 456 grid points (green 
small dots with 200 m spanning size) inside the 4.8 km2 and 
build the REM. 

III. RESULTS 

A. Sensor Correlation Area, Result 

In this section, we analyze the correlation coefficient to 
properly define the sensor correlation area. Fig. 4 shows the 
correlation coefficient between the DTV received signal level 
measurements made by the sensor and the ones made in its 
vicinity (at the same time instance). We consider here the trend 
value as a correlation model, represented with a continuous line, 
where the correlation coefficient behavior is a function of the 
distance between the sensor location and the measurements in 
the vicinity. The correlation coefficient is always higher than 0.5 
up to 830 m.  

 

Fig. 4. Correlation between the received signal level measurements on the 
sensor place and the measurements in the vicinity. Plots (different shapes) 
represent the correlation coefficient between the measurements in the sensor 
and the ones in the vicinity. The continuous line represents the trending value 
of the correlation coefficient as a function of the distance. The black circle 
represents the distance at which the correlation coefficient is around 0.5 
defining the sensor correlation radius.    

B. Received Signal Estimation 

For estimating the received signal level at any point inside 
the sensor correlation area (defined in Section III-A) we use 
equation 1 (Section II-D). In this section, we analyze the 

estimation of the ��,��� correction factor as a function of the 

distance. A combination of 10 ML algorithms is compared in 
the Classification and Regression process. For testing the 
model, we used a dataset (72 samples, 5%) not included in the 
training/validating process. TABLE II shows the results of the 
four algorithms. The algorithm with the best performance is 
Naïve Bayes [15], which made a correct classification in 92.3% 
of the samples in our dataset.  

   
TABLE II: ESTIMATED RESULTS IN THE CLASSIFICATION PROCESS.  

Algorithm 

Correctly 

Classification 

 Samples (%) 

Incorrectly 

Classification 

 Samples (%) 
NB 66 (92.3%) 6 (8.0%) 

SVM 58 (81.0%) 14 (19.0%) 
LR 61 (85.0%) 11 (15.0%) 

MLP 64 (89.0%) 8 (11.0%) 

   For estimating the ��,��� values, we compared six 

algorithms, Gaussian Process (GP), LR, MLP, Simple Linear 
Regression (SLR), SMOreg, and IBK (commonly known as the 
k-nearest neighbor algorithm). To evaluate the performance, we 
used the same dataset with 72 samples. TABLE III summarizes 
the results for every algorithm. The best performance up to 830 
m is achieved with the SMOreg (Support Vector Machine 
algorithm for regression) [16] algorithm with an 85% of 

correlation between the target (calculated ��,��� ) and 

responses (estimated ��,��� with ML), and a Mean Absolute 

Error (MAE) of 1.57 dB.   
 
TABLE III: ESTIMATED RESULTS IN THE REGRESSION PROCESS FOR 830 M 

Algorithm Correlation [%] MAE 

[dB] 
GP 72 2.44 
LR 81 1.70 

MLP 52 2.10 
SLR 62 2.05 

SMOreg 85 1.57 

IBK 79 1.65 

C. REM construction  

From Section II-E 4 sensors are required to properly make 
predictions in the 456 grid points using the proposed approach 
in this paper. To decide the optimal sensors’ deployment, we 
proposed three different setups and analyze the contribution of 
every deployment. Fig. 5 shows the REM for the estimated 
��,��� at 9:00 am with the information obtained by the sensors 

and the estimation with ML.  

Fig. 5a shows the obtained REM with sensors uniformly 
distributed. In this scenario, each sensor collects information 
from several BSs. In this way, the sensors can be reused (i.e., 
zone 1, Fig. 5a). In the case when the sensor is placed close to 
the BS, it does not effectively contribute to detecting the edge of 
the coverage area. In opposite, positioning sensors closest to the 
expected edge of the BSs’ coverage area (zone 2, fig. 5a) will 
increase the effectiveness in determining the actual covered 
area, reduce the error in the estimation process, and thus the 
precision in the estimation using ML from the inputs collected 
by the sensors. Fig. 5b shows the obtained REM when the 
sensors are all close to the BSs. As can be seen, in zone 1 (Fig. 
5b) there are two sensors close to the BS. In this case, there are 
no sensors close to the edge of the BS’s expected coverage area, 
which means there is no effective contribution to detecting the 
behavior at the edge of the actual coverage area. Finally, Fig. 5c 
shows the obtained REM with sensors deployed near the 
theoretical BS’s coverage area. In this case, all the sensors were 
positioned close to the theoretical BS’s coverage area, which 
contributes to the detection of served areas (zone 1 and 2, Fig. 
5c). In this scenario, the proposed model (ML + sensors) shows 
that more than 90% of the area could be covered in terms of 
received signal level with three LTE BSs.       



 

(a) 

 

(b) 

 

(c) 

Fig. 5. REM of an LTE deployment based on ML to estimate the signal levels 
in the Sensors' correlation area. The dashed line (circles) represent the LTE 
BSs’ and served areas, both obtained with the GRAND tool, and the black 
crosses are the sensors. (a) Sensors are uniformly distributed. (b) Sensors 
are close to the BSs (c) Sensors near the theoretical BS’s coverage area. 

IV. CONCLUSIONS 

In this paper, a procedure to properly estimate the sensor’s 
correlation area was defined. From measurements merging 
distances up to 2500 m from the sensor, we found a correlation 
around 0.5 up to 830 m. Using ML algorithms, the received 
signal level variation around a sensor can be correctly estimated 
92.3% of the time, with an MAE of 1.57 dB.  Finally, three 
different sensor deployments were analyzed showing that the 
best approach is to deploy the sensors near the edge of the BS 
expected coverage area. 

Future works will consist of grouping measurements in time 

intervals (i.e., 4, 6, or 8 hours) the variation of ����along the 

time of the day is assessed for every distance value. 
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