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Background and Objective: As in vivomeasurements of knee joint contact forces
remain challenging, computational musculoskeletal modeling has been
popularized as an encouraging solution for non-invasive estimation of joint
mechanical loading. Computational musculoskeletal modeling typically relies
on laborious manual segmentation as it requires reliable osseous and soft
tissue geometry. To improve on feasibility and accuracy of patient-specific
geometry predictions, a generic computational approach that can easily be
scaled, morphed and fitted to patient-specific knee joint anatomy is presented.

Methods: A personalized prediction algorithmwas established to derive soft tissue
geometry of the knee, originating solely from skeletal anatomy. Based on a MRI
dataset (n = 53), manual identification of soft-tissue anatomy and landmarks
served as input for our model by use of geometric morphometrics. Topographic
distance maps were generated for cartilage thickness predictions. Meniscal
modeling relied on wrapping a triangular geometry with varying height and
width from the anterior to the posterior root. Elastic mesh wrapping was
applied for ligamentous and patellar tendon path modeling. Leave-one-out
validation experiments were conducted for accuracy assessment.

Results: The Root Mean Square Error (RMSE) for the cartilage layers of the medial
tibial plateau, the lateral tibial plateau, the femur and the patella equaled
respectively 0.32 mm (range 0.14–0.48), 0.35 mm (range 0.16–0.53), 0.39 mm
(range 0.15–0.80) and 0.75 mm (range 0.16–1.11). Similarly, the RMSE equaled
respectively 1.16 mm (range 0.99–1.59), 0.91 mm (0.75–1.33), 2.93 mm (range
1.85–4.66) and 2.04 mm (1.88–3.29), calculated over the course of the anterior
cruciate ligament, posterior cruciate ligament, the medial and the lateral
meniscus.

Conclusion: A methodological workflow is presented for patient-specific,
morphological knee joint modeling that avoids laborious segmentation. By
allowing to accurately predict personalized geometry this method has the
potential for generating large (virtual) sample sizes applicable for
biomechanical research and improving personalized, computer-assisted
medicine.
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1 Introduction

Osteoarthritis (OA) affects almost one out of 4 people globally
and represents one of the fastest growing socio-economic burdens in
the world (Hunter et al., 2020; Boer et al., 2021). Knee OA
constitutes 83% of the global disease burden for OA (Vos et al.,
2012). Although highly prevalent, researchers are only at dawn of
unravelling the complex interaction between both biomechanical
and systemic factors triggering disease onset and progression
(Sharma et al., 2010).

Methodologies to accurately measure in vivo joint contact forces
acting on the knee and to analyze soft tissue functioning are
currently lacking and hamper research progression. A valuable
approach that is increasingly being adopted, involves
computational musculoskeletal modeling to indirectly estimate
joint mechanics. This method allows for non-invasive estimation
of joint loading distribution while improving insight in
intersubjective anatomical variance when repeatedly performed.
While it has been previously shown that the results of these
models rely strongly on accurate anatomical information,
generation of such input structures is generally deducted from
manual segmentation of Computed Tomography (CT) and/or
Magnetic Resonance Imaging (MRI) (Marra et al., 2015; Kang
et al., 2017). However, repeated laborious manual segmentations
remain a substantial bottleneck of the personalized musculoskeletal
modeling workflow. In addition, manual segmentations contribute
to a higher rate of observer-related inaccuracies (Seim et al., 2008;
Bae et al., 2009). Furthermore, the frequent use of MRI is
complicated by a high cost and a low availability (Bae et al.,
2009). To date, these limitations impede the bench to bedside
translation and routine use in clinical practice.

An emerging approach to mitigate this problem is the
combination of computational musculoskeletal modeling with
statical shape analysis (van Houcke et al., 2020a; Pascoletti et al.,
2021). Aiming to bypass the aforementioned restrictions, Audenaert
and colleagues developed a validated pipeline for semi-automated
shape model-based segmentation of the lower limb based on
computed tomography (CT) imaging (van Haver et al., 2014a;
Audenaert et al., 2019a). Next, Van Houcke and colleagues
tackled the issue of personalized cartilage layer geometry
prediction by the development of cartilage thickness maps based
on a training MRI dataset and by building on the features of
simplicity and anatomical correspondence of geometric
morphometrics. Femoroacetabular cartilage geometry was thus
estimated according to hip joint morphometrics, avoiding the
manual segmentation inaccuracies and optimizing time-efficiency
(van Houcke et al., 2020a). For the inclusion of muscle and tendon
paths, Audenaert et al. overcame the hurdle of modeling deformable
soft tissue utilizing discrete elements rigid body spring models, again
relying on geometric morphometrics for the prediction of origin and
insertion (Audenaert and Audenaert, 2008; Audenaert et al., 2019b).

The combined methodology to describe bone, cartilage and soft
tissue at a population wide level was recently adopted for the ankle
joint by (Peiffer et al., 2022a). In this study, the techniques described

by Van Houcke et al. and Audenaert et al. were combined for
estimation of cartilage topography of the tibiotalar joint and
inclusion of the main ankle ligament paths (Audenaert et al.,
2019b; van Houcke et al., 2020a; Peiffer et al., 2022a). However,
no similar advancements have been made for the knee joint. Van
Dijck and colleagues developed a statistical shape model (SSM)
based on 524 knee joint MRI’s to predict cartilage thickness and
localization in the tibiofemoral joint. This model, however, lacks
inclusion of patellar bone and cartilage layer as well as the menisci
and the cruciate ligaments (van Dijck et al., 2018).

The recent introduction of SSM allows for efficient population-
wide analysis of shape as variance is compactly modeled and is an
established tool for medical image segmentation. Being able to
simulate large populations, the use of SSM improves
understanding of disease models and injury biomechanics.
Furthermore, the use of SSM enables patient-specific modeling
which facilitates the introduction of individualized medicine in
the clinical practice (Nauwelaers et al., 2021). However, an
inclusive, patient-specific computational knee joint model,
minimally relying on manual segmentation is currently lacking.

The aim of this study is to develop a generic computational
model that can easily be scaled, morphed and fitted to patient-
specific knee joint anatomy, avoiding laborious segmentation tasks
and improving accuracy of patient-specific geometry predictions.
This study builds further on in-house available expertise regarding
statistical shape modeling and soft tissue wrapping methodology
(Audenaert et al., 2019b; van Houcke et al., 2020a; Peiffer et al.,
2022a). The objectives of the current study are: 1. Patient-specific
prediction of the cartilage layer of the tibiofemoral and the
patellofemoral joint, 2. Prediction of the anatomy of the anterior
and posterior cruciate ligament, main knee ligaments and patellar
tendon, 3. Prediction of static meniscal anatomy, and 4. Validation
of patient-specific soft tissue prediction.

2 Materials and methods

2.1 Data collection

Two distinct imaging databases were used for the shape
modeling workflow. In particular, a first dataset consisted of CT
images, adopted for the SSM development and the description of
osteology, whereas soft tissue features were derived from a second
dataset, consisting of MR images.

For the description and parameterization of the osseous
structures, a total of 311 bilateral lower limb CT scans (training
sample n = 622) were derived of 181 male and 130 female non-
arthritic subjects. The average age of males and females was
respectively 67.8 (±10.8) and 69 (±13.3) years. Each scan
contained an average of 1864 slices with a pixel size
0.575 mm–0.975 mm. This imaging data were previously used in
the development of an articulated skeletal SSM of the lower limb,
including the knee joint (Audenaert et al., 2019a). A detailed
description of the articulated skeletal SSM generation and

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Van Oevelen et al. 10.3389/fbioe.2023.1055860

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1055860


validation in terms of specificity, compactness, generalizability,
accuracy and population coverage was previously published
(Audenaert et al., 2019a).

For the description and parameterization of soft tissue structures,
the extensive MRI database built by Van Hoecke et al. was used (Van
Hoecke et al., 2020b). This database consisted of 53 young and healthy
Caucasian men who underwent dedicated, high resolution series of hip,
knee and ankle joints in an unloaded position. The dataset contained
healthy Caucasian men aged between 17 and 25 years who were not
overweight with a mean total body length of 181.79 cm. Dedicated hip,
knee and ankle scans were taken using a Siemens® 3 Tesla MRI with a
pixel size of 0.469 mm–0.469 mm and a slice thickness of 0.5 mm (van
Houcke et al., 2020b; de Roeck et al., 2020). These dedicated scans were
then stitched using Materialise’s Interactive Medical Image Control
System (Mimics® v21.0, Materialise, Leuven, Belgium) in the formation
of an overview, full lower limb scan. Further details on data collection
and imaging acquisition were previously published (van Houcke et al.,
2020b).

Subjects included in both studies provided written informed
consent. An ethics committee of the Ghent University Hospital
(Belgium) approved both investigations.

2.2 MRI segmentation, landmark
identification and definition of structural
features

MR scan data were exported as Digital Imaging and
Communications in Medicine (DICOM) files and subsequently
imported in Mimics®. Osseous and cartilage anatomy was
extracted from all 53 cases (see section 2.2.1 and 2.2.2).
Identification of dedicated landmarks and structural features (e.g.,
thickness, height and width) used in ligament, patellar tendon and
meniscal anatomy prediction was performed on 10 cases. The used
cases were randomly selected from the complete dataset. All
calculations were completed in Matlab by using both custom-
made Matlab® scripts and the Matlab® plugin in the Mimics
software, and performed on a Dell Precision 5560 Laptop (Intel
Core i9 -11950H, 64 GB RAM, 64 bit).

2.2.1 Segmented osseous anatomy
The osseous anatomy was derived from the overviewing full

lower limb MRI scans, relying on SSM-based semi-automated
image segmentation. First, 300 points were manually determined,
randomly distributed over the cortical edges of the structures for
which segmentation is required (e.g., the femoral bone, the
patellar bone and the combined tibial-fibular bone). Second,
the SSM of the corresponding structure was fitted (van Haver
et al., 2014a; van Haver et al., 2014b; Audenaert et al., 2019a). For
fitting, a total of 50 principal components was retained, resulting
in a cumulative explained variance of 99.55%, 96.60% and 99.19%
for respectively the femur, the patella and the combined tibia-
fibula. These target meshes were thus dense corresponding
surface geometries provided by means of quasi-isometric
triangulated meshes consisting out of 21097, 3825 and
39197 vertices and 42188, 7646 and 78386 faces for
respectively the femur, the patella and the combined tibia with
fibula. Uniformly distributing the total of vertices over the

osseous structure, the average length of the triangle edges
equaled respectively 1.77 mm, 1.05 mm and 1.24 mm for the
femur, the patella and the combined tibia with fibula.
Audenaert and colleagues evaluated the accuracy of SSM-based
segmentation against manual segmentation based on the Average
Surface Distance (ASD) and the Hausdorff Distance (HD). The
ASD equaled 0.65 mm (SD 0.10 mm), 0.63 mm (SD 0.11 mm) and
0.76 mm (SD 0.18 mm) for respectively the femoral, tibial and
fibular bone. The HD equaled respectively 4.79 mm (SD
2.39 mm), 4.07 mm (SD 2.15 mm) and 3.76 mm (SD 1.17 mm).
Based on the proven generalizability of the model, accurate SSM-
based segmentation was obtained (Audenaert et al., 2019a). From
these triangulated meshes, the distal femur, the proximal tibia
and the patella were isolated and imported for further use in the
high resolution series of the knee in Mimics®.

2.2.2 Segmented cartilage anatomy
For all 53 cases, the cartilage layers of distal femur, proximal

tibia and patella were manually segmented on the dedicated high
resolution knee series. The contour editing tool in Mimics® was used
to deform the uniform osseous meshes of the femur, the patella and
the combined tibia-fibula, to no longer solely delineating the osseous
cortex but additionally comprising the cartilage layer. The Mimics®
contour editing tool applied a distance-based Gaussian deformation,
a type of free-form deformation, to provide a smooth contour edit
and to control locality. As such, it allowed for point correspondence
between the osseous mesh and the deformed mesh comprising the
cartilage layer (Yoshida et al., 2002).

2.2.3 Landmarks defining ligamentous and patellar
tendon anatomy

Ligamentous and patellar tendon origin and insertion sites were
manually selected. The selection was supported and guided by the
anatomical reference of Laprade et al. (LaPrade and Engebretsen, 2007;
James et al., 2015). To minimize the error related to manual landmark
identification, landmarks were first localized on MRI in 10 cases.
Subsequently, the location of the origin and insertion points was
established in relation to the bony surfaces of femur, tibia and
patella as nearest neighboring points were derived. Lastly, the
average origin and insertion was determined and annotated on a
reference template mesh. Non-rigid surface registration of the
reference template towards the SSM allowed for indices-based
landmark transfer within the osseous shape model while
maintaining anatomical correspondence (van Haver et al., 2014b).
Ligamentous thicknesses, later required for ligament modeling, were
obtained from literature (Nomura et al., 2005; Wilson et al., 2012;
Hedderwick et al., 2017; Ariel de Lima et al., 2019; Atkinson et al., 2022).
The described ligaments included the Medial Patellofemoral Ligament
(MPFL), the Lateral Patellofemoral Ligament (LPFL), the two strands of
the superficialMedial Collateral Ligament (sMCL) (e.g., an anterior and
posterior bundle), the Lateral Collateral Ligament (LCL), the
Anterolateral Ligament (ALL), the Posterior Oblique Ligament
(POL) and the Oblique Popliteal Ligament (OPL).

2.2.4 Landmarks and structural features defining
cruciate ligament anatomy

Similarly, origin and insertion sites of the anterior (ACL) and
posterior (PCL) cruciate ligament were manually selected, averaged
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and annotated on a reference template mesh, allowing non rigid
registration towards the SSM. Additionally, the thickness of the ACL
and PCL over their respective course from origin to insertion was
measured for every 10 slices on MRI, to describe local variation in
their respective radius.

2.2.5 Landmarks and structural features defining
meniscal anatomy

Similar to ligament and patellar tendon inclusion, the anterior
and posterior root of the medial and lateral meniscus were
subsequently manually selected, averaged and determined in
relation to the tibia anatomy. Following, corresponding nearest
indices values were derived to allow for landmark transfer within
the shape model. An inner and outer rim was generated based on
manually selected points on MRI, using the spline generation tool
incorporated in Mimics®. The meniscal height and width was
repeatedly measured from origin to insertion to describe the
triangular geometry of the meniscus and local variation herein.
For randomly selected points distributed over the outer rim, the
meniscal height was measured and the meniscal width was
defined as the Euclidean distance between the inner and outer
meniscal rim. A detailed description of this process is described in
Figure 1.

2.3Workflow for subject-specific, soft tissue
prediction

2.3.1 Cartilage thickness prediction
To determine the location of the cartilage layer, the previously

developed meshes of the osseous structures and the ones including
the cartilage layers were easily compared, as correspondence was
maintained following Gaussian-based contour editing inMimics®. A
total of 2221 vertices, 872 vertices, 875 vertices and 1572 vertices

were identified for respectively the distal femoral bone, the medial
tibia plateau, the lateral tibia plateau and the patellar bone. For every
case, the node-specific cartilage thickness was defined as the distance
of the subchondral bone to the cartilage surface, along the surface
normal. To smoothly attach the cartilage to the bone, the distances at
the edge vertices were adjusted to zero. As such, 53 case-specific
cartilage thickness maps were generated (Figure 2).

These thickness maps were averaged to develop a mean cartilage
thickness map. The cartilage geometry of any new shape was then
predicted by projecting the vertices, part of the articular surface,
along the direction of their normal over their corresponding
distance, extracted from the mean distance map. As previous
research has already demonstrated the correlation between
osseous size and thickness of the cartilage layers, the dedicated
distance maps were scaled according to the femoral length to
account for size differences between cases (Rissech et al., 2013;
van Dijck et al., 2018; Schneider et al., 2022). Thus, the cartilage
thickness does not solely depend on the morphology of the
underlying bone.

2.3.2 Meniscal anatomy prediction
Both menisci were modeled as mobile, elastic structures

accommodating to the shape of the femoral condyles and their
variable position relative to the tibia. The geometry of both
menisci was numerically simplified as triangular with varying
height and width. The previously derived height and width
measures were averaged and plotted against the relative outer
length of the meniscus (Figure 1). Polynomial functions of
increasing order were fitted and compared to the ground
truth, an over-fitted 20th degree polynomial, by means of the
Root Mean Square Error (RMSE). Evolution in the RMSE for
increasing order of the polynomial enabled the detection of the
optimal degree of polynomial fitting. Based on the coefficients
extracted from the optimal degree polynomial function, meniscal

FIGURE 1
(A) Axial view of the knee joint onMRI withmanually detected outer rims (red) and inner rims (light blue). The dark blue line represents the slice of the
coronal view. (B)Coronal view of the knee joint on MRI. The height (h) and width (d) of themeniscus weremeasured as shown. This process was repeated
over the course of the outer rim.
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height and width were calculated over the course of the meniscus
from anterior to posterior root. As such, this method allowed
for description of regional variation in meniscal triangular
geometry.

First and relying on previous work, a tube was elastically
wrapped from the anterior to the posterior horn enforcing an
offset equal to half the meniscal height. Tube formation, as
described by Audenaert and colleagues, was based on a
generalized cylinder model. Over the path of a spline,
connecting the anterior to the posterior meniscal root, the
point-dependent offset was imposed to avoid osseous and
cartilage penetration and thus force the tube to wrap around

the femoral condyle (Audenaert et al., 2009; Audenaert et al.,
2019b; Peiffer et al., 2022a). Second, according to the calculated
path and at equidistant interval, triangles were defined with
height and width derived from the above described polynomial
estimates, with the width projected towards the meniscal center
and the height orthogonal to this. The triangles, generated by
interconnecting the three projections per node were then logically
arranged to form a 3D mesh. Third, to correct for local
penetration and to fit meniscal geometry between femoral and
tibial cartilage, local meniscal morphometry was adjusted by
projecting penetrating meniscal nodes on the outer
osseous–cartilage surface (Figures 3, 4).

FIGURE 2
Sagittal view of the femoral condyle onMRI. The node-specific cartilage thickness was defined as the distance of the vertex (located on the blue line)
to the cartilage surface (red), along the vertex normal.

FIGURE 3
Representation of meniscal modeling. (A) A tube was wrapped elastically from the anterior to the posterior horn enforcing an offset of half the
meniscal height (h/2). A varying distance (d) is extracted for every node. (B) Triangles are formed by interconnecting the three points per node. (C)
Following correction for local penetration, the edges of the meniscus adapt to fit in between cartilage layers.
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2.3.3 Ligament and patellar tendon anatomy
prediction

Ligament geometry and path prediction was based on a
custom-made mesh wrapping algorithm as previously
described by (Audenaert et al., 2009; Audenaert et al., 2019b;
Peiffer et al., 2022a). This mesh wrapping algorithm was based on
path prediction of the psoas anatomy as described by Audenaert
et al. A finite number of springs formed an elastic membrane that
was iteratively released to progressively minimize the potential
energy while not permitting penetration of underlying structures
(Audenaert et al., 2019b). Peiffer et al. converted this technique
towards ligamentous modeling as elastic line segments rather
than membranes connected ligamentous origins and insertions.
Again, by progressively releasing the elastic segment, the
potential energy was minimized without permitting
penetration of adjacent structures. Penetrating nodes were
returned to the closest point on the penetrated surface.
Applying this technique for knee soft tissue modeling, knee
ligaments were wrapped around the osseous-
cartilage–meniscus meshes while surface penetration was
impeded. Following, a flat mesh was formed by

interconnecting the nodes (Peiffer et al., 2022a). Lastly, a
volume was added to the ligament description by assigning a
single, ligament-specific thickness over the course of the
ligament. This thickness was based on previously published
cadaveric studies and MRI measurements (Table 1) (Nomura
et al., 2005; Wilson et al., 2012; Hedderwick et al., 2017; Ariel de
Lima et al., 2019; Atkinson et al., 2022). The methodology was
repeated for the different knee joint ligaments. A more elaborate
description of the process details was previously provided by
Audenaert et al. and Peiffer et al. (Audenaert et al., 2019b; Peiffer
et al., 2022a).

Prediction and modeling of the patellar tendon is an
exception on the above described technique. On both the

FIGURE 4
(A) Frontal, (B) posterior and (C) medial view of femoral and tibial bone (yellow) with predicted cartilage layers (white) and menisci (pink). (D) Axial
view on the tibial plateau (yellow), with predicted cartilage layers (white) and menisci (pink).

TABLE 1 The assigned ligament-specific mid-substance thickness (in
millimeters), based on cadaveric studies and MRI measurements.

MPFL LPFL sMCL LCL ALL POL OPL

Thickness
(in mm)

2.90 1.80 2.10 2.20 1.50 1.00 1.44
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origin and insertion site a spline was defined connecting the
origin and insertion vertices respectively. Similarly as for
ligamentous path prediction, corresponding coordinates were
connected based on a custom-made mesh wrapping algorithm
while any penetration of the combined
osseous–cartilage–meniscus surface was corrected. As
corresponding points on a closed spline were connected, the
thickness of the ligament is inherent to the positioning of the
vertices and is therefore not an assigned value (Figure 5).

2.3.4 Cruciate ligament anatomy prediction
The cruciate ligaments were modeled as curved tubes with

variable radii in three dimensional space, based on estimating
Frenet-Serret frames along a centerline. First, the centerline of
the ACL was modeled from origin to insertion as a series of
connected spring elements (n = 15) and its was position
optimized based on a shortest path function, similar as for initial
ligament modeling (Audenaert et al., 2009; Audenaert et al., 2019b).
Connecting nodes between spring elements were spatially
constrained to a minimal offset similar to the cruciate ligament
width. Second, and contrary to previous ligamentous modeling,
regional variation in ACL thickness was appraised by low degree
polynomial functions, the degree of which was determined following
a similar sensitivity analysis as conducted for meniscal height and
width. Third, the ACL was comprised in the
osseous–cartilage–meniscus–ligament model to function as a
constraint for the course of the PCL. The PCL was similarly
modeled and thus wrapped around the ACL in its course from
origin to insertion (Figure 6).

A complete knee joint model was generated combining the
modeled structures, described in section 2.3 (Figure 7).

2.4 Validation of soft tissue anatomy
prediction

Validation of the predicted soft tissue anatomy relied on
leave-one-out experiments. The predicted and manually
detected anatomy was compared based on the Root Mean
Square Error (RMSE, square root of the average of all absolute
square distances), the Average Surface Distance (ASD, the
average of all the distances) and the Hausdorff distance (HD,
the maximum absolute distance).

2.4.1 Validation of cartilage thickness prediction
For all the cases, the predicted and manually segmented node-

specific cartilage thicknesses were compared (n = 53).

2.4.2 Validation of ligament and patellar tendon
anatomy prediction
2.4.2.1 Validation of ligamentous and patellar tendon
landmark identification

Manually selected ligament and tendon origin and insertion
surface areas were compared with the predicted surface areas (n =
10). The surface areas were delineated as curves on the osseous
structure. Curves were formed using a spline generating tool to
interconnect both the manually selected and the predicted vertices
on origin and insertion site.

2.4.2.2 Validation of ligament and patellar tendon geometry
prediction

Similar to the methodology described by Peiffer et al., the edges
of the main knee ligaments and patellar tendon were manually
identified on MR imaging (n = 10) (Peiffer et al., 2022b). A nearest

FIGURE 5
Frontal view of the knee joint. (A) Splines were formed interconnecting patellar origin and tibial insertion vertices. (B) Corresponding coordinates
were connected. (C) Tendon modeling was based on a custom-made mesh wrapping algorithm.
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neighbor algorithm was used to compare manually detected edges
with the edges of the predicted course.

2.4.2.3 Validation of cruciate ligament landmark
identification

The manually selected origin and insertion of ACL and PCL
were compared with the predicted origin and insertion (n = 10).

2.4.2.4 Validation of cruciate ligament geometry prediction
The edges of the cruciate ligaments were manually determined

on MR imaging and a nearest neighbor algorithm was used to
compare with the predicted ligamentous edges (n = 10).

2.4.3 Validation of meniscal anatomy prediction
2.4.3.1 Validation of meniscal landmark identification

The anterior and posterior root of the medial and lateral
meniscus were manually selected on MR imaging and compared
with the predicted anterior and posterior root (n = 10).

2.4.3.2 Validation of meniscal geometry prediction
Manually segmented medial and lateral menisci, unseen to the

model, were compared to the predicted medial and lateral meniscus
(n = 10) (Figure 8). The point-dependent error was averaged over
the cases and plotted to identify regions that contained most
variation.

FIGURE 6
Posterior view on the knee. (A) A centerline was generated connecting the femoral ACL origin and the tibial ACL insertion. (B) A tube with varying
radius was fitted around the centerline to model the ACL. (C) A second centerline was forced to wrap around the ACL when connecting the femoral PCL
origin and the tibial PCL insertion. (D) A tube fitted around the centerline with a varying radius formed the PCL.
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3 Results

3.1 Mean cartilage thickness maps

The average femoral cartilage thickness totaled 1.41 mm (SD 0.37,
range 0–3.08 mm), with local cartilage thickness maxima located at the
patellofemoral joint surface and the posterior condyles. Similarly, the
average cartilage thickness equaled 1.10 mm (SD 0.31, range
0–1.71 mm) and 1.19 mm (SD 0.34, range 0–1.89 mm) for
respectively the medial and lateral tibial plateau. For the patella, the

average cartilage thickness was 1.69 mm (SD 0.72, range 0–3.23 mm).
Local variation is shown in Figure 9.

3.2 Validation of soft tissue anatomy
prediction

3.2.1 Validation of cartilage thickness prediction
The largest error was observed for the prediction of the patellar

cartilage thickness with a median RMSE of 0.75 mm (range

FIGURE 7
(A) Frontal, (B) posterior, (C)medial and (D) lateral view of the knee joint. The femoral, tibial and patellar bone were depicted including the predicted
cartilage layer. The model contained the main knee ligaments, the patellar tendon (except in the frontal view), the medial and lateral meniscus and the
anterior and posterior cruciate ligament.
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0.16–1.11 mm), a median ASD of 0.60 mm (range 0.13–0.89 mm)
and a median HD of 2.05 mm (range 0.40–3.55 mm) (n = 53).
Smaller errors and in the same order of magnitude were observed for

prediction of tibial and femoral cartilage thickness prediction. The
findings were summarized in Table 2.

To localize the sites with the largest error in cartilage thickness
prediction, the point-dependent mean error is plotted relative to the
point-dependent mean cartilage thickness (Figure 10).

3.2.2 Validation of ligament and patellar tendon
prediction
3.2.2.1 Validation of ligamentous and patellar tendon
landmark identification

Errors in predicting the osseous origin and insertion sites by
landmark transfer were evaluated. The median RMSE ranged from
1.49 mm to 4.61 mm. Theminimal andmaximal error was described
respectively for the femoral origin of the LCL and the tibial insertion
of the anterior bundle of the sMCL. Detailed findings are presented
in Table 3.

3.2.2.2 Validation of ligament and patellar tendon geometry
prediction

The median RMSE in predicting the shape of the ligaments and
patellar tendon ranged from 0.27 mm to 1.04 mm. The largest
variation was observed in patellar tendon prediction with a
median ASD of 0.80 mm (range 0.74–0.97 mm) and a median
HD of 2.20 mm (range 1.64–2.84 mm). The smallest error was
observed for the POL with a median ASD of 0.23 mm (range

FIGURE 8
Axial view on the tibial plateau (yellow). The predictedmedial and
lateral menisci (pink) were superimposed on the manually segmented
medial and lateral menisci (grey).

FIGURE 9
Representation of the vertex-specific cartilage thickness on (A) themean femur, (B) themean tibia and (C) themean patella, extracted from the SSM.
The average cartilage thickness ranges from 0 mm (blue) to 3.23 mm (red).
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0.14–0.36 mm) and a median HD of 0.49 (range 0.29–1.07). These
and additional findings are summarized in Table 4.

3.2.2.3 Validation of cruciate ligament landmark
identification

The largest error in predicting the osseous origin and insertion
was observed for the tibial insertion of the ACL. The RMSE equaled
6.29 mm and the median error equaled respectively 5.65 mm (range
4.15–8.66 mm). Additional findings are summarized in Table 5.

3.2.2.4 Validation of cruciate ligament geometry prediction
Only small errors were observed in predicting cruciate ligament

geometry. The RMSE equaled 1.16 mm (range 0.99–1.59) and
0.91 mm (range 0.75–1.33) for respectively the PCL (Table 6).

Based on a sensitivity study the degree of polynomial fitting for
prediction of local variation in thicknesses from origin to insertion
for both the ACL and the PCL was determined. The optimal
polynomial fit was respectively a 2nd and 4th degree polynomial
fit (Figure 11). The measured and predicted cruciate thickness was
compared for validation purposes (Table 7).

3.2.3 Validation of meniscal anatomy prediction
3.2.3.1 Validation of meniscal landmark identification

The median RMSE in landmark prediction ranged from
2.71 mm to 3.75 mm. In general, a larger error was observed for
prediction of the location of the anterior root in comparison to the
prediction of the location of the posterior root. Detailed findings are
described in Table 8.

TABLE 2 Median RMSE, ASD and HD with range for tibial, femoral and patellar cartilage layer prediction.

Tibial cartilage Tibial cartilage Femoral cartilage Patellar cartilage

Medial plateau Lateral plateau

RMSE (mm) (range) 0.32 (0.14–0.48) 0.35 (0.16–0.53) 0.39 (0.15–0.80) 0.75 (0.16–1.11)

ASD (mm) (range) 0.26 (0.11–0.38) 0.29 (0.13–0.43) 0.31 (0.12–0.67) 0.60 (0.13–0.89)

HD (mm) (range) 0.80 (0.34–2.06) 0.90 (0.32–1.81) 0.96 (0.35–2.66) 2.05 (0.40–3.55)

FIGURE 10
Representation of the vertex-specific relative error in cartilage thickness prediction on (A) the mean femur, (B) the mean tibia and (C) the mean
patella, extracted from the SSM. Color-coding ranges from blue (absent error) to red (error equaling the point-dependent mean cartilage thickness).
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3.2.3.2 Validation of meniscal geometry prediction
Comparable errors were observed for the medial and lateral

meniscus. The median RMSE equaled respectively 2.93 mm (range
1.85–4.66) and 2.04 mm (range 1.88–3.29) (Table 9). The average
point-dependent error ranged from 0 mm to 5 mm. The local
variation in meniscal geometry prediction was largest for the
inner rim of the lateral meniscus and the anterior root of the
medial meniscus. The error was plotted in Figure 12.

Based on a sensitivity study the degree of polynomial fitting for
prediction of meniscal height and width was determined. For the
medial meniscus, height and width were plotted as respectively a 6th
and 4th degree polynomial function. For the lateral meniscus, height
and width were both plotted as a 4th degree polynomial function
(Figure 13). The degree of polynomial fitting was validated
comparing the measured and predicted meniscal height and
width (Table 10).

TABLE 3 Median RMSE, ASD and HD with range for the main knee joint ligaments and patellar tendon origin and insertion.

Origin MPFL
(patella)

LPFL
(patella)

sMCL anterior
bundle
(femur)

sMCL posterior
bundle (femur)

LCL
(femur)

ALL
(femur)

POL
(femur)

OPL
(femur)

PT
(patella)

RMSE (in
mm) (range)

2.82
(0.35–5.16)

3.06
(2.92–7.12)

2.08 (1.05–4.14) 2.22 (1.00–3.93) 1.49
(1.17–2.78)

3.71
(3.63–4.61)

2.66
(1.12–7.37)

2.71
(2.03–4.69)

2.78
(0.86–4.39)

ASD (in
mm) (range)

1.84
(0.20–4.79)

2.90
(2.35–5.87)

1.92 (0.70–4.09) 2.04 (0.72–3.52) 1.41
(1.13–2.61)

2.61
(2.02–2.70)

2.49
(1.03–7.33)

1.90
(1.49–4.31)

2.73
(0.77–3.76)

HD (in mm)
(range)

6.44
(1.31–9.87)

5.94
(5.41–12.33)

3.86 (2.22–7.62) 3.59 (2.14–5.62) 1.89
(1.81–3.47)

12.18
(11.33–13.88)

3.51
(1.89–8.05)

7.57
(4.78–9.51)

4.17
(1.81–7.62)

Insertion MPFL
(femur)

LPFL
(femur)

sMCL anterior
bundle
(tibia)

sMCL posterior
bundle (tibia)

LCL
(fibula)

ALL (tibia) POL
(tibia)

OPL
(tibia)

PT
(tibia)

RMSE (mm)
(range)

2.82
(2.37–5.42)

4.44
(4.13–6.88)

4.61 (2.71–7.08) 3.22 (2.65–13.36) 1.57
(0.16–2.91)

2.49
(1.84–3.11)

1.72
(1.66–3.01)

1.63
(1.36–3.24)

2.67
(0.79–6.06)

ASD (in
mm) (range)

2.37
(1.74–4.46)

4.42
(3.53–6.03)

3.49 (1.88–5.28) 2.56 (2.23–13.15) 1.45
(0.14–3.48)

2.39
(1.63–3.05)

1.55
(1.03–2.45)

1.46
(1.15–2.96)

1.80
(0.67–4.96)

HD (in mm)
(range)

5.95
(3.84–10.14)

6.86
(5.04–10.53)

10.05 (6.21–15.10) 5.83 (4.76–15.10) 2.41
(0.23–3.48)

3.33
(2.65–4.12)

4.67
(3.25–6.57)

2.90
(2.49–5.53)

5.26
(1.44–9.56)

TABLE 4 Median RMSE, ASD and HD with range for the main knee joint ligaments and the patellar tendon course.

MPFL LPFL sMCL anterior
bundle

sMCL posterior
bundle

LCL ALL POL OPL PT

RMSE (in
mm) (range)

0.46
(0.24–1.05)

0.34
(0.19–0.57)

0.44 (0.26–0.59) 0.40 (0.37–0.53) 0.47
(0.27–1.29)

0.51
(0.40–0.91)

0.27
(0.17–0.47)

0.43
(0.24–0.72)

1.04
(0.85–1.13)

ASD (in mm)
(range)

0.35
(0.23–0.84)

0.29
(0.17–0.40)

0.38 (0.25–0.57) 0.34 (0.30–0.44) 0.40
(0.25–1.03)

0.43
(0.34–0.68)

0.23
(0.14–0.36)

0.38
(0.21–0.57)

0.80
(0.74–0.97)

HD (in mm)
(range)

0.60
(0.34–1.63)

0.69
(0.31–1.64)

0.80 (0.39–1.12) 0.75 (0.65–0.98) 0.79
(0.35–2.63)

0.70
(0.58–1.70)

0.49
(0.29–1.07)

0.70
(0.42–1.48)

2.20
(1.64–2.84)

TABLE 5 The RMSE and the median error with range from minimal to maximal error for the ACL and the PCL origin and insertion.

Origin ACL (femur) PCL (femur) Insertion ACL (tibia) PCL (tibia)

RMSE (in mm) 2.70 2.25 RMSE (in mm) 6.29 2.97

Error (in mm) (range) 2.02 (0–3.84) 2.54 (0–3.14) Error (in mm) (range) 5.65 (4.15–8.66) 2.69 (0–4.83)

TABLE 6 Median RMSE, ASD and HD with range for the ACL and PCL course.

ACL PCL

RMSE (in mm) (range) 1.16 (0.99–1.59) 0.91 (0.75–1.33)

ASD (in mm) (range) 1.15 (0.89–1.39) 0.87 (0.72–1.26)

HD (in mm) (range) 1.60 (1.41–2.61) 1.35 (0.95–2.15)

TABLE 7 Median RMSE, ASD and HD with range between predicted and
measured thickness of the ACL and PCL.

ACL PCL

RMSE (mm) (range) 0.17 (0.06–0.48) 0.95 (0.64–1.42)

ASD (mm) (range) 0.14 (0.05–0.35) 0.88 (0.58–1.30)

HD (mm) (range) 0.27 (0.11–0.94) 1.36 (0.94–1.99)
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4 Discussion

We present a methodological workflow for the development of a
morphological knee model based on individual osseous morphology
to automate the prediction of soft tissue anatomy. Computational
models are on the rise for techniques to estimate joint kinetics,
however soft tissue inclusion generally depends on laborious manual
segmentation. For example, Dong et al. developed a three-
dimensional knee joint model combining osseous elements with
cartilage layers, cruciate and collateral ligaments, menisci and
tendon insertions, solely based on manual segmentations (Dong
et al., 2014). Similarly, Kang et al. generated a three-dimensional
knee joint model in the development process of a finite element
model to assess weight-bearing related deformation of the intra-
articular cartilage contact area (Kang et al., 2015). As knee joint
malalignment contributes to the onset and progression of joint OA,
Mootanah et al. predicted knee joint contact forces and pressures

depending on the amount of varus-valgus malalignment (Mootanah
et al., 2014). Non-etheless, the model generation is very time-
consuming and generalization to other cases and patient
geometries is not straightforward.

Aiming to avoid manual segmentation and allow for patient
specific analysis, we predict soft tissue anatomy relying solely on the
underlying osseous morphology and capitalizing on the advantage
of point correspondence and uniformly, isometrically distributed
meshes when using SSM (Dong et al., 2014; Mootanah et al., 2014;
Kang et al., 2015; Audenaert et al., 2019a). As a result, the extensive
workload related to manual segmentation to obtain patient specific
description of bony and soft tissue can be avoided (Audenaert et al.,
2019a). Furthermore, as all computations originate from skeletal
statistical shape modeling, and considering the generative power of
these SSMs, large virtual cohorts can be defined for population-wide
studies.

In analogy with a mesh node-specific cartilage thickness was
allocated and averaged over the cohort in the development of a
mean cartilage thickness map (van Houcke et al., 2020a). Previous
research has already demonstrated the correlation between
osseous size and cartilage layer thickness (van Dijck et al.,
2018; Schneider et al., 2022). Proven to be an accurate
estimator for total body length, we scaled the mean distance
map by the femoral length (Hauser et al., 2005). To avoid small
errors in underlying skeletal anatomy, possibly introduced by
SSM-based automated image segmentation, to influence the
validation process of cartilage thickness prediction, we

FIGURE 11
Polynomial fitting for ACL and PCL thickness prediction. Themedian thickness of the ACL (left) and PCL (right) is presented as the dark grey line. The
grey zone represents the values between P25 and P75. The light grey lines represent minimal and maximal values. The red line represents the thickness
based on a respectively 2nd and 4th degree polynomial function for the ACL and PCL.

TABLE 8 The RMSE and the median error with range from minimal to maximal error for medial and lateral meniscus anterior and posterior root.

Anterior root Medial meniscus Lateral meniscus Posterior root Medial meniscus Lateral meniscus

RMSE (in mm) 3.51 3.75 RMSE (in mm) 2.71 2.82

Error (in mm) (range) 3.31 (1.37–5.10) 2.91 (1.49–5.29) Error (in mm) (range) 1.78 (1.47–5.22) 2.45 (0–4.22)

TABLE 9 Median RMSE, ASD and HD with range for the medial and lateral
meniscal course.

Medial meniscus Lateral meniscus

RMSE (range) 2.93 (1.85–4.66) 2.04 (1.88–3.29)

ASD (range) 1.84 (1.21–3.26) 1.49 (1.30–2.40)

HD (range) 11.64 (7.97–17.09) 9.79 (6.09–14.43)
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compared the scaled, mean distance map to the case-specific
calculated distance map instead of comparing the predicted and
segmented cartilage surfaces (Seim et al., 2008; Bae et al., 2009).
Of note, a small amount of variation in total length of the
investigated population was observed, with a 95% confidence
interval ranging from 180.1 to 183.5 cm. As a result, little
variation was introduced in the imposed scaling factor.

The observed RMSE and ASD for femoral and tibial cartilage
prediction was smaller than the MRI pixel size of 0.469 mm, on
which our methodology was based. Although the prediction error
for the patellar cartilage layer was slightly larger than the pixel size, it
did not exceed 1.0 mm. Furthermore, when comparing to manual
cartilage segmentation, considered the ground truth, the observed
RMSE and ASD are in the same order of magnitude of previously
published results. Manual segmentation itself is thus subject to intra-
and inter-observer variation, inherent to the manual aspect of the
technique. Part of the reported error in this study is therefore
attributable to error related to manual segmentation (Cohen
et al., 1999).

Since a relatively large HD of 2.05 mm was observed for
patellar cartilage layer prediction, the zones with the largest
errors were identified. Therefore, the obtained point-
dependent mean error was then evaluated relative to the
point-dependent mean cartilage thickness. The zones with the
relatively largest local error are located near the edges of the
cartilage layers and are rather small. Cartilage thickness
prediction at the weight bearing sites, on the other hand,
present a relatively small absolute error of approximately
0.6 mm, 0.36 mm and 0.6 mm for respectively the femoral
bone, the tibial plateau and the patellar bone. In the absence
of complete knee joint DEA modeling, the influence of cartilage
thickness errors was evaluated for DEA modeling of the hip joint
based on the available research. Niknafs and colleagues compared
the relative decrease in peak contact stresses based on DEA
modeling for different types of cartilage modeling following

alignment optimization. For an acetabular cartilage thickness
ranging between 1.24 and 1.95 mm a relative decrease of 39%
was observed. For increased cartilage thickness, ranging from
1.29 mm to 2.87 mm, a greater relative decrease of 47% was
observed. Thus, a thicker cartilage layer results in decreased
peak stresses based on DEA modeling. Future research is
however necessary to evaluate the impact of the variation in
cartilage thickness on DEA-based stress calculations in the knee
joint (Cohen et al., 1999).

Subsequently, we predicted meniscal anatomy as mobile,
elastic structures connecting origin and insertion and being
able to accommodate to the shape of the femoral condyles and
their variable position relative to the tibia. As such, meniscal
anatomy prediction was based on the underlying osseous
geometry. Vrancken and colleagues manually segmented the
medial meniscus with a 6 months’ time period in between to
evaluate the inter- and intra-observer variability. They report a
relatively small RMSE of 0.29 and 0.27 for respectively the intra-
and inter-observer reliability, in comparison with the reported
errors in this study (Vrancken et al., 2014). However, the
described error in meniscal course prediction when compared
to manual segmentation is in the same order of magnitude as the
findings of Tack and colleagues, who augmented their
segmentation technique with the introduction of convolutional
neural networks (Tack et al., 2018). Regarding meniscal origin
and insertion prediction, we observe the largest prediction error
to be present in the anterior root of the medial meniscus. This
greater variation in anterior root error is explained as one out of
the ten cases presents an extremely anterior insertion of the root.
Variations in anterior root insertion of the medial meniscus are
previously investigated by De Coninck and colleagues who
identified three different bony insertion types on MRI. One of
these types is described as an insertion anteriorly of the anterior
tibial edge and is present in approximately 7% of the studied
population (de Coninck et al., 2017). This specific anatomical
variant was present in only one case of the cohort (n = 10) used for
development of the meniscal model. The increased mean error
positioned at the anterior root of the medial meniscus in the
leave-one-out experiment can in part be attributed to this
morphological variant. While currently not included in the
present model, introduction of this variant in a probabilistic
sense, is possible by simply changing the anterior root
insertion reference (Figure 14). In large virtual population
studies, different types of anterior root insertions can be
included with the probability of a type I, II or III insertion
linked to their respective population-wide prevalence.

Lastly, we included the cruciate ligaments, the main knee
ligaments and the patellar tendon, again aiming to avoid manual
segmentation and based on a fixed origin and insertion. To assess
the accuracy of the main and cruciate ligamentous origin and
insertion prediction, the described errors are evaluated against
the available literature. Van der Merwe and colleagues reported
MRI-based intra-observer agreements for manual femoral and
tibial landmark identification. The intra-observer agreements
ranged between 0.09 mm and 2.46 mm and between 0.06 mm
and 2.69 mm for respectively the femoral and tibial bone (van der
Merwe et al., 2019). Similarly, Esfandiarpour et al. studied the
variability in landmark identification on the femoral condyles.

FIGURE 12
Visual representation of the average point-dependent error for
themean predicted lateral (left) andmedial (right) meniscus. Themean
error was color-coded ranging from blue towards red, equaling
respectively an average point-dependent error of 0 mm
and 5 mm.

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Van Oevelen et al. 10.3389/fbioe.2023.1055860

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1055860


The standard error of measurement for medial and lateral
epicondyle landmark identification ranged from 0.41 mm to
0.78 mm, from 1.35 mm to 3.43 mm and from 1.03 mm to
4.71 mm in respectively the mediolateral, the craniocaudal and
the anteroposterior direction (Esfandiarpour et al., 2009). The
observed errors in this study are in the same order of magnitude
as the previously described variability in manual landmark
identification. Furthermore, for future application in DEA
modeling, the general direction of the ligamentous fibers is of

greater importance than absolute errors in origin and insertion
identification. For a ligamentous length of 5 cm, a 3 mm error
changes the orientation of the ligament with only 3.4°. Thus, in
the case of a prediction error in the order of magnitude of the
reported average errors, the fiber orientation will change only
minimally. However, we have to acknowledge that for greater
prediction errors, as reported by the Hausdorff distance, changes
in fiber orientation up to 20° are currently inevitable. The exact
impact of larger changes in ligamentous orientation for DEA-

FIGURE 13
Polynomial fitting for medial and lateral meniscal height and width prediction. The median height and width of the medial (left) and lateral (right)
meniscus is presented as the dark grey line. The grey zone represents the values between P25 and P75. The light grey lines representminimal andmaximal
values. The red line represents height and width of respectively a 6th and 4th degree polynomial function for the medial meniscus. For the lateral
meniscus, the red line represents twice a 4th degree polynomial fit.

TABLE 10 Median RMSE, ASD and HD with range between predicted and measured height and width of the medial meniscus (MM) and lateral meniscus (LM).

Medial meniscus (height) Lateral meniscus (height) Medial meniscus (width) Lateral meniscus (width)

RMSE (mm) (range) 3.88 (1.18–6.43) 2.96 (1.49–3.75) 2.77 (1.51–3.69) 2.27 (1.04–5.41)

ASD (mm) (range) 3.71 (0.97–6.06) 2.45 (1.17–3.27) 2.40 (1.27–3.20) 1.97 (0.89–4.28)

HD (mm) (range) 5.97 (2.44–9.47) 5.55 (3.63–7.12) 4.94 (2.68–7.33) 4.18 (1.91–10.78)
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based stress calculations in the knee joint is yet to be examined
(Peña et al., 2006).

Besides ligament origin and insertion, ligamentous thickness
over the course is imposed based on measurements from
cadaveric studies, with the exception of the thickness of the
cruciate ligaments. However, since soft tissue contains a
substantial amount of water, measurements based on cadaveric
specimens are possibly influenced by tissue dehydration (Haut
et al., 1998). For the prediction of cruciate ligament geometry, a
varying thickness is imposed based on MRI measurements. This
matches the cadaveric findings of Triantafyllidi and colleagues,
who described the thickness of the ACL varying from a small
femoral attachment towards a broad tibial attachment
whereas the PCL showed a large femoral and tibial attachment
with a smaller mid-substance (Triantafyllidi et al., 2013).
However, accurate assessment of ligamentous thickness and
osseous insertions based on MRI imaging is challenging
(Rachmat et al., 2014). Based on the results of the
validation experiments, we are able to predict cruciate
ligaments, main knee ligament and patellar tendon anatomy
with a large accuracy.

4.1 Strengths

We present a novel methodology for personalized, static knee
joint modelling, avoiding laborious manual segmentation tasks
and improving generalizability. Being less time-consuming, it
allows for easier applicability in a clinical setting. Starting from
CT or MRI imaging, the osseous anatomy of the individual
patient can easily be extracted, requiring only a few minutes to
manually allocate the osseous edges on imaging data. Following
the presented methodological pipeline, a comprehensive patient-
specific knee joint model is available in less than 10 min, while
avoiding additional manual interactions. However, with
emerging applications in machine learning, the process of
annotation and landmark identification can theoretically be
performed real-time. The translation to the routine clinical

practice by adopting these techniques will be the focus of
future work. For example, accurate anatomical models enable
generation of patient-specific instrumentation (PSI), recently
introduced in total knee arthroplasty (TKA) (Watters et al.,
2011; Reimann et al., 2019). Schotanus and colleagues
demonstrated a superior outcome in terms of component
alignment accuracy when relying on MRI-based PSI in
comparing to CT- or X-ray-based PSI’s. This was most
possibly a result of considering the cartilage layer in PSI
development (Schotanus et al., 2016). Avoiding manual
cartilage segmentation, Van Dijck and colleagues developed a
statistical shape modeling based tibiofemoral cartilage prediction
tool. Based on the reported RMSE and inter-observer variability,
they proved to outperform manual segmentation accuracy. As
such, accurate soft tissue predictions enable to develop PSI’s with
an accuracy equaling MRI-based PSI’s while avoiding time-
consuming manual soft tissue segmentation and MRI related
high costs (van Dijck et al., 2018).

Outside the clinical field of orthopaedics, computational
modeling of patient-specific knee joint morphology can
function as an input for Discrete Element Analysis (DEA).
DEA can be used for non-invasive estimation of intra-articular
joint contact stress (van Houcke et al., 2020a; Peiffer et al., 2022b).
The cornerstone, however, remains accurate, and preferably
individualized, inclusion of soft tissue and osseous
morphometrics. The extraction of detailed morphometrics
from MRI imaging relies on one of the three segmentation
methods, namely, manual, semiautomatic and automatic.
However, no numerical data are available comparing knee
joint DEA modeling based on manual segmentation to (semi-)
automatic segmentation. Previous research has proven the time
consuming aspect and the possibly large variability related to
manual segmentation. Furthermore, the robustness and
reproducibility of (semi-)automatic segmentation enables a
more efficient introduction of DEA modeling in clinics (Heye
et al., 2013). Therefore, differences in DEA-based intra-articular
stress predictions attributable to the type of underlying mesh are
subject for future research.

FIGURE 14
Coronal view on the tibial plateau (yellow). (A) Prediction of the medial meniscus according to the developed workflow demonstrates the type I
insertion as described by De Coninck and colleagues. (B) By changing the anterior root insertion reference, a medial meniscus with a type III insertion is
modeled (Mootanah et al., 2014).
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4.2 Limitations

An important limitation is the inclusion of a homogeneous
population of western European descent in our study.
Extrapolation to other populations is not advised since the
complex interaction between genes, culture and the
environment results in a population-based variation of
morphological features. Even more, our findings are based on
a group of men, aged between 17 and 25 years with a total body
length of 95% of the individuals ranging between 180.1–183.5 cm.
However we do not question the validity of the model, more
subjects should be included in future research to expand the range
of total body length of the investigated population. Moreover,
inclusion of additional subjects would allow to collect
supplementary metadata, such as activity level and body mass
index which are often discussed risk factors for cartilage loss, but
were unfortunately not collected for the current dataset
(Schneider et al., 2022).

Regarding meniscal inclusion, the menisci are solely statically
modeled. Since MRI scanning was performed with the knee in
fully extended position, uniquely validation of the meniscal
position in a non-weight bearing, fully extended position was
possible. As we hypothesized the menisci to adjust to the edges of
the combined osseous–cartilage structure during stance, this
concept could possibly be extrapolated to predict meniscal
position during knee flexion. Improved insight in meniscal
movement and validation of this concept requires currently
lacking, additional MRI scanning in different degrees of knee
flexion and should be subject to future research. However,
modeling the menisci as an elastic tube from a fixed anterior
to posterior root with varying height and subsequent allocation of
a varying width allows for effortless translation towards meniscal
modeling in different degrees of knee flexion.

Lastly, statistical modeling of soft tissue remains an
approximation of reality and is based on a limited amount of
samples to provide for the anatomical input in model
development (n = 10). The aim is to find the optimal balance
between including sufficient anatomical details on one hand and
preserving computational efficiency on the other hand. As the reality
is inevitably simplified, there is a definite need for validation tests to
ensure that an adequate approximation is achieved. Furthermore,
the pixel size of the used MR images influences the accuracy of
anatomical landmark identification. Non-etheless, the described
error range in this study is comparable to the relatively large
inter- and intra-observer variability related to MRI-based manual
soft tissue segmentations (Esfandiarpour et al., 2009; van der Merwe
et al., 2019).

5 Conclusion

In conclusion, we present an innovative methodological
workflow for personalized, static knee joint modelling. As soft
tissue prediction is based on the underlying anatomy, we avoid
laborious manual segmentation and allow for fast and personalized
geometry predictions and maintain an accuracy comparable to
manual soft tissue segmentation. Future research is necessary to

implement an accurate morphometric knee joint model including
the dynamic meniscus into clinical practice and thereby improve
patient specific models of knee surgeries.
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