Springer Nature 2021 B TEX template

Inverse Reinforcement Learning Through
Logic Constraint Inference

Mattijs Baert!", Sam Leroux! and Pieter Simoens!

IDLab, Department of Information Technology, Ghent
University- imec, Technologiepark 126, Ghent, B-9052, Belgium.

*Corresponding author(s). E-mail(s): mattijs.baert@ugent.be;
Contributing authors: sam.leroux@ugent.be;
pieter.simoens@ugent.be;

Abstract

Autonomous robots start to be integrated in human environments where
explicit and implicit social norms guide the behavior of all agents.
To assure safety and predictability, these artificial agents should act
in accordance with the applicable social norms. However, it is not
straightforward to define these rules and incorporate them in an agent’s
policy. Particularly because social norms are often implicit and envi-
ronment specific. In this paper, we propose a novel iterative approach
to extract a set of rules from observed human trajectories. This hybrid
method combines the strengths of inverse reinforcement learning and
inductive logic programming. We experimentally show how our method
successfully induces a compact logic program which represents the
behavioral constraints applicable in a Tower of Hanoi and a traf-
fic simulator environment. The induced program is adopted as prior
knowledge by a model-free reinforcement learning agent to speed up
training and prevent any social norm violation during exploration and
deployment. Moreover, expressing norms as a logic program provides
improved interpretability, which is an important pillar in the design of
safe artificial agents, as well as transferability to similar environments.

Keywords: Inductive Logic Programming, Inverse Reinforcement Learning,
Answer Set Programming, Constraint Inference, Constrained Markov Decision
Process.

Springer Nature 2021 BTEX template

2 Inverse Reinforcement Learning Through Logic Constraint Inference

1 Introduction

Over the last few years, the application domain of robots has expanded from
installations in caged factory environments to deployments in environments
shared with humans. The behavior of humans in these environments is typ-
ically guided by explicit (rules) and implicit regulations. We jointly refer to
both types of regulations as social norms which represent shared standards
of acceptable behavior [1]. Asides from reaching a goal, all (artificial) agents
should respect the applicable social norms to assure safety and predictability
[2].

Reinforcement learning (RL) is a general framework for decision making
and control. It is a training method for learning a mapping from states to
actions (i.e. policy) in order to maximize a predefined reward signal. However,
fully defining the desired behavior of an artificial agent by a single reward
function is often a burdensome task [3-5]. The framework of constrained rein-
forcement learning specifies an agent’s desired behavior by a reward function
in combination with a set of hard constraints. For instance, the reward func-
tion can be expressed in terms of the distance from the goal and the time
needed to reach it, complemented with a hard constraint to not crash into
other vehicles. In the Markov decision process representing the environment,
constraints are states or state-action pairs that in principle could be reached
by a certain trajectory, but that are considered as invalid by latent information
about the environment, such as social norms. In contrast with reward func-
tions, hard constraints provide strong safety guarantees such that a constrained
state will never be visited, this makes them better suited for decision making
in safety-critical environments. Because social norms are often implicit and
environment-specific, it is complicated to define them as a set of constraints. A
promising direction is to learn social norms from human observations. To this
end, recent studies have shown principles of inverse reinforcement learning [6]
can be adopted to infer both reward function and constraints from observed
trajectories [7, 8].

A shortcoming of current methods is the lack of interpretability and hence
verifiability of what an agent has actually learned. When learning from human
observations in the wild, there is a chance that the dataset will contain tra-
jectories of humans violating to a smaller or larger extent the social norms,
e.g. tailgating, accelerating when the traffic light turns orange, etc. To guar-
antee safety, we should be able to validate which aspects were extracted from
the observations since we want to refrain an agent from picking up undesired
behavior in the dataset. Although a single constraint, represented by a state-
action pair, could be easily interpretable, it is difficult to obtain a general view
on the environmental restrictions from a large set of constrained state-action
pairs. Another limitation is the difficulty to transfer learned constraints in
one environment to a similar environment, since constraints are defined in the
state-action space of a particular environment. We hypothesize that defining
constraints in terms of more generalized, human interpretable concepts would
improve transferability. For example, when inferring constraints from a traffic

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 3

environment, all states corresponding to off-road positions should be added to
the set of constraints. However, when humans learn to drive, we use the con-
cept “road” and learn a single rule which prohibits us to drive off the road.
In contrast with the set of constraints defined as prohibited state-action pairs,
this rule also applies in traffic environments other than the one which was used
to learn the rule.

Inductive logic programming (ILP) [9] offers a computational framework
to induce a logic program (i.e. hypothesis) which generalizes a set of training
examples. ILP also provides the possibility to specify background knowledge as
a logic program. Because the induced hypothesis is comprehensible by humans
and providing background knowledge allows us to introduce human concepts,
ILP could be a worthy alternative for IRL and constraint inference. However,
ILP requires both positive and negative examples while we consider obser-
vations only consist of positive examples. Negative examples correspond to
anomalous behavior which is rarely observed in real-world environments or
would be dangerous to collect. If the observations contain anomalous behavior,
this will be reflected in the induced rules hence can be detected.

In this paper, we combine ILP and constraint inference and propose a
hybrid method to infer restrictive rules (which represent social norms) from
observations (positive examples) and represent them by a logic program. The
presented method is an iterative procedure, where each iteration consists of
an inference and an induction stage. During inference, a constraint is inferred
from the observed trajectories and added to a set of constraints. During induc-
tion, a logic program (hypothesis) is induced which generalizes the observed
trajectories (positive examples) and the set of inferred constraints (negative
examples). The hypothesis is then translated back to the state-action space
and used to update the model of the environment for the next iteration. Since
the learned program is expressed in formal logic, we can interpret and validate
which aspects of the observed behavior are extracted from the observations,
and adjust the induced hypothesis if necessary. We show our method is able to
induce a compact set of rules which can be used to accurately classify behav-
ior to be valid or invalid. We provide empirical evidence that the learned set
of rules can be provided as prior knowledge to a model-free RL agent. This
reduces the required number of episodes until convergence and prevents any
social norm violation both during training and deployment. An ablation study
demonstrates the importance of the induction step. Furthermore, experimental
results confirm that expressing constraints in a symbolic language facilitates
knowledge transfer to similar environments.

The remainder of this article is structured as follows. Section 2 introduces
the foundations of this work: (constrained) Markov decision processes, inverse
reinforcement learning, answer set programming and inductive learning of
answer set programs. Section 3 elaborates on our proposed method. The pro-
posed method and the induced hypotheses are tested and evaluated in section
4. Section 5 provides an overview of related work. Concluding remarks and
future directives are given in section 6.

Springer Nature 2021 BTEX template

4 Inverse Reinforcement Learning Through Logic Constraint Inference

2 Background

2.1 Constrained Markov Decision Process

A finite-state Markov decision process (MDP) is a model for sequential deci-
sion making defined as M = (S,{As}, G, Pirans, Po, R, ¢) [10]. S is a finite set
of discrete states and A a finite set of discrete actions. {As} denotes the set
of sets of available actions for all states, such that A; C A. G C S represents
the set of goals as a subset of all states. Pians : S X A X S +— [0, 1] denotes the
transition probability distribution where Pians(s’ | s,a) expresses the proba-
bility of transitioning to state s’ when performing action a while in state s.
Py : S x G+ [0,1] denotes the probability distribution over initial states for
each goal. R: S x A xS x G+— R is a goal-dependent reward function where
R(s,a,s’,g) denotes the scalar reward the agent receives for taking action a
while in state s, transitioning to state s’ and aiming for goal g. We consider an
agent interacting with the environment at discrete time steps ¢ generating a
sequence of transitions called a trajectory 7 = ((s1, a1, 82), ..., (ST—1,a1-1, 5T))
of length T'. At every time step, the agent selects its action based on a goal-
conditioned policy 7 : § x G — A. Solving the MDP corresponds to finding
the optimal policy 7* which maximizes the expected total discounted reward
for all goals g € G:

T

J(7) = Ernr Z VtR(Su Qt, St41, 9) (1)
t=0

with v € [0, 1]. We define a constrained Markov decision process (CMDP) M
as a nominal (i.e. unconstrained) MDP M imposed with a set of constraints
C C S x A. We impose a set of constraints C' on M by restricting the set of
valid actions in each state A,. The set of valid actions in state s in the CMDP
M is defined as: AY = A, \ {a € A, | (s,a) € C}. It is possible that due
to the imposed constraints, for some states the set of valid actions becomes
empty A, = (). Such states are referred to as empty states and the set of empty
states is denoted by Sempty-

2.2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) takes as input an MDP without reward
function M\ R and a set of demonstrated trajectories T = (71, ..., Ty) sampled
from an unknown expert policy 7g. ¢ : S x A — R¥ defines a function which
maps a state-action pair to a k-dimensional feature space where ¢(s, a) denotes

T—1
the feature vector representing state-action pair (s,a). ¢(7) = > d(s¢, ar)
=1

defines the feature representation of a trajectory as the sum of the features
of all state-action pairs in that trajectory. The goal of IRL is to learn a
reward function R which best explains the observed behavior. Feature expec-
tation matching provides a general method for solving the IRL problem by

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 5

matching the expected features of the trajectories obtained by optimizing the
recovered reward with the features of the trajectories provided by the expert:
min4[E(o(7) | mr) — E(¢(7) | mg)][11]. Here 7z, denotes the learner’s policy
which is implied by the learner’s reward R, the expert policy g is reflected
by the expert’s trajectories 7. However, the problem of IRL and expected fea-
ture matching is ill-posed since many reward functions in the set of all reward
functions can explain a finite set of sub-optimal demonstrations, thus induce
the same expected features. Maximum entropy (MaxEnt) IRL [12] provides a
general probabilistic framework to resolve this ambiguity. The expected fea-
tures are expressed as a sum over trajectories: E(¢(7) | mp) = > Pr, (7)0(7)

=
with Py, (1) the probability of trajectory 7 under the learner’s policy 7r,. The
probability of a trajectory is assumed to be exponentially proportional to the
reward earned by that trajectory: Pr(7) efi(7) . Then, the MaxEnt principle
proposes to choose the distribution with minimal bias by selecting the trajec-
tory distribution Py, (7) with maximum entropy which matches features with
the expert’s trajectories.

2.3 Answer Set Programming

Answer set programming (ASP) is a declarative problem solving approach [13].
In ASP anormal rule r is defined as h:-b1, ..., by, notby, 41, ..., notb,. The head
of the rule head(r) is an atom h and b; are literals which constitute the body
of the rule. We define body(r)* = {b1, ..., } and body(r)™ = {bm+t1, - bn }-
The rule should be read as if all atoms in body(r)* are true and all atoms
in body(r)~ cannot be proven to be true then h should be true. Body-less
rules are referred to as facts, in this case the :- sign will be dropped. An
integrity constraint is defined as a headless rule: :- by, ..., b,. This means that
no solution can satisfy simultaneously b; and by and ..., b,. A choice rule is
of the form I{hy; ...; hp}u - by,...,b, with [and u being integers such that
0 <1< u<n At least | and at most u terms of {hy,..., h,} can be true if
the body of the rule is satisfied. The body of integrity constraints and choice
rules can also contain negated literals. An answer set program P is a finite
set of normal rules, integrity constraints and choice rules. Given P, the Her-
brand base B; is the set of all ground (variable-free) atoms constructed from
predicate names and constant symbols that occur in P. The Herbrand inter-
pretations of P correspond to the set of interpretations which cover all possible
combinations of atom assignments. To solve an answer set program P, the pro-
gram is first transformed to a logic program without variables (grounding). An
interpretation X is a model of a propositional logic program, if head(r) € X
whenever body(r)* C X and body(r)™ N X = 0 for every r € P. However in
ASP, the semantics of a program are given by its stable models. An interpre-
tation X is a stable model of P, if X is the C-smallest model of the reduct
PX. The reduct PX of a program P relative to an interpretation X is defined
as: PX = {head(r) :- body(r)" | 7 € P, body(r)™ N X = 0}. In this work, we
adopt clingo [14] to ground and solve ASP programs.

Springer Nature 2021 BTEX template

6 Inverse Reinforcement Learning Through Logic Constraint Inference

2.4 Inductive Learning of Answer Set Programs

Inductive learning of answer set programs (ILASP) [15] is a system for learning
an ASP program, referred to as a hypothesis, from examples of what should
and what should not be an answer set. A partial interpretation e is a pair of
sets of atoms ("¢, e®™*¢) where e® represents the atoms which are true and
€™ the atoms which are false. A Herbrand interpretation X extends a partial
interpretation e iff e"¢ C X A e®*¢ N X = (. The input of the learning task
consists of an ASP program B representing background knowledge, two partial
interpretations denoted by the positive and negative examples £+ and E~
and a hypothesis space Sj; defined by a language bias M. The goal of ILASP
is to find a hypothesis H such that:

1. HC Sy.
2. Vet €e Et: 3A€ AS(BUH) s.t. A extends et.
3.Vem € E-: PA€ AS(BUH) s.t. Aextends e™.

Here, A represents a single answer set and AS(P) depicts the set of all answer
sets of a logic program P. The first condition states that the hypotheses H is
composed of rules from the hypothesis space Sj;. The second condition declares
the existence, for every positive sample, of at least one answer set of B U H
which extends that example. The third condition assures no answer set of BUH
extends any of the negative examples. If H meets all three conditions, H is an
inductive solution of the learning task defined by the 4-tuple: (Sys, B, BT, E™).

3 Method

In this section we formally describe the proposed method. Figure 1 shows a
single iteration of the algorithm applied to the towers of Hanoi domain. The
input consists of a nominal MDP M, a set of trajectories 7 in a constrained
MDP M€ with € the ground truth set of constraints which is unknown, an
ASP program B representing background knowledge about the environment
and a hypothesis space Sy, defined by a language bias M. The goal of our
method is to induce a hypothesis H, represented by an ASP program, which
covers all constraints in C. Because we consider a finite set of trajectories, a
state-action pair which is not observed can still be valid. We assume no invalid
state-action pairs occur in any trajectory. We propose an iterative procedure
where each iteration consists of a constraint inference and program induction
stage. The number of iterations n is a hyperparameter. First, the optimal
policy is learned in the nominal (unconstrained) MDP M. From this nominal
policy and the set of expert trajectories, one state-action pair is selected by
the principle of maximum likelihood [7] and added to the set of constraints
C. This is the state which has the highest likelihood under the nominal policy
but does not occur in any expert trajectory. Thus, a state which is not visited
by an expert but will likely be visited by an agent which is not aware of the
implicit rules in the environment. In the towers of Hanoi domain, the nominal
policy will induce behavior which moves the pile from the initial position to

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 7

)
c 1]; #p0s (80, (at(0,0,0), at(1,0,1), at(2,0,2)}, (1. p
#pos (pl, {at(0,0,0), at(1,0,1), at(2,2,0)}, (}).

#neg(n0, {at(0,1,1), at(1,1,0), at(2,0,00}, {}. E~

Inference
4-, Induction

1_17
y(0..2). B
x(0..2).
I . 1 disk(0..2).
1{at(D, Y, X) : y(Y), x(X)}1 :- disk(D).
... on(Dl, D2) :- at(Dl, X1, Y1), at(D2, X2, Y2),
. X1=X2, Y1>Y2, D1!=D2.
i #modeb (1, on(var(disk), var(disk))). M
4 % o #mod K)) -
#mode k)) .
Nominal policy _a W #modeb (1, var (disk)>var (disk)) .

Learn

update {As} . l 1/’71

I
=

Fig. 1: Overview of a single iteration of the proposed method applied to the
towers of Hanoi environment. First, an optimal policy is learned from the
nominal MDP M. During the inference step, a constraint is inferred from a set
of trajectories 7 and the nominal policy. The constraint is added to the set of
constraints C. The set of constraints and trajectories are mapped to positive
E7* and negative examples £~ using 1. From the examples, a hypothesis H
is induced using ILASP given background knowledge B and language bias M
(induction step). The answer sets of H U B are translated back to state-action
space with 1! and are used to update the set of constraints C. At last, the
set of constraints is augmented on M by updating the set of available actions
in each state {A;}.

the goal position without taking the rules into account. The optimal nominal
policy will first move disk 2 to the middle peg, move disk 1 to the middle
peg (on disk 2), move disk 0 to the right peg (this state corresponds to the
inferred constraint which is visualized in figure 1 because this state has the
highest likelihood under the nominal policy and does not occur in any of the
expert trajectories), move disk 1 to the right peg and finally move disk 2 to the
right peg. Next, ILASP induces a hypothesis from the set of constraints, which
serves as the set of negative examples, and the set of trajectories, which serves
as the set of positive examples. The set of constraints is updated by translating
the hypothesis back to state-action space, i.e. all state-action pairs which are
invalidated by the induced hypothesis are added to the set of constraints.
Finally, the updated set of constraints is augmented on the MDP by restricting
the available actions in each state {As}. The next iteration makes use of this
constrained version of the nominal MDP. Subsection 3.1 provides a formal
description on the constraint inference stage, i.e. how the most likely constraint
is selected using the observed trajectories. Subsection 3.2 presents the program

Springer Nature 2021 BTEX template

8 Inverse Reinforcement Learning Through Logic Constraint Inference

induction stage and the integration with constraint inference. The complete
algorithm is depicted in algorithm 1.

3.1 Constraint Inference

Since the set of observed trajectories is finite, the absence of a state-action pair
in the observations does not necessarily imply that this pair is invalid. To infer
the state-action pairs which are most likely invalid, we build on the principle
of maximum likelihood constraint inference [7]. More formally, Scobee et al.
propose an iterative process where each iteration a constraint ¢* € C is added
to the set of constraints C. This is the constraint which, when augmented on
the MDP, maximizes the likelihood of the observed trajectories. The constraint
space is defined as all possible state-action pairs: C = S x A. We consider a
CMDP M for which the set of constraints is initially empty. We define the
probability of a set of trajectories T as Ppqc (7). The maximum likelihood
objective is defined as:

¢ = arg max Pyjcue(T). (2)
ce

Following the model of maximum entropy [12], the probability of a set of trajec-
tories 7 is exponentially proportional to the reward earned by each trajectory

TeT:

Page (T) = ﬁ E[TeR(T)nMC(T). 3)

The indicator 1M (7) signifies if a trajectory 7 is valid in MC. The partition
function Z(C) is defined as the sum of the exponentiated rewards over the set
of all valid trajectories in MY, & c:

Z(C)= > M. (4)

TEE \ O

To make & c finite, only trajectories with length smaller or equal to the max-

imum planning horizon I' € N* are considered. To solve equation (2), Z(C')

should be minimized while not invalidating any of the observed trajectories.

Scobee et al. derive that this can be done by maximizing the sum of the expo-

nentiated rewards over all trajectories made invalid by augmenting a constraint

c on M. This set of invalid trajectories is denoted by §vicue- Given this, the
objective becomes:

¢” = argmax P (€jqoue)

st. T NEeue = 0.

This step comes down to adding the state-action pair to the set of constraints

which is not observed in any of the given trajectories but has the highest
probability under M¢. To determine the probability of a state-action pair, we

(5)

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 9

define the state-action visitation frequency:

Dyw =3 Dygnld | 91" (s'.a). (6)
g€eg

Where D, , denotes the single goal state visitation frequency which can be
calculated recursively:

Dy g = Z Z D g7(a | 8,9) Pirans(s' | 5, a). (7)

s€S aEAs

The final objective then becomes:

¢ =argmaxDs, s.t. (s,a) ¢ T. (8)

s,a

The single goal state visitation frequency Dy 4 is initialized with the goal-
conditioned initial state distribution Fy. Each iteration the goal-conditioned
policy is calculated using the backward pass of the MaxEnt IRL algorithm [12]:

Zs a,g
— thad] 9
(o] 5.9) = o (9)
with the state-action partition function Z, , , and the state partition function

Zs,4 defined recursively as:

Zs,a,g = Z Zs’,gptrans(sl ‘ s’a)eR(s,a,s',g) (10)
s'es
Zsg= Y Zsag (11)
a€Ag

Once a constraint ¢* is inferred, it is added to the set of constraints C' together
with all empty states. To prevent transitioning to an empty state, state-action
pairs (s, a) for which Pirans(s’ | s,a) > 0 and 8" € Sempty are also added to the
set of constraints. Earlier work [7, 8] assumes the reward function, which is
required to calculate the policy, is known or calculated using an IRL method.
To relax this restriction, we propose to infer a sparse reward function from the
observed trajectories such that the reward is 1 if the next state is a terminal
state in one of the observed trajectories, otherwise the reward is zero.

1 ifseT?

/ —
R(s,a,s',g9) = {0 otherwise. (12)

Here 77 denotes the set of states at the final time step of all trajectories where
the observed agent pursues goal g.

Springer Nature 2021 BTEX template

10 Inverse Reinforcement Learning Through Logic Constraint Inference

3.2 Program Induction

The goal of our work is to induce a hypothesis, expressed as an ASP program,
which explains the behavior of agents in an environment. In this subsection we
describe how constraint inference and ILASP can be integrated to generalize
the set of inferred constraints to a set of rules expressed in formal logic. The
input of ILASP consists of a set of positive examples E* and a set of negative
examples £~ an ASP program representing background knowledge B about
the environment and a search space Sp;. B and Sj; should be provided. The
set of positive examples originates from the observed trajectories 7 while the
set of negative examples is based on the set of constraints C'. However, ILASP
requires all inputs are expressed as first-order logic predicates and facts while
the observed trajectories and inferred constraints are defined in the MDP’s
state-action space. Because of this nonconformity, we define an environment-
specific mapping v from the state-action space to first-order logic. Thus, the
set of positive and negative examples can be formally defined as:

Y(s,a) € EY i (s,a) €T (13)
¥(s,a) € E~ : (s,a) € C. (14)

An example of 9 for the towers of Hanoi environment can be found in Figure
1. Running ILASP results in a hypothesis H which possibly generalizes the
given examples over a larger region of the state-action space. To benefit from
this generalization in the next iteration, we translate the ASP program H back
to the state-action space using the inverse mapping 1~ and update the set of
constraints C accordingly. The set of constraints is extended with the state-
action pairs which correspond to the interpretations which are an answer set
of B but are no answer set of B U H, i.e. the state-action pairs which are no
longer valid after imposing H on B. After 7 iterations, the hypothesis H is
returned. The complete procedure is depicted in algorithm 1.

4 Experiments

In this section we perform an experimental evaluation of the proposed method.
Subsection 4.1 provides a brief overview of the used environments. In subsec-
tion 4.2, a qualitative evaluation follows of the induced hypotheses. Subsection
4.3 covers a quantitative evaluation of the learned rules and the effect of the
hyperparameter n and the number of trajectories available. In subsection 4.4,
we provide a model-free RL agent with rules induced using our method as prior
knowledge. First, we examine to what extent this prior knowledge speeds up
the learning process. Next, we evaluate the applicability in safety critical envi-
ronments by measuring the empirical violation probability both during and
after training. At last, in subsection 4.5 we inspect the transferability of the
induced rules to other but similar environments.

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 11

Algorithm 1 Logic constraint inference algorithm

Input: nominal MDP M, expert trajectories 7T, search space Sys, background
knowledge B

Parameter: planning horizon I', number of iterations 7

Output: hypothesis H

1: O < @
2: for i < 0 ton do
3: for g € G do > Constraint inference
4 fort< 0 toI do
5 Zssa,9 < 22 Zs',gPrrans(s" | 570})6R(s,a,s 9)
s'esS
6: Zsg 2 Zsayg
a€A;

7: end for
8: n(a|s,g) + =222

| 5,9) 7.,
9: end for
10: while not converged do
11: Dy g > > Dsgm(als,q)Puans(s'|s,a)

seSacA;
12: Dy o < Y, Dy gm(d | s, g)IM7 (s, a)).
ge€g
13: end while
14: ¢ < argmax D, , s.t. (s,a) ¢ T
s,a

15: C+ CuU{c}

16: C+— CU{(s,a)}: 5 € Sempty,a € Ag

17: C+— CU{(s,a)} : Puans(s' | 5,a) > 0,5 € Sempty

18 BT« (T) > Program induction
19: E- «9(C)

2. H < ILASP(Sy,B,E*, E-)

21: C + v Y(AS(B) \ AS(BU H))

22: AY — A\ {a € Ay | (s,a) € C}

23: end for

24: return H

4.1 Environments

We conduct experiments in the towers of Hanoi environment (Figure 1)
and simulated traffic environments (Figure 2). We chose these environments
because the behavior of agents in these environments is constrained by formal
or informal rules.

Towers of Hanoi is a canonical recursive problem where a stack of disks
has to be moved from one place to another, without placing a larger disk on a
smaller one and only moving the upper disk of any stack. Although all rules
are explicitly known and could in principle be integrated upfront in the MDP
definition, the simplicity of this problem allows to illustrate the working of our
algorithm. In this environment, there is only one agent which plays the game.

Springer Nature 2021 BTEX template

12 Inverse Reinforcement Learning Through Logic Constraint Inference

(a) Traffic light controlled (b) Intersection with pri- (¢) Combination of 2a and 2b
intersection ority to the right

Fig. 2: The different SUMO traffic environments. The agents learn social
norms such as dealing with priority to the right and traffic lights, purely from
observed trajectories.

The state of the game is represented by the xy-coordinates of the three disks.
The available actions are the displacement of any disk on the top position of
one of the stacks to the top position of another stack. To establish a mapping
to first-order logic using 1, we use three instances (one for each disk) of the
predicate at (D, X, Y). This predicate evaluates true if disk D is at position
(X, Y). Disks are numbered in order of decreasing size, the disk for which D=1
corresponds with the largest disk.

For the second set of experiments, we constructed three traffic environ-
ments: an intersection with bidirectional traffic which is controlled by traffic
lights (Fig 2a), an intersection with unidirectional traffic where the priority is
given to cars coming from the right (Fig 2b) and an environment combining
both previous scenarios (Fig 2¢). In these environments, the cars represent the
different agents. From any position the agent can choose between 5 actions
which correspond to the 4 cardinal directions and standing still. The mapping
1 also uses these directions to map the xy-coordinate of an agent to a spe-
cific road, e.g. onRoad (north) signifies the agent is on the road on the north
of the intersection. The unary predicate beforeJunction denotes if the agent
is in front of a junction. The action of the agent is represented by the pred-
icate go. The state of the traffic light is represented by t1s0 and tlsl. If a
car is approaching from the right, the predicate carOnTheRight is true. The
ground truth rules (to be learned constraints) consist of not driving off-road,
giving priority to the right on a junction without traffic lights, stopping at
a red light and, in case of unidirectional traffic, not driving in the opposite
direction. These scenarios are built in the SUMO traffic simulator [16] which
comes with internal car control algorithms, representing the expert policy ng,
to generate realistic car trajectories. All possible (valid) trajectories are gener-
ated with the same probability and all results are averaged over 20 trials with
different random seeds.

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 13

4.2 Induced Hypotheses

In this subsection we carry out a qualitative evaluation of the induced hypothe-
ses. In the towers of Hanoi environment, only one rule is learned which states
that it is invalid that a larger disk V1 is on a disk V2:

:— V1 < V2; on(V1,V2).

Note that disks are numbered in order of decreasing size. For the towers of
Hanoi environment the background knowledge and search space are depicted in
Figure 1. For reasons of space, the complete background knowledge and search
space are omitted for the traffic environments. In the traffic environment with
priority to the right the following rules are induced:

:— not onRoad (V1) : dir(V1).

:— go(north); not onRoad(south).
:— go(south); not onRoad(north).
:— go(east); onRoad(south).

:— go(east); onRoad(north).

:— go(west).

:— carOnTheRight; not go(zero).

The first rule states that it is invalid for an agent to be off-road. This rule
makes use of a conditional literal and is equivalent to the conjunction of
not onRoad(V1) for all directions V1 (dir(V1) evaluates true if V1 is a vari-
able which represents a direction). The following four rules invalidate being in
a state on-road and transitioning to a state off the road. Since all roads in this
environment are unidirectional, the action of going west is invalid as stated by
the second last rule. The last rule represents the “priority to the right”-rule,
i.e. when there is a car on the right, the only valid action is go(zero) which
represents being stationary. The rules learned in the traffic light controlled
junction environment are displayed below:

:— not onRoad (V1) : dir(V1).

:— go(north); onRoad(west).

north); onRoad(east)

east); onRoad(south)

east); onRoad(north)

south); onRoad(east).

west); onRoad (south)

west); onRoad(north)

:— go(south); onRoad(west)

:— beforeJunction (west); go(east); tlsl.
:— beforeJunction (south); go(north); tls0.
:— beforeJunction (east); go(west); tlsl.
:— beforeJunction (north); go(south); tls0.

go (
go (
go (
go (
go (
go (

The first rule invalidates being off-road and the following 8 rules prohibit
transitioning to a state off-road, similar rules were induced in the environment

Springer Nature 2021 BTEX template

14 Inverse Reinforcement Learning Through Logic Constraint Inference
Q

go08 £06

~ ~

© 0.6 o

3 204

§0.4 é

20.2 g0-2

© ©

= 0.0 = 0.0

0 10 20 30 40 50 0 10 20 30 40 50
Number of trajectories Number of trajectories
(a) (b)

LI [™ P— Y 9 0.0157 o
503 i 2

) :)

2 g 2 0.010

£0.2 : 2

5 ; 5

o : = 0.005

v 0.1 o

Gl SNy = G \

0.0 = 0.000

0 10 20 30 40 50 0 10 20 30 40 50
Number of trajectories Number of trajectories

() (d)

- /_/\/_— 100
> >
2 0.9 - 50.99
~ —~
2 5
208 £0.98

071 e 0.97

0 10 20 30 40 50 0 10 20 30 40 50
Number of trajectories Number of trajectories

(e) ()
Fig. 3: False positive rate, false negative rate and accuracy of the induced rules
for the traffic light controlled intersection environment (3a, 3c, 3e respectively)
and for the intersection with priority to the right environment (3b, 3d, 3f
respectively) as a function of the number of observed trajectories. Mind the
different y-axis scale.

with priority to the right. The last four rules state cars have to stop at a red
traffic light.

4.3 Accuracy of the Learned Hypotheses

In this section, we validate the induced rules of the traffic environment by
calculating all answer sets of the ASP program represented by the union of
the background knowledge and the induced hypothesis. These answer sets
represent the state-action pairs which are considered valid by the induced

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 15

B[1 5 — 15 30
©

o

ﬁ
o

B 200 =

5] B

@ 5

2 g

N /
k] B

@ R

g

8 o =

g 2 4 6 8 10
O Number of iterations n

Fig. 4: Number of state-action pairs which are constrained by the inferred rules
for increasing values of 7). Line styles indicate the number of expert trajectories
available. Results are from the traffic light controlled intersection environment.

hypothesis and can hence be used to classify a state-action pair as allowed
or prohibited. We gather 10 000 trajectories from the SUMO simulator and
validated that all correct actions of cars in any of the possible on-road position
were observed at least once in this dataset. Accordingly, the ground truth
validity of a state-action pair is determined by the presence in at least one
of the 10 000 trajectories. We report three statistics. The false positive rate
(FPR) is the fraction of the state-action space that is incorrectly prohibited
by the set of induced rules. Accordingly, the false negative rate (FNR) is the
fraction that is incorrectly allowed. The accuracy is the ratio between the
sum of false positive and false negative state-action pairs divided by the total
number of state-action pairs.

We calculate these statistics for the traffic light controlled intersection and
the intersection with priority to the right environments for increasing num-
bers of trajectories (dataset sizes) and iterations 1. The results are depicted in
Figure 3. The FPR decreases with the number of observed trajectories. When
few expert observations are available, some allowed state-action combinations
may not be observed. If an allowed but unvisited state-action pair has high
likelihood under the nominal policy it will incorrectly be selected as a con-
straint which will lead to incorrect rules. When, for instance, in none of the
trajectories a car stopped in front of a red traffic light (because the light was
always green), the system could induce that it is invalid for a car to be in
front of a red traffic light. Provided that the number of iterations 7 is not too
small, small number of observations will result in a low FNR because rules
are inferred which invalidate large regions of the state-action space which also
include the true constraints. In our example, when the system infers the rule,
all states which include the agent in front of a red traffic light are invalid, it
also invalidates the true constraint of driving a red light. This phenomenon
can also be observed in figure 4 which depicts the number of state-action
pairs which are invalidated by the learned rules for increasing values of 1 and
number of expert trajectories. With fewer iterations n, fewer constraints are

Springer Nature 2021 BTEX template

16 Inverse Reinforcement Learning Through Logic Constraint Inference
30 " QL NI N QL
2 C-QL 2 C-QL
3 20! & — LCQL | 8¢ — LC-QL
& | e 2
101N L S RS o] S T

0 20 40 60 0 10 20 30
Number of episodes Number of episodes
(a) (b)
Fig. 5: Total cost received during training using Q-learning in the traffic light
controlled junction environment (5a) and the intersection with priority to the
right environment (5b).

inferred accordingly the induced rules invalidate less state-action pairs hence
a smaller FPR but a higher FNR. It is self-evident the number of constrained
state-action pairs increase when the number of iterations increase. Notably, in
the traffic light scenario of Figure 3c, the FNR first increases for smaller num-
ber of trajectories. Because the rules become less restrictive but the number
of observations is too limited, many state-action pairs are incorrectly allowed.
This is depicted in figure 4 by the green curve (15 trajectories) that lies below
the blue dash-dotted curve (30 trajectories). As more observations become
available, this effect disappears. This effect is less pronounced for the inter-
section with priority to the right environment. We attribute this to the lower
complexity of this environment with only unidirectional traffic on each road.
From these results we conclude there must be sufficient trajectories available
and the number of iterations should be high enough to induce a hypothesis
with a low FPR, low FNR and high accuracy.

4.4 Logic-Constrained Q-Learning

We evaluate to what extent the logic program induced by our method can be
integrated as prior knowledge in a model-free RL algorithm like Q-learning.
Both during training and deployment of RL agents in safety critical environ-
ments, we want to ensure the agent integrates in the multi-agent environment
and does not cause any harm or damage by violating the social norms and
rules. We guide the exploration process by restricting the available actions
based on the current state [17, 18]. The action space is restricted by first
translating the induced hypothesis to a set of constraints in state-action space
(algorithm 1 line 21). Next, the set of sets of valid actions {A} is restricted
using this set of constraints (algorithm 1 line 22). We will refer to this method
as logic constrained Q-learning (LC-QL). While this method is conservative, it
has the advantage state-action pairs which are forbidden by the induced logic
will never occur in any trajectory of the learning agent.

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 17

Table 1: Empirical probability of a rule violation during RL experiment.

Traffic lights Priority to the right
Train Test Train Test
QL 0.32£0.50 0.036+0.072 0.13£0.19 0.004340.0140
C-QL 0.25+0.44 0.011+0.039 0.094+0.15 0.0036+£0.0150
LC-QL 0.0+0.0 0.0+0.0 0.0+£0.0 0.0+£0.0

We compare our method with vanilla Q-learning (QL) and Q-learning con-
strained by a set of constraints obtained using only the inference step of our
algorithm (C-QL). Comparing LC-QL and C-QL should reveal the impor-
tance of the induction step of algorithm 1. We train both LC-QL and C-QL
agents with the same number of iterations 7. All agents adopt an e-greedy
exploration strategy during training (e = 0.05), but become fully determinis-
tic afterwards (e = 0). We adopt a learning rate of 0.9 and a discount factor
0.75. The Q-table is initialized with zeros. Experimental results are the aver-
age of 400 trained agents. We define the cost signal (negative reward) as the
Ll-distance from the agent’s position to its goal, which has a maximum of
4. Violating a ground truth rule (i.e. traffic regulations) incurs a cost of 10.
Figure 5 shows the total cost received by an agent trained for a different num-
ber of episodes in the intersection with traffic lights environment (5a) and the
intersection with priority to the right environment (5b). We conclude from
these results that constraining an agent with a logic program inferred using
our method leads to a considerable speed-up of the Q-learning convergence.
Using only constraint inference barely improves the agent’s required number
of episodes during training which confirms the importance of the induction
step. Moreover, we notice a much smaller variation in performance between
LC-QL agents. Table 1 shows the empirical probability of an agent violating
at least one rule during and after training for both intersections. Best results
are in bold. These results show only our method guarantees no rules will be
violated both at deployment and during exploration, thus, would qualify for
safety-critical applications. At last, we measured the execution time of the dif-
ferent steps of our algorithm, the results for the traffic light controlled junction
environment are depicted in figure 6. We observe that the induction step takes
up the largest part of the execution time, especially for large values of 7. The
green curve represents the time until convergence of LC-QL when provided
with rules inferred using our algorithm for different values of 7. Although our
method improves the speed to convergence when constraining a learning agent
with the learned rules (as shown in figures 5a and 5b) there is no overall time
saving compared to training an agent without prior knowledge.

4.5 Transfer Learning

At last, we tested to what extent rules from one environment can be transferred
to a second, similar environment. To this end, we designed a traffic situation

Springer Nature 2021 BTEX template

18 Inverse Reinforcement Learning Through Logic Constraint Inference
—_ 10

£300007 -..... Inference QL

£ Induction s 8 LC-QL (1)
‘g20000 — RL S & — LC-QL (2)

g = I TR DU [P LC-QL (1 + 2)
510000 e 4

[} 0o oDt 2

0 2 4 6 8 10 0 20 40 60
Number of iterations n Number of episodes

Fig. 6: Execution time of the differ- Fig. 7: Transfer learning experiment:
ent steps of our algorithm applied to total cost received in the combo envi-
the traffic light controlled intersection — ronment (see figure 2c¢).
environment.

Table 2: Empirical probability of a rule violation during transfer learning
experiment.

Train Test
QL 0.220+£0.180 0.024+0.025
LC-QL (1) 0.018+0.088 0.0+0.0
LC-QL (2) 0.004£0.008 0.0+0.0
LC-QL (1 + 2) 0.0+0.0 0.0+0.0

which combines elements from the traffic light controlled intersection and the
intersection with priority to the right environments. A snapshot of this envi-
ronment is shown in Figure 2c. Since the learned rules are expressed in terms
of human concepts which generalize multiple states and actions, it is straight-
forward to port these rules to another environment. The only manual work
required is to update the definition of predicates in the background knowledge
because for example the position of roads and intersections in the source and
target domain does not necessarily correspond with the same xy-coordinates
(symbol grounding). We compare an agent which learns from scratch (standard
Q-learning), an agent which is provided with rules induced from the traffic light
controlled intersection environment (LC-QL 1), an agent which is provided
with rules induced from the intersection with priority to the right environment
(LC-QL 2) and an agent which is provided with the rules induced from both
environments (LC-QL 1 + 2). Figure 7 depicts the total cost acquired dur-
ing one run by an agent. From this figure, we can conclude transferring rules
induced with our method to a similar environment can substantially reduce
the number of episodes required during training, even when the source domain
only contains a subset of the rules applicable in the target domain. For exam-
ple, the agent which only gets rules from source domain 2 (LC-QL (2)) has
not learned the rule of stopping at red traffic lights but still trains significantly
faster than the QL agent. Table 2 shows the empirical probability of one of
the agents violating a rule. Best results are in bold. Notably, an agent which

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 19

is only provided with a portion of the ground truth rules, is able to reduce the
empirical probability of a rule violation with one or two orders of magnitude
during training and even to zero during testing.

5 Related Work

The first definition of constrained MDP’s was provided by Altman [19] which
augments the MDP with a secondary cost function ¢ : S x A — R and a budget
a > 0. Solving this type of constrained MDP’s consists of finding a policy which
maximizes the expected total discounted reward J(m) such that J¢(7) < «
where J°(m) denotes the expected total discounted cost. However, solving this
class of constrained MDP’s is not trivial and research is still ongoing [20, 21].
Scobee et al. [7] proposed an alternative definition of constrained MDP’s where
constraints are defined as invalid state-action pairs, this relaxes the necessity
of sophisticated methods to solve the MDP. Hence, the definition of Scobee et
al. was evaluated to be best suited for this work.

Several approaches to infer constraints have been proposed. Robotic con-
straints are often specified as volumes in a 3-dimensional euclidean space or
as kinematic restrictions. Numerous methods were proposed to infer such geo-
metric constraints where demonstrations are provided by teleoperation [22] or
by a human guiding the robot [23, 24]. Another study focuses on inferring
sequential constraints which capture a task’s sequential structure [25]. Previ-
ous work [7, 26, 27] defines a constraint as a point in feature space which does
not occur during any of the observations but would induce a lower cost. They
argue that these points must be constraints, otherwise agents would not avoid
these points when minimizing their cost. Our work extends this principle by
reasoning about the inferred constraints such that constraints can be gener-
alized over larger regions in feature space. Malik et al. [8] propose a sample
based approximation of the work of Scobee et al. by estimating 1M with a
neural network. This approach scales constraint inference to large and contin-
uous state spaces. Glazier et al. [28], on the other hand, extend their method
to allow soft constraints which are points in feature space which are, in some
cases, valid. McPherson et al. [29] adopted the principle of maximum causal
entropy to extend the applicability to stochastic environments.

IRL often serves the goal of aligning an artificial agent’s behavior with val-
ues respected during demonstrations. Noothigattu et al. [30] propose to learn
two policies, one maximizing the reward through classic RL and one obeying
behavioral constraints through IRL. Next, a contextual-bandit-based orches-
trator is used to blend the two policies. Other work introduces an approach
to model the navigation behavior of interacting pedestrians in terms of a joint
mixture distribution over the trajectories of all agents [31]. Next, this model is
adopted by a robot to interact with humans in a socially compliant way. How-
ever, no existing work focuses on true interpretability of the learned concepts
which is, by our opinion, a critical aspect in the development of safe artificial
agents.

Springer Nature 2021 BTEX template

20 Inverse Reinforcement Learning Through Logic Constraint Inference

Our work is also related to safe RL as the induced hypothesis can be
adopted as external knowledge to avoid unsafe situations during the explo-
ration process. The exploration process can also be modified by initializing
the Q-function with recorded trajectories of a teacher [32]. Other work sug-
gests to decompose the Q-function in a task and a survival component [33].
The survival component is task-independent and is used to safely navigate the
environment. Other techniques take risks into account by adapting the opti-
mization criteria [34]. However, in contrast with the proposed method, these
techniques do not completely exclude the occurrence of an invalid state-action
pair. Related to our approach is the technique of a teacher giving advice to
the agent when unsafe situations could occur [18]. In our case the teacher is
represented by the learned rules which restricts the possible actions in cer-
tain states. Safety is also closely related to interpretability which is why other
research focuses on explaining RL policies. Coppens et al. [35] proposed a pol-
icy distilling algorithm which extracts a set of rules from a deep RL policy.
However, in contrast to our work, they assume a RL policy is already avail-
able. Alternatively, relational RL [36], learns an optimal policy starting from
a description of the environment based on objects and relations which makes
it interpretable “by design”. It is also possible to learn a reward function [37]
or a policy [38] in the relational domain, given expert demonstrations. How-
ever, these approaches build on supervised learning techniques which fail when
demonstrations are sub-optimal. Even though these relational RL models are
very expressive, training them is difficult which limits their applicability.

Other ILP techniques have also focused on inducing general rules from
observed traces. Inductive general game playing is a technique to induce rules
from traces from a wide range of games [39]. However, negative examples are
generated from the closed world assumption: all atoms which are not known
to be true are assumed to be false. We do not make this assumption since
there is a chance that a valid state-action pair is not observed in a finite set
of traces. Learning from interpretation transition [40] is a subclass of ILP
which learns a transition model from traces of a system. The Apperception
Engine [41] builds on this principle but imposes extra conditions of unity on
the induced logic program. Our work differentiates from this approach since
we are not interested in learning a conclusive causal theory from the observed
traces. Instead our method induces a compact set of rules to represent the
environmental restrictions on the behavior of agents.

6 Conclusion and Future Work

We showed that constraint inference and ILP are complementary and provided
a framework which integrates them. Thanks to constraint inference, there is
no need to collect negative examples while ILP offers the capability to gener-
alize sets of constrained state-action pairs to logic statements hence improve
interpretability and transferability. Our method learns a logic program from
observed trajectories and represents implicit restrictions on the behavior of

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 21

the observed agents. These restrictions correspond to the explicit and implicit
social norms applicable to the observed environment. We provided a Q-learning
agent with the learned rules as prior knowledge about the environment to align
its behavior with the applicable social norms and reduce the required number
of episodes during training. Moreover, since the learned rules are expressed
in formal logic, this facilitates validation by a human to assure no undesired
behavior is extracted from the observations. This is an important step towards
deploying autonomous agents in environments shared with humans.

Calculating the state-action visitation frequencies during the constraint
inference stage requires iterating over all states and actions. This also holds
for the backward pass which is used for calculating the nominal policy. In its
current inception, the framework is thus not scalable to larger environments.
However, instead of exactly calculating the state-action visitation frequen-
cies, we could estimate this by sampling trajectories from the nominal policy
and counting state-action visitations. To obtain the optimal nominal policy,
a deep model-free RL algorithm like Rainbow [42] or PPO [43] can be used.
We hypothesize that these measures will enable scaling the inference step to
more complex RL benchmarks. Another requirement is a description of the
background knowledge to introduce human concepts (e.g. roads, intersections,
traffic lights). To enable scalability of the induction step, it is important to keep
the hypothesis space limited. We hypothesize that an ego-centric representa-
tion of the agent’s state and action could facilitate this. Although Q-learning is
one of the foundational methods for model-free RL, other state-of-the-art deep
RL methods have outperformed Q-learning such as TRPO [44], PPO [43] and
Rainbow [42]. Providing logic rules as constraints to a deep RL agent is thus
an interesting future directive. The problem of optimizing constrained deep
RL methods is often formulated as a dual objective using Lagrangian multi-
pliers [20, 45]: maximize the reward (which represents the goal) and minimize
the cost (which represent the constraints). Representing the cost function by
the induced logic program would enable integrating our method with state-of-
the-art deep RL algorithms. Another possibility is using a “shield” [18] which
monitors the actions taken by the agent and corrects them when the agent
would violate a rule. Furthermore, when capturing real-life datasets, it is likely
that rule violations will be observed. The use of probabilistic logic to represent
weak constraints [28] could relax the assumption no constraint state-action
pairs can occur in the observed trajectories. Since we build on the principle
of maximum entropy IRL, our method only exactly holds for deterministic
environments. Adopting the principle of maximum causal entropy [46] is a
potential way to resolve this issue.

Springer Nature 2021 BTEX template

22 Inverse Reinforcement Learning Through Logic Constraint Inference

7 Declarations

7.1 Funding

This research was partially funded by the Flemish Government (Flanders Al
Research Program).

7.2 Conflicts of interest/Competing interests

The authors have no relevant financial or non-financial interests to disclose.

7.3 Ethics approval
Not Applicable.

7.4 Consent to participate
Not Applicable.

7.5 Consent for publication

Not Applicable.

7.6 Availability of data and material
The SUMO traffic simulator is available at https://www.eclipse.org/sumo/.

7.7 Code availability

The full code is available at https://gitlab.ilabt.imec.be/mwbaert/
constraint-inference.

7.8 Authors’ contributions

All authors contributed to the study conception and design. Material prepa-
ration, data collection, coding and analysis were performed by Mattijs Baert.
The first draft of the manuscript was written by Mattijs Baert and all authors
edited and commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

References

[1] Lapinski, M.K., Rimal, R.N.: An explication of social norms. Communi-
cation theory 15(2), 127-147 (2005)

[2] Christian, B.: The Alignment Problem: Machine Learning and Human
Values. WW Norton & Company, New York (2020)

https://www.eclipse.org/sumo/
https://gitlab.ilabt.imec.be/mwbaert/constraint-inference
https://gitlab.ilabt.imec.be/mwbaert/constraint-inference

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 23

3]

[4]

[5]

[15]

[16]

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané,
D.: Concrete problems in ai safety. arXiv preprint arXiv:1606.06565
(2016)

Russell, S.: Human Compatible: Artificial Intelligence and the Problem
of Control. Penguin, London (2019)

Everitt, T., Hutter, M.: Avoiding wireheading with value reinforcement
learning. In: International Conference on Artificial General Intelligence,
pp. 12-22 (2016). Springer

Ng, A.Y., Russell, S.J., et al.: Algorithms for inverse reinforcement
learning. In: Teml, vol. 1, p. 2 (2000)

Scobee, D.R., Sastry, S.S.: Maximum likelihood constraint inference for
inverse reinforcement learning. arXiv preprint arXiv:1909.05477 (2019)

Malik, S., Anwar, U., Aghasi, A., Ahmed, A.: Inverse constrained rein-
forcement learning. In: International Conference on Machine Learning,

pp. 7390-7399 (2021). PMLR

Muggleton, S.: Inductive logic programming. New generation computing
8(4), 295-318 (1991)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT
press, Cambridge (2018)

Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement
learning. In: Proceedings of the Twenty-first International Conference on
Machine Learning, p. 1 (2004)

Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K., et al.: Maximum
entropy inverse reinforcement learning. In: Aaai, vol. 8, pp. 1433-1438
(2008). Chicago, IL, USA

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solv-
ing in practice. Synthesis lectures on artificial intelligence and machine
learning 6(3), 1-238 (2012)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP
solving with clingo. CoRR abs/1705.09811 (2017)

Law, M., Russo, A., Broda, K.: The ilasp system for inductive learning of
answer set programs. arXiv preprint arXiv:2005.00904 (2020)

Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y.-P.,
Hilbrich, R., Liicken, L., Rummel, J., Wagner, P., Wiefiner, E.: Micro-
scopic traffic simulation using sumo. In: The 21st IEEE International

24

[25]

[26]

[27]

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference

Conference on Intelligent Transportation Systems. IEEE, 777 (2018).
https://elib.dIr.de/124092/

Garaa, J., Fernandez, F.: A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research 16(1), 1437-1480 (2015)

Alshiekh, M., Bloem, R., Ehlers, R., Kénighofer, B., Niekum, S., Topcu,
U.: Safe reinforcement learning via shielding. In: Thirty-Second AAAI
Conference on Artificial Intelligence (2018)

Altman, E.: Constrained Markov Decision Processes: Stochastic Model-
ing. Routledge, London (1999)

Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy
optimization. arXiv preprint arXiv:1805.11074 (2018)

Wachi, A., Sui, Y.: Safe reinforcement learning in constrained markov
decision processes. In: International Conference on Machine Learning, pp.
9797-9806 (2020). PMLR

Pérez-D’Arpino, C., Shah, J.A.: C-learn: Learning geometric constraints
from demonstrations for multi-step manipulation in shared autonomy.
In: 2017 TIEEE International Conference on Robotics and Automation
(ICRA), pp. 4058-4065 (2017). IEEE

Armesto, L., Bosga, J., Ivan, V., Vijayakumar, S.: Efficient learning of
constraints and generic null space policies. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1520-1526 (2017).
IEEE

Subramani, G., Zinn, M., Gleicher, M.: Inferring geometric constraints in
human demonstrations. In: Conference on Robot Learning, pp. 223-236
(2018). PMLR

Pardowitz, M., Zollner, R., Dillmann, R.: Learning sequential constraints
of tasks from user demonstrations. In: Humanoids, pp. 424-429 (2005)

Chou, G., Berenson, D., Ozay, N.: Learning constraints from demonstra-
tions. arXiv preprint arXiv:1812.07084 (2018)

Chou, G., Ozay, N., Berenson, D.: Learning constraints from locally-
optimal demonstrations under cost function uncertainty. IEEE Robotics
and Automation Letters 5(2), 3682-3690 (2020)

Glazier, A., Loreggia, A., Mattei, N., Rahgooy, T., Rossi, F., Ven-
able, K.B.: Making human-like trade-offs in constrained environments by
learning from demonstrations. arXiv preprint arXiv:2109.11018 (2021)

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 25

29]

[30]

31]

[32]

McPherson, D.L., Stocking, K.C., Sastry, S.S.: Maximum likelihood
constraint inference from stochastic demonstrations. In: 2021 IEEE Con-
ference on Control Technology and Applications (CCTA), pp. 1208-1213
(2021). IEEE

Noothigattu, R., Bouneffouf, D., Mattei, N., Chandra, R., Madan, P.,
Varshney, K., Campbell, M., Singh, M., Rossi, F.: Interpretable multi-
objective reinforcement learning through policy orchestration. arXiv
preprint arXiv:1809.08343 (2018)

Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W.: Socially com-
pliant mobile robot navigation via inverse reinforcement learning. The
International Journal of Robotics Research 35(11), 1289-1307 (2016)

de Lope, J., et al.: Learning autonomous helicopter flight with evolu-
tionary reinforcement learning. In: International Conference on Computer
Aided Systems Theory, pp. 75-82 (2009). Springer

Van Molle, P., Verbelen, T., Bohez, S., Leroux, S., Simoens, P., Dhoedt,
B.: Decoupled learning of environment characteristics for safe exploration.
arXiv preprint arXiv:1708.02838 (2017)

Geibel, P.: Reinforcement learning for mdps with constraints. In: Euro-
pean Conference on Machine Learning, pp. 646-653 (2006). Springer

Coppens, Y., Steckelmacher, D., Jonker, C.M., Nowé, A.: Synthesising
reinforcement learning policies through set-valued inductive rule learning.

In: TAILOR, pp. 163-179 (2020)

Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement
learning. Machine learning 43(1), 7-52 (2001)

Munzer, T., Piot, B., Geist, M., Pietquin, O., Lopes, M.: Inverse rein-
forcement learning in relational domains. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence (2015)

Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., Shavlik, J.: Imi-
tation learning in relational domains: A functional-gradient boosting
approach. In: Twenty-Second International Joint Conference on Artificial
Intelligence (2011)

Cropper, A., Evans, R., Law, M.: Inductive general game playing. Machine
Learning 109(7), 1393-1434 (2020)

Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transi-
tion. Machine Learning 94(1), 51-79 (2014)

26

[41]

[42]

[45]

[46]

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference

Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Making
sense of sensory input. Artificial Intelligence 293, 103438 (2021)

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dab-
ney, W., Horgan, D., Piot, B., Azar, M., Silver, D.: Rainbow: Combining
improvements in deep reinforcement learning. In: Thirty-second AAAI
Conference on Artificial Intelligence (2018)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region
policy optimization. In: International Conference on Machine Learning,
pp. 1889-1897 (2015). PMLR

Kalweit, G., Huegle, M., Werling, M., Boedecker, J.: Deep constrained
g-learning. arXiv preprint arXiv:2003.09398 (2020)

Ziebart, B.D., Bagnell, J.A., Dey, A.K.: Modeling interaction via the
principle of maximum causal entropy. In: ICML (2010)

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference 27

Appendix A Qualitative Results

This section provides the background knowledge B, the language bias M
defining the search space Sj; and the induced hypotheses H for the different
environments used in the experiments.

A.1 Towers of Hanoi

A.1.1 Background B

y(0..2).
x(0..2).
disk (0..2).

{at(D, Y, X) : y(Y), x(X)}1 :— disk (D).
on(D1, D2) :— at(D1, X1, Y1), D1!=D2
at (D2, X2, Y2), XI=X2, YI>Y2.

N O U W N

The first three lines define constants representing the x- and y-coordinates
and the disks. The rule on line 5 states, only one disk can be at a single
position defined with an x- and y-coordinate. The last rule defines the predicate
on(D1,D2) which evaluates to true when disk D1 is on disk D2.

A.1.2 Language bias M

1 #modeb (1, on(var(disk), var(disk))).
2 #modeb (1, var(disk)=var(disk)).
3 #modeb (1, var(disk)<var(disk)).
4 #modeb (1, var(disk)>var(disk)).

A.1.3 Hypothesis H

1 :— V1< V2; on(V1,V2).

A.2 Traffic Light Controlled Intersection
A.2.1 Background B

1 row(1l..5).
2 col(1..5).
3

4 dir(zero).
5 dir(north).
6 dir(east).
7 dir (south).
8 (

dir (west).

Springer Nature 2021 BTEX template

28 Inverse Reinforcement Learning Through Logic Constraint Inference

9

10 1{at(C, R): col(C), row(R)}1.
11 1{tl1s0; tlsl}1.

12 1{go(V) : dir(V)}1.

13

14 onRoad(zero) :— at(X,Y),

15 col(X), row(Y), X=3, Y=3.

16 onRoad(south) :— at(X,Y),

17 col(X), row(Y), X=3, Y<3.

18 onRoad(north) :— at(X,Y),

19 col(X), row(Y), X=3, Y>3.

20 onRoad(east) :— at(X,Y),

21 col(X), row(Y), X>3, Y=3.

22 onRoad(west) :— at(X,Y),

23 col(X), row(Y), X<3, Y=3.

24

25 beforeJunction (south) :— at(X,Y),
26 col(X), row(Y), X=3, Y=2.

27 beforeJunction (north) :— at(X,Y),
28 col(X), row(Y), X=3, Y=4.

29 beforeJunction(west) :— at(X,Y),
30 col(X), row(Y), X=2, Y=3.

31 beforeJunction (east) :— at(X,Y),
32 col(X), row(Y), X=4, Y=3.

Line 1 and 2 define the x- and y-coordinates. Line 4 to 8 define the directions
used to indicate actions and roads. The rule on line 10 states only one agent
can be at a single position. The rule on line 11 defines that the traffic light is
always in one of the two states: t1s0 and t1s1. The rule on line 12 assures an
agent can only move in one direction. The other rules are explained in figure
Al.

A.2.2 Language bias M

1 #constant (direction , zero).
2 #constant (direction , north).
3 #constant (direction , east).
4 #constant (direction , south).
5 #constant (direction , west).
6

7 Fconstant (cord,

8 #constant (cord,

10 #constant (cord,

(1
(2
9 #constant (cord, 3).
(4
11 #constant (cord, 5

— — — S

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference

beforedJunction(north)

onRoad(west)

onRoad(north)

o

beforeJunction(east)

—

beforeJunction(west)

=
|

onRoad(zero)

onRoad(south)

onRoad(east)

beforeJunction(south)

29

Fig. Al: Meaning of predicates in the traffic light controlled intersection

environment.

13 #modeb (1
14 #modeb (1
15 #modeb (1
16 #modeb (1
17 #modeb (1
18 #modeb (1
19 #modeb (1
20 #modec (1
21

22

onRoad (const (direction))).

t1s0, (positive)).
tlsl, (positive)).
go(const(direction))).

beforeJunction (const (direction))).
at (const (cord), const(cord))).

onRoad (var (dir))).
dir (var(dir))).

#max_penalty (50).

A.2.3 Hypothesis H

© 00 O Uk Wi+

:— not onRoad (V1)
:— go(north); onRoad(west

dir (V1).

8o (
8o (
8o (
go(south); onRoad(east
go (
go (
go (

north); onRoad(east
east); onRoad(south
east); onRoad(north

west); onRoad(south
west); onRoad(north
south); onRoad(west

)
)
)
).
).
)
)
)

Springer Nature 2021 BTEX template

30 Inverse Reinforcement Learning Through Logic Constraint Inference
10 :— beforeJunction(west); go(east); tlsl.
11 :— beforeJunction (south); go(north); tls0.
12 :— DbeforeJunction(east); go(west); tlsl.
13 :— beforeJunction(north); go(south); tls0.

A.3 Intersection with Priority to the Right
A.3.1 Background B

row(1..5).
col(1..5).

1{at(C, R): col(C), row(R)}1.
1{carOnTheRight; noCarOnTheRight }1.
1{go(V) : dir(V)}1.

0O Ui W

dir (zero).
dir (north).
10 dir (east).
(
(

Ne)

11 dir (south).
12 dir (west).

13

14 onRoad(zero) :— at(X,)Y), col(X), row(Y), X=3, Y=3.
15 onRoad(south) :— at(X,Y), col(X), row(Y), X=3, Y<3
16 onRoad(north) :— at(X,Y), col(X), row(Y), X=3, Y>3
17 onRoad(east) :— at(X,Y), col(X), row(Y), X>3, Y=3.
18 onRoad(west) :— at(X,Y), col(X), row(Y), X<3, Y=3.

The background knowledge is similar to the traffic light controlled intersection.
In this environment, the predicates carOnTheRight and NoCarOnTheRight are
introduced.

A.3.2 Language bias M

1 #constant (direction , zero).
2 #constant (direction , north).
3 #constant (direction , east).
4 #constant(direction , south).
5 #constant (direction , west).
6

7 #constant (cord,

8 +Fconstant (cord ,

10 #constant (cord ,

(1
(2
9 #constant (cord, 3).
(4
11 #constant(cord, 5

— — — S

Springer Nature 2021 BTEX template

Inverse Reinforcement Learning Through Logic Constraint Inference
13
14 #modeb (1, at(const(cord), const(cord)), (positive)).
15 #modeb (1, onRoad(const(direction))).
16 #modeb (1, go(const(direction))).
17 #modeb (1, carOnTheRight).
18 #modeb (1, onRoad(var(dir))).
19 #modec(1, dir(var(dir))).
20

21 #max_penalty (30).

A.3.3 Hypothesis H

:— not onRoad (V1) : dir(V1).

:— go(north); not onRoad(south).
:— go(south); not onRoad(north).
:— go(east); onRoad(south).

:— go(east); onRoad(north).

:— go(west).

:— carOnTheRight; not go(zero).

N I YR U
\

Appendix B Transfer Learning

31

As mentioned in the article, the meaning (grounding) of predicates can dif-
fer between the source and target domain. Below the updated background

knowledge is given used in the transfer learning experiment.

B.1 Background B

row (1..7).
col(1..7).

1{at(C, R): col(C), row(R)}1.
1{tls0; tlsl}1.

1{carOnTheRight; noCarOnTheRight }1.
1{go (V) : dir(V)}1.

0O Ui W

NeJ

dir (zero).
dir (north).
dir (east).
(
(

e
N = O

dir (south).
dir (west).

—_ ==
U~ W

onRoad (zero) :— at(X,Y), col(X), row(Y), X=6, Y=4.
onRoad (south) :— at(X,Y), col(X), row(Y), X=3, Y<4.

—
(=)

Springer Nature 2021 BTEX template

32 Inverse Reinforcement Learning Through Logic Constraint Inference

17 onRoad(north) :— at(X,Y), col(X), row(Y), X=6, Y>4.
18 onRoad(east) :— at(X,Y), col(X), row(Y), X>6, Y=4.
19 onRoad(west) :— at(X,Y), col(X), row(Y), X<6, Y=4.
20

21 beforeJunction (north) :— at(X,Y),
22 col(X), row(Y), X=6, Y=5.

23 beforeJunction (west) :— at(X,Y),

24 col(X), row(Y), X=5, Y=4.

25 beforeJunction(east) :— at(X,Y),

26 col(X), row(Y), X=7, Y=T.

27 beforeJunction (south) :— at(X,Y),

28 col(X), row(Y), X=7, Y=T.

	Introduction
	Background
	Constrained Markov Decision Process
	Inverse Reinforcement Learning
	Answer Set Programming
	Inductive Learning of Answer Set Programs

	Method
	Constraint Inference
	Program Induction

	Experiments
	Environments
	Induced Hypotheses
	Accuracy of the Learned Hypotheses
	Logic-Constrained Q-Learning
	Transfer Learning

	Related Work
	Conclusion and Future Work
	Declarations
	Funding
	Conflicts of interest/Competing interests
	Ethics approval
	Consent to participate
	Consent for publication
	Availability of data and material
	Code availability
	Authors’ contributions

	Qualitative Results
	Towers of Hanoi
	Background B
	Language bias M
	Hypothesis H

	Traffic Light Controlled Intersection
	Background B
	Language bias M
	Hypothesis H

	Intersection with Priority to the Right
	Background B
	Language bias M
	Hypothesis H

	Transfer Learning
	Background B

