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Abstract4

Dependable and accurate monitoring of elderly at home becomes crucial to
limit both the costs and human efforts of following up elderly for estab-
lishing a healthy care system. Human Activity Recognition (HAR) tools,
based on sensors installed in smart homes, will become an important tool
to provide useful information to the caregiver when something happens in
the house of an elderly and care is required. The current available detection
tools either exist out of interpretable knowledge-driven techniques or scal-
able data-driven ones. In this paper, a hybrid methodology that combines
both approaches is designed and evaluated to Track Activities by Linking
Knowledge (TALK). Both sensor data and their link to the relevant domain
knowledge about where those sensors are installed, the performed activities
that occur, and how the household is constructed, are generalised in a spe-
cific knowledge graph (KG) structure to represent continuous events. The
interpretable knowledge graph embedding technique Instance Neighboring
using Knowledge (INK) is then used to transform these events inside the KG
to a tabular format, which can be used by any traditional machine learning
classifier to create a HAR tool. The TALK methodology is evaluated on
two HAR datasets and shows (a) that TALK outperforms both traditional
automated data-driven as well as knowledge-driven techniques in terms of
predictive performance, and (b) how TALK can be easily used in a more
out of lab environment. All these results and the interpretable aspects show
that TALK can become an important tool to monitor elderly in their homes
efficiently, effectively and with less intrusive techniques.
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1. Introduction8

With the current ageing population, our care needs are shifting from9

acute to chronic care where people are living longer with one or more chronic10

diseases [1]. Such a chronic disease requires more complex care, requiring11

an estimated increase between 3.6% and 4.4% of elderly requiring beds in12

residential care centres by 2030 in Europe, Belgium [2].13

To uphold the rather optimistic scenario of “only” 3.6% beds, care deliv-14

ery should become more transmural and be facilitated at home and in service15

flats. By doing this, residential care can be reserved for those with severe16

care needs. Therefore, to maintain a sustainable healthcare model, the ac-17

cessibility of homecare should increase from 5.8% of the european population18

to 8% in 2030 [2].19

To facilitate this shift to homecare, dependable & accurate monitoring20

and follow-up of the elderly at home is crucial. Today, elderly are already21

increasingly equipped with Personal Alarm Systems (PAS) & monitoring22

devices (lifestyle monitoring, medical sensors, localization, etc.) [3]. These23

devices generate alarms that are forwarded to a call centre operator who is24

responsible for assessing the priority and context of the call and delegate it25

to appropriate caregivers. Whereas such generated alarms were previously26

efficiently handled in a hospital or nursing home due to direct access to the27

patient, they lead to a number of problems in the context of homecare, such28

as the inability to quickly assess the priority and validity of the alarms [4].29

As such, precious time is often lost trying to reach the elderly. In the cases30

that the elderly can be contacted through e.g phone, they are often unable31

to communicate their situation clearly. Also false alarms, which account32

for more than one-third of the calls, cause a huge amount of lost time for33

caregivers [5].34

As more and more households are equipped with smart Internet of Things35

(IoT) sensors, the context of what is happening when a personal alarm is36

generated can now be captured and analysed automatically to provide better37

care [6]. To deliver objective information to both the operator and caregiver38

when such an alarm is generated, the available monitoring devices in an39

ambient living setting can provide useful insights through Human Activity40

Recognition (HAR) models that help to analyse the sensor signals without41

the need of a nurse or operator.42
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More concrete, an operator could be alarmed that a resident needs some43

care. Based on the HAR results the operator could identify that certain daily44

routines, such as eating breakfast and showering were not performed. This45

information can already indicate more specialised care will be required and46

that, in this case, the chance of a false alarm will be rather low.47

However, the currently available HAR models either focus on the data48

generated by the monitoring devices or use so-called domain knowledge to49

derive the human activity [7]. A combination of both data- and knowledge-50

driven techniques are rather sparse and are mostly limited by advanced rule-51

based systems [8]. Moreover those combined approaches rarely take into52

account all domain related knowledge, to incorporate information about the53

sensor placements, the different rooms inside the house or the possible human54

activities that can occur inside those rooms. Combining both the available55

knowledge about a household and monitoring device together with the gen-56

erated data could not only be used to learn the detection of human activities,57

they could also provide more explainable results towards the nurse and op-58

erators and let them verify whether the predictions of such a model can be59

trusted.60

In this work, we present such a combined HAR model to Track Activities61

by Linking Knowledge (TALK). The TALK methodology transforms all the62

gathered data in the context of a smart house together with the available63

domain knowledge into a Knowledge Graph (KG). The data is grouped into64

events, which represent nodes within our KG. On those event nodes, data65

observations from different devices are linked together with the additional66

knowledge of, e.g., where those devices are placed within the house and what67

they are actually measuring. The KG embedding technique Instancce Neigh-68

boring using Knowledge (INK) is then used to generate interpretable KG69

embeddings for each of these events. The result of INK is later fed to a Ma-70

chine Learning (ML) classifier to predict the corresponding human activity71

associated with these events. An evaluation of TALK is performed based72

on the Data Analytics for Health and Connected Care (DAHCC) dataset1,73

which contains gathered data of more than 5 different monitoring devices for74

30 participants performing daily life activities in a home [9]. The obtained75

results show that the TALK methodology is indeed effective while still being76

interpretable. The contributions of the paper are therefore summarized as77

1https://dahcc.idlab.ugent.be
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follows:78

• We design and present the TALK approach that combines time series79

events and activity meta information together in a unified KG, which80

is ideally suited as input for ML methods.81

• We designed a novel activity recognition technique based on hybrid82

AI, which combines both raw sensor data with metadata about the83

environment in one unified and generic approach.84

• We show that by using our own interpretable KG embedding technique85

INK in the hybrid AI method, an activity recognition technique can be86

achieved that is interpretable and can thus deliver insights on why a87

particular activity was recognized by the AI based on all input in the88

KG.89

• Based on both our own Open Dataset, as well as an external benchmark90

dataset, we showcase that the presented hybrid AI method outperforms91

the state-of-the-art activity recognition algorithms, both in terms of92

prediction accuracy, as well as in terms of interpretability of the results.93

The remainder of this paper is structured as follows: Section 2 provides94

an overview of the relevant HAR studies and how they relate to the problem95

discussed above. The description of the TALK methodology on this DAHCC96

dataset is described in Section 3. Section 4 describes the open DAHCC97

ontology and datasets on which TALK is evaluated. Section 5 described the98

evaluation and obtained results. These results are discussed in Section 6. At99

last, future work and a conclusion is provided in Section 7.100

2. Related work101

HAR algorithms and models for smart-home environments can be clas-102

sified in the area of pattern recognition. Two broad fields of research exist103

in literature [10]: data-driven and knowledge-driven approaches. On the one104

hand, data-driven approaches rely on gathered data from sensors and actua-105

tors about the behavior of the users to create an Artificial Intelligence (AI)106

model to recognize human activity. On the other hand, expert knowledge and107

common-sense rules are used in the knowledge-driven field. They use prior108

knowledge, the modelling information of the domain and logical reasoning109

to infer human activity. The following two subsections further elaborate110
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on the state-of-the-art within both fields and provide their advantages and111

drawbacks.112

2.1. Data-driven HAR113

Data-driven HAR models are differentiated between their generative and114

discriminative capabilities [11]. Generative models use probabilistic analysis115

models such as Markov models and Bayesian networks to define the activity116

input or data space. Such a generative model takes into account the inhabi-117

tant’s preferences and tunes the models according to this information. The118

drawback of this approach is its rather static nature, non-evolving and tai-119

lored to the provided data. In contrast, the discriminative approach maps120

the obtained inputs to the activity outputs, usually provided as ground-truth121

labels by the users, e.g. by annotating activities or analysing video images122

of the user’s activities. Machine Learning (ML) is such a discriminative123

approach in this field. Within ML, as well as in data-driven HAR, both124

supervised and unsupervised learning methods exist.125

In previous research, decision trees [12], conditional random fields [13],126

support vector machines [14], naive bayes classifiers [15] and Multi-Layer127

Perceptrons [16] are used to detect and classify human activities. While128

some models outperform others, the specific use case setting or the difference129

in amount of gathered data to train the models make it difficult to define a130

clear winning prediction model for HAR.131

All data-driven HARmodel have the advantage of probabilistic modelling.132

It can handle uncertainty or provide a probabilistic outcome for all learned133

activities when a new observation or set of observations needs to be anal-134

ysed [7]. Such ML models can also handle noisy, uncertain and incomplete135

data. To learn these models, no upfront domain knowledge is required.136

The drawback of all these data-driven HAR techniques is that both the137

generative and discriminative approach requires a large amount of data. The138

need for data is also reflected in the cold-start problem of these methods. A139

large amount of data should be available upfront to learn and train the models140

before predictions can be made or adapted to a more personalised setting.141

In the case of a supervised training approach, even a large amount of clean142

and correctly labelled data is needed. Another problem with data-driven143

HAR approaches is that they are explicitly tailored to the given dataset and144

domain [17]. Therefore, new models and even new data collection campaigns145

are needed when HAR has to be performed in a new environment, with146

different sensors and with different activity labels.147
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Another drawback of this field is the less interpretable predictions gen-148

erated by a data-driven model. Most of the time, an operator still has to149

correlate in many cases the sensor values and interpret the results to under-150

stand why a certain prediction was made.151

2.2. Knowledge-driven HAR152

Knowledge-driven HAR methods exploit the activity and sensor knowl-153

edge modelling and use logical reasoning to perform activity recognition. The154

general procedure of a knowledge-driven approach can be summarised in 3155

steps [17]:156

1. Explicitly define and describe all possible activities within the domain157

using a knowledge representation formalism.158

2. Aggregate and transform the sensor data into logical, interpretable159

terms and formulas.160

3. Perform logical reasoning to extract a minimal set of rules (models)161

which could explain the activities based on a set of observations.162

The knowledge structure is modelled and represented through, e.g., schemes,163

rules, or networks. Knowledge-driven HAR is further divided in three sub-164

approaches: mining knowledge from web resources, where textual descrip-165

tions of human activities are translated into concepts and actions that can166

be processed by an inference engine [18], logic-based approaches [19], and,167

the more recently adopted, ontology-based approaches. A well-known logic168

based HAR approach is finite automate or finite state machines [20]. In this169

technique, activities are defined as states and rules are constructed to go170

from one state to another. These state transitions depend upon the provided171

input symbols, such as discrete sensor values. Finite automata are especially172

tailored to a specific task and context. When the context of the task changes,173

a new automaton has to be designed by a human expert to make it adaptable174

to this new case. The ontology-based approaches do not depend on algorith-175

mic choices and are, therefore, preferred over the other methods in the last176

decade. Hooda et al. [21] proposed a an overview of ontology-based HAR and177

also constructed sensor and activity ontologies for explicit domain modelling178

to infer human activities. Ontological representations use assertion axioms179

learned from data or defined by the user to make these inferences of the180

activities [22].181

Knowledge-driven techniques have the advantages to represent and model182

the activities as most complete as possible to overcome the activity diversity183
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and provide an explanation why a certain prediction was made. However, the184

limitations of these approaches are the complete domain knowledge require-185

ments to build activities models and the weakness in handling uncertainty186

and adaptability to changes and new settings or activities [17]. They need187

domain experts to design knowledge and rules and new rules can break or188

bypass the previous rules.189

2.3. The need for a hybrid approach190

While both separate approaches have their shortcomings, both the knowledge-191

driven and data-driven HAR solution can also be combined to resolve mul-192

tiple of the above-mentioned issues and obtain better, interpretable results.193

First steps were already taken to incorporate data-driven learning ca-194

pabilities into knowledge-driven approaches to address the aforementioned195

problems of activity modelling [17]. The process consists of three key phases.196

In the first phase the initial knowledge-driven models are created through197

ontological engineering by leveraging domain knowledge and heuristics. This198

solves the so-called cold-start when not enough data is available to create199

data-driven detectors. The ontological engineering method can now be ap-200

plied on a small amount of data, and can be seen as a new automatic pro-201

cedure to get more reliable labels for a data-driven model. The usage of202

user-feedback can help to correct and adapt faulty or missed predictions in203

this case. In the third phase, the classification results from the second phase204

are analysed to discover new activities and create data-driven HAR models.205

These new learnt activity patterns are in turn used to update and extend206

the knowledge-driven models. Once the first phase completes, the remaining207

two-phase process can iterate many rounds to incrementally evolve the mod-208

els, leading to a complete, accurate and up-to-date HAR. While this form of209

a hybrid approach overcomes all shortcomings, it also implies multiple sys-210

tems have to be designed to work together. This hybrid AI architecture has211

already been efficiently implemented in a predictive maintenance domain [23]212

and is translated to a HAR setting. In these HAR cases, either ontological213

activity concepts are used to fix inconsistencies in the outcome of a ML clas-214

sifier [24] or a knowledge-driven reasoning step is performed to detect a first215

set of activities, which can later improve this initial knowledge-driven activ-216

ity model [25]. Most of these techniques are dependent on the environmental217

context and in many cases, two or more models have to be maintained when218

applied in a real-time, streaming context.219
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The recent advances in knowledge engineering offers also the possibility220

for a new type of hybrid approach using a KG. Here, both the sensor data221

and contextual metadata are combined in one graph, which links the domain222

knowledge with the sensor or input observations. When all information is223

available, so-called KG embeddings can be used to transform the more graph-224

ical representation of all the data into a representation that can be used as225

input in a ML model [26, 27]. When the embedding procedure can be guar-226

anteed to generate interpretable embeddings, the outcome of the generated227

models can also provide interpretable predictions. This combination of incor-228

porating both the sensor data while providing interpretable results is crucial229

to let these HAR models operate in a healthcare setting. Techniques exist230

which can also take into account a KG as input [28, 29]. But to our knowl-231

edge, we are the first to evaluate and propose a hybrid approach for HAR,232

which takes a KG as input and is still able to provide interpretable results233

that have not been reported upon before. Here, less individual knowledge-234

and data-driven systems have to be designed and combined to generate a235

new solution.236

3. TALK methodology237

The TALK hybrid approach presented in this paper consists of 3 main238

steps. First, the sensor data, activity information and existing contextual239

information must be combined in one data structure. To link all this infor-240

mation together, a KG is being used, backed by an ontology to clearly define241

the relationship between the activities and the sensor data. Second, we create242

KG embeddings for those nodes of interest which hold activity information.243

At last, these node embeddings are fed to an ML classifier together with the244

corresponding labelled information to train and make activity predictions.245

An overview of this approach is visualised in Figure 1. This section further246

describes these three steps in detail.247

3.1. TALK KG248

The KG structure used within the TALK methodology had two require-249

ments:250

• Data and metadata should be linked together such that relevant in-251

formation regarding a performed activity can be found in a limited252

number of hops.253
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Figure 1: Overview of the TALK approach to create a Hybrid AI HAR detection tool.

• As activities have a temporal aspect, the KG should also keep such254

a temporal structure. It should be possible to hop from the current255

obtained information to the previously seen data.256

Figure 2: Representation of the KG within TALK. Sensor observations are linked to
events using contextual state nodes. The event nodes are linked to each other using the
“hasPreviousEvent” relationship. The neighborhood of the Event 1 node for depth 1
(orange) and depth 2 (green) is also highlighted in this Figure.

Figure 2 shows how the TALK KG is designed to meet those requirements.257

Event nodes are generated which aggregate observations for a certain amount258

of time (x seconds, x minutes, ... depending on the use case at hand). To this259

event node, observations can be linked. Instead of linking the observations260
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directly to this event node, additional sub nodes are created to aggregate261

those observations related to the same concept together. Here, in the domain262

of lifestyle and activity detection, both the rooms inside the residents’ house263

and the residents themselves can be in a certain state for a certain amount264

of time. The sensor observations in these rooms or the observations from265

the wearable devices attached to the resident are linked to these states when266

they occurred during the time this particular state was captured (e.g. when267

they occurred within the time range of the state). This link relationship is268

based on which sensor created the observation, together with the provided269

meta information of where this sensor is installed (e.g., which room, attached270

to which user etc.).271

In a less abstract sense, the TALK approach will group the sensor obser-272

vations based on both a certain time interval (state) and the location where273

this sensor originated from. One of these locations can be the body of the274

user (e.g. for wearable devices).275

Events are also linked to each other using the “hasPreviousEvent” rela-276

tionship to enable efficiently hopping to an event back in time. Events that277

belong to a certain performed activity can also incorporate the “hasActivity”278

label information.279

3.2. TALK INK embedding280

The KG combines efficiently both the data and metadata of a performed281

activity. Traditional ML models are unable to deal directly with graph-based282

input. As such, if such a ML model wants to detect activities based on this283

information automatically, the KG should be represented as a vector. A284

large amount of so-called KG embedding techniques exist, which transform285

the whole KG or particular nodes within a KG to such a vector representa-286

tion [27], such as TransE and RDF2Vec. All those techniques however have287

the drawback of transforming the interpretable KG into uninterpretable em-288

beddings, which result in predictions being made with a ML classifier which289

are hard to relate back to the originally provided information. Moreover,290

the transformation always leads to a loss of information. Techniques exist,291

i.e. graph neural networks, which directly take the KG as input and make292

use of Deep Learning (DL) to implicitly learn an embedding and simulta-293

neously accomplish the classification task [30]. However, these techniques294

do not scale towards large graphs, and whenever the KG changes (e.g. new295

nodes or edges being added), a new model has to be trained. These tech-296

niques require a large amount of data to be trained properly. Therefore, we297
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designed a novel embedding technique called INK [31], which is optimal for298

usage within TALK as INK embeds the KG in an interpretable 2D matrix299

and is not dependent upon the ML model that takes this 2D matrix as input.300

To generate such a 2D matrix, INK queries the neighborhood of a node of301

interest and transforms the information within this neighborhood into fea-302

tures. As an example, INK will embed the “Event 1” node in Figure 2 as303

follows. In a first step, INK gathers the neighborhood of this event node.304

A neighborhood of a certain node is defined by all the nodes that can be305

reached starting from the node of interest (here the “Event 1” node). To306

gather those nodes, INK traverses paths following the direction of the edges307

starting from the node of interest towards all nodes that can be reached. As308

this neighborhood can be very large, we usually limit the search depth by309

a parameter value. This neighborhood depth indicates the number of edges310

that can be taken starting from the node of interest towards the nodes within311

the neighborhood. In our example, a neighborhood depth of 1 will contain312

the nearby nodes of our “Event 1” node that can be reached following the313

connected outgoing relationship edges. This is shown in Figure 2, where the314

neighborhood of Event 1 at depth 1 is surrounded in orange. These are all315

the room and user state nodes, the timestamp, the activity label and the316

previous “Event 0” node.317

After INK acquires the neighborhood of the node of interest, it trans-318

forms the relevant information in this neighborhood into a dictionary for-319

mat. The dictionary key is defined by the edge relationship. The value320

is the list of nodes related to this relationship as a relationship can oc-321

cur multiple times starting from a node of interest reaching different nodes322

(e.g. multiple room X states linked to an event node). In our example323

a hasRoomXState→[RoomXState1] key-value pair will be available in this324

dictionary, together with all other pairs found at neighborhood depth 1325

as shown in Table 1. When creating these key-value pairs for a neigh-326

borhood depth larger than 1, INK concatenates the relationship edges to-327

gether and neglects the intermediate nodes as this information is made avail-328

able within our dictionary when creating key-value pairs at a lower depth.329

INK would create the following dictionary entry for a neighborhood depth330

2: hasRoomXState.hasMetricAobs→[Obs1]. In our example Figure 2, the331

neighborhood depth 2 is visualized in green. One can see that a minimal332

depth parameter of 3 is required to capture the sensor observation values (3333

edges have to be traversed to reach this sensor information). If the sensor334

values of the previous event are also of interest, a depth parameter value of335
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Table 1: Dictionary representation created by INK for the Event 1 node in Figure 2.

Key Value
hasRoomXState [RoomXState1]
hasRoomYState [RoomYState1]
hasUserZState [User2State1]
.. ..
hasRoomXState.hasMetricAObs [Obs1]
hasRoomXState.hasMetricBObs [ObsN]
.. ..

4 is required.336

A neighborhood dictionary is made for every node that is of interest.337

In our example, INK would create this dictionary for every event node for338

which an activity label is provided. To transform all these dictionaries in a339

2D matrix, we take as an index the according node of interest and create340

column features by the concatenation of the relationship key and the value341

in the list according to this key within the dictionary. Both the keys and a342

combination of keys and values are provided in this 2D matrix. The creation343

of the key-value combination is repeated for every value within the dictionary344

value list. An example of such a 2D Matrix for our example is provided in345

Table 2. In our example of the “Event 1” node, this specific event node is346

defined as an index entry, and hasRoomXState$RoomXState1 is a generated347

column feature from the “Event 1” dictionary. The “$” sign is used as con-348

catenation character, and indicates where the relationship string ends. To349

indicate whether this feature can be found within our index node of interest,350

we provide a binary indicator in the according cell.351

Table 2: Example of a depth 3 INK two dimensional representation for the three event
nodes in example Figure 2. INK can both combine real values with binary indicators to
indicate the relational information when available.

hasRoomXState hasRoomXState$RoomXState1 hasRoomXState.hasMetricAObs.hasValue ... hasTimestamp
Event 0 0 0 Nan ... Value
Event 1 1 1 123 ... Value
Event 2 1 0 456 ... Value

When more and more nodes of interest transform their dictionaries within352

this 2D matrix representation, the more similar information that can be found353

in these neighborhoods will be mapped on the same feature columns. This is354
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visualized in Table 2 where an example 2D matrix representation is shown for355

the three event nodes in our example of Figure 2. The nodes “Event 1” and356

“Event 2” both have “hasRoomXState” information as shown in Figure 2357

and the first column of Table 2 while the “Event 0” node doesn’t provide358

this information.359

INK has the option to neglect certain relationships, such that this infor-360

mation is not being used during the creation of the INK embedding. In the361

context of HAR, the “hasActivity” relationship was neglected by INK such362

that the labeled information was not incorporated in the embedding itself363

as this would introduce a label leakage during the training and evaluation364

process of a ML classifier. INK also has the ability to avoid transforming365

numerical values into separated columns. In the third column of Table 2, we366

see for our example nodes that their raw sensor values are not transformed367

into separated binary column indicators, but that they are provided as is.368

3.3. TALK classifier369

The INK embedding can be seen as a traditional feature matrix, where370

for each event node, features are constructed which hold both sensor and371

contextual information. The HAR labels accompanied with these events can372

be queried from the original KG based on the event’s unique identifier. This373

combination of a feature set and an according label set can be provided to374

any supervised ML classifier.375

4. DAHCC Ontology and Datasets376

To provide a link between sensors and observations together with the377

human activities being predicted by an AI model, the Data Analytics for378

Health and Connected Care (DAHCC) ontology [9] is used to describe this.379

The DAHCC ontology consists of 4 sub ontologies, ranging from human380

activities to sensor observations for both wearable and ambient living. These381

ontologies are based upon the SAREF standards to describe sensors and their382

observations, buildings and physical objects as well as how these concepts383

relate to health actors and patients. The DAHCC ontology also describes the384

concepts related to ML models based on the Execution-Executor-Procedure385

(EEP) ontology. An example of how the observation data of a sensor can386

be enriched with this ontology is shown in Figure 3. The data of a single387

sample is mapped to an observation node in our KG and this node is linked to388

the corresponding sensor responsible for generating such observations. The389
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sensor itself analyses the state of a certain object, which is located at a certain390

location (in the example of Figure 3, a pressure sensor analyses the state of391

the bed, which is located in the bedroom. This bedroom can be located at a392

certain floor in a certain house). Similarly, we can define the user in our KG393

and define e.g. its indoor location.394

Figure 3: Semantic enrichment of a sensor observation using the DAHCC components.
Additional domain knowledge about the use case can also be linked. In this example the
sensor data of a pressure sensor, measuring the pressure of a bed inside a bedroom is
being enriched. The user responsible for these sensor values is also mapped within this
sub graph. Black round circles represent the instantiated nodes in our KG. All squared
boxes represent ontological concepts either from the DAHCC ontology or from external
ontologies).

The semantically enriched observation using the DAHCC ontology holds395

enough information to transform the data and metadata into the TALK KG396

as described in Section 3.397

To evaluate the TALK methodology and to show the advantage of com-398

bining data and metadata together in one KG, we used two HAR life style399

datasets:400

• UCAmI Cup dataset [32]: A HAR dataset to track activities of daily401

living generated in the UJAmI Smart Lab, University of Jaén. The402

dataset was chosen for the first edition of the UCAmI Cup and repre-403

sents 246 activities performed over a period of ten days carried out by404

a single inhabitant. The dataset includes four data sources: (i) event405

streams from 30 binary sensors, (ii) intelligent floor location data, (iii)406
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proximity data between a smart watch worn by the inhabitant and407

15 Bluetooth Low Energy beacons, and (iv) acceleration of the smart408

watch. Activity labels were provided for every 30 seconds. An overview409

of this dataset is provided in Table 3. As this dataset was also part of410

a competition, a clear train-test split was also provided. The UCAmI411

Cup dataset was semantically enriched using the DAHCC concepts in412

order to evaluate the TALK methodology for this paper. This UCAmI413

TALK KG is also made available in our repository2414

Table 3: Summary overview of UCAmI cup dataset.
Source Raw Data Details Description

Acceleration X, Y and Z axis acceleration of inhabitant measured at 32hz
Intelligent floor Boolean contact Indoor location tiles Location is 2D space

Proximity Object, RSSI

Book, TV controller, Door entrance,
Medicine box, Cupboards, Fridge,
Garbage can, Wardrobe, Drawer,
Tap, Toothbrush, Laundry basket

Location of inhabitant near these objects

Binary Sensors Object, State

Door open, TV, Motion sensors,
Dishwasher, Drawer state, Water boiler,

Microwave, Tap, Tank, Bed, Kitchen faucet,
Sofa pressure

Usage of objects

Activity Category + label

Shower, Brush Teeth, Use toilet, Get dressed,
Take medicine, Dinner, Lunch, Breakfast,

Take snack, Prepare breakfast, Prepare dinner,
Prepare Lunch, Go home, Leave home, Visit lab,
Sleep, Relax on sofa, Play videogame, Read book,

Watch TV, Work at table, Do dishes,
Put washing machine on, Take out trash,

Throw waste in bin

Activities performed by a single user

• DAHCC dataset [9]3: Ambient living situation where a lot of non-415

invasive sensors are installed on two floors at the HomeLab of imec.416

30 different participants performed daily life activities and sensor data417

from various sources was captured. Participants were also equipped418

with smartphone and wearables to analyse their smartphone usage, in-419

door location and some biomedical parameters, e.g. skin conductance420

and heart rate variability. An overview of this dataset is given in Ta-421

ble 4. Together with this dataset, all metadata related to the imec422

HomeLab, the sensor installations and performed activities are seman-423

tically enriched using the DAHCC ontology. This DAHCC TALK KG424

is also made available in our repository4. Labelled activities were pro-425

2https://github.com/predict-idlab/TALK/tree/main/UCAmI
3https://dahcc.idlab.ugent.be/dataset.html
4https://github.com/predict-idlab/TALK/tree/main/DAHCC
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vided by the participant using a smartphone application. They indi-426

cated the start and stop times every time a human activity was per-427

formed. The average number of activities registered per participant is428

70.7.429

Table 4: Summary overview of DAHCC dataset.
Source Raw Data Details Description

Wearable

X, Y and Z axis Acceleration
X, Y and Z axis Gyroscope
Blood Volume Pulse (BVP)
Galvanic Skin Response (GSR)
Skin temperature

Inhabitant specific parameters Empatica E4 was used as wearable device

Netatmo Various values within a specific room
Rooms: Kitchen, Master bedroom,

Bathroom, Toilet
Room temperature, Room CO2,
Room humidity, Room loudness

EnOcean Object state Door contact sensor, cabinet contact sensor Measure open/close state of doors/drawers/cabinets

Steinel
People presence
People count

Rooms: Living room, kitchen, hallways,
master bedroom

Detects and counts the number of people within
a certain room

Velbus Various values within a specific room Available in all rooms

Measures the energy consumption of each wall socket,
the energy consumption of the major appliances,
indoor temperature within a room, state of the windows,
state of the blinds, state of the lights, state of the motion
detectors

Aquara Location
Proximity based indoor
localisation detection

Indoor localisation system of Televicc Healthcare

Activity Label

RoomTransition, Toileting, Organizing,Working,
WashingHands,DrinkPreparation, WatchingTVActively,

UsingMobilePhone, PreparingMeal,EatingMeal,
GettingDressed, UsingComputer, BrushingTeeth,
DoorWalkThrough, Sleeping, WakingUp,Serving,

ObjectUse, SocialInteraction, GettingReadyToSleep,
Walking,Drinking, Showering, ShavingBrushingHair,

TakingMedication, SocialMedia, EatingSnack,
PreparingSnacks, Dishwashing, Exercising, Wandering,

Cleaning, Cosmetics

Activities performed by a 42 users

Although both datasets contain different sensors and different household lay-430

outs, the obtained TALK KGs are quite similar to each other. Both the431

DAHCC TALK KG and UCAmI Cup TALK KG describe observations re-432

lated to the state of an appliance/physical object within a room or building433

space of the smart labs.434

5. Evaluation and Results435

For both semantically enriched datasets, INK embeddings were gener-436

ated for all nodes containing an associated activity label. The labels were437

excluded from the KGs when creating the embeddings to avoid labelled infor-438

mation getting incorporated. For the UCAmI Cup dataset, event nodes were439

embedded for every 30 seconds, as the labelled information was originally440

provided for every 30 seconds. The DAHCC dataset didn’t have activity441

labels being partitioned every x seconds. Therefore, events are created every442

30 seconds, and we compare the activity begin and end timestamp to assign443

the corresponding label(s).444
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Only a single activity at a time was performed during the UCAmI Cup445

dataset. In the DAHCC dataset, multiple activities can occur at the same446

time event (e.g. eating a meal while watching TV). Analyses were per-447

formed combining these activities together (e.g. eatingMealWhileWatch-448

ingTv).. However, this resulted in too sparse labels and training a model449

on these sparse labels created a non generalizable solution. Therefore, only450

the most dominant activity, which was the activity which occurs the most451

in the overall dataset, was kept (here eating meals). As some activities were452

only performed by a single participant or by a small group of participants,453

only activities occurring more than one hour in total, over all participants,454

in the dataset (which means for labels provided every 30 seconds, that a455

specific label should occur more than 120 times in the dataset to be con-456

sidered). This was done to ensure enough labelled events could be provided457

during the training phase for each activity group. The activities who did458

not meet these criteria were labelled in one, general class: “Other”. In total,459

an evaluation on 11 activities was performed: DrinkPreparation, Eating, Or-460

ganizing, PreparingMeal, Showering, Toileting, UsingMobilePhone, Walking,461

WatchingTVActively, Working and Other.462

For the UCAmI Cup TALK KG and DAHCC TALK KG, INK embed-463

dings till depth 11 were generated. As the events in both KGs are obtained464

for every 30 seconds, the events of interest in both datasets take into ac-465

count all the past events in the last 5 minutes. This means that the ML466

model trained upon these INK embeddings will have to decide which activ-467

ity is performed based on the last 5 minutes of available data. To analyse468

the influence of taking into account previous events, a comparison was made469

using INK embeddings till depth 3 (so, without taking into account previous470

events) from the UCAmI Cup TALK KG471

A clear training and test set was provided for the UCAmI Cup dataset.
The train set contained 7 days of continuous sensor data of one person and
according labelled activities. The test set contained 3 days of sensor data
from the same person, obtained directly after the 7 days in the training
set. the TALK approach is evaluated according to this provided split. The
generated INK embeddings were provided to an Extra-tree classifier with
1000 estimators. This classifier was chosen based on previous experiments
of INK on defined benchmark datasets [31]. Class weights were calculated
based on the labels in the training set using the following formula to cover
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the imbalance in the dataset:

number of samples in training set

number of classes ∗ Count of number of occurrences of each label
.

The DAHCC dataset did not contain such a predefined split and also had a472

lot more samples and activities to predict. A participant leave-one-out cross473

validation evaluation was performed to show the benefits of TALK to predict474

activities for an unseen DAHCC participant. The generated INK embeddings475

were provided to an Multiclass Catboost model as more categorical data476

was provided in this dataset. To avoid overfitting, the Catboost number477

of iterations are evaluated against a validation set. This validation set is478

created using a group shuffle split on the original train samples. Again class479

weights were provided to cover the imbalance in the dataset following the480

same formula described above.481

All evaluations were performed on an Intel(R) Xeon(R) CPU E5-2650 v2482

@ 2.60GHz processor with 32 cores and 128gb RAM. For both evaluations,483

results are provided in the form of the accuracy metric, the weighted F1484

score and confusion matrices. All experiment code was made available on485

our repository5.486

5.1. UCAmI Cup results487

As originally indicated by UCAmI Cup competition, the accuracy and488

F1 results were measured on the hold-out test set are provided in Table 5.489

A test was performed for both INK embeddings at depth 3 and depth 11.

Table 5: TALK accuracy and weighted F1 score results for the UCAmI cup test set

Method Accuracy Weighted F1 score
TALK depth 3 with
Extra-tree classifier

61.54% 0.6749

TALK depth 11 with
Extra-tree classifier

76.44% 0.7744

490

The normalised confusion matrix for each predicted activity in the test491

set using the INK embeddings at depth 11 is shown in Figure 4492

Our classifier has difficulties to predict when a visitor is at the door of493

the lab. This activity is confused with entering the lab as both actions are494

5https://github.com/predict-idlab/TALK
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Figure 4: Normalised confusion matrix for all test set predictions of the UCAmI dataset,
using the TALK approach.

closely related to each other. The model also has difficulties distinguishing495

breakfast from preparing breakfast and waking up. Other activities which496

were difficult to classify are putting waste in the bin and washing dishes.497

5.2. DAHCC results498

All leave-one-user-out obtained prediction results are averaged together
for the DAHCC dataset and are visualised in Table 6. This summary table
shows the precision, recall and F1-score for each predicted class that occurred
more than 120 times in the dataset as described above. The total level
indicates how many of these labels could be found in the dataset. The total
accuracy score is calculated based on the following formula:

accuracy =

∑
C

True Positive C+True Negative C
TotalC

Amount of classes
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With C one of the 11 classes and the true positives and true negatives for499

each class can be calculated based on the precision ( True Positives
True Positives+False Positives

),500

the recall ( True Positives
True Positives+False Negatives

) and the fact that Total amount of sam-501

ples per class = True Positives + True Negatives + False Positives + False502

Negatives. The Macro average score of the precision, recall and F1-score503

can be calculated by the sum of all individual class results divided by the504

amount of classes. The weighted average is calculated similarly, but it mul-505

tiplies the individual scores by the portion of actual occurrences of the class506

in the dataset before summing all these results and dividing it by the total507

number of classes.508

Table 6: Summary overview of the leave-one-user-out DAHCC evaluation. Precision,
recall, F1-score and total values are provided for both individual classes, as accuracy and
the macro and weighted averages for the whole evaluation set.

precision recall F1-score Total

DrinkPreparation 0.15 0.45 0.23 363
Eating 0.37 0.44 0.40 2428
Organizing 0.39 0.39 0.39 1247
Other 0.61 0.43 0.50 2892
PreparingMeal 0.83 0.71 0.77 2026
Showering 0.71 0.81 0.76 454
Toileting 0.64 0.78 0.70 685
UsingMobilePhone 0.30 0.40 0.34 753
Walking 0.58 0.85 0.69 1039
WatchingTVActively 0.56 0.60 0.58 1013
Working 0.86 0.78 0.82 11238

accuracy 0.66 24138
macro avg 0.54 0.60 0.56 24138
weighted avg 0.69 0.66 0.67 24138

The normalised confusion matrix for each predicted activity in the test509

set is shown in Figure 5510

6. Discussion511

In this section, both the predictive performance of the TALK methodol-512

ogy and its interpretability are discussed.513
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Figure 5: Normalised confusion matrix for all leave-one-participant-out evaluation of the
DAHCC dataset, using the TALK approach.

6.1. TALK compared to other approaches514

By evaluating TALK on the UCAmI Cup dataset, we are able to compare515

the obtained results of Table 5 to other solutions generated in the past.516

Table 7 shows the predictive performance of TALK against previous UCAmI517

Cup competitors. These results show that our TALK approach outperformed518

all traditional ML models (e.g., Random Forests, Neural Networks and Naive519

Bayes classifiers). It also performed better than the Multi-input Temporal520

ensemble, which is a Deep Learning (DL) technique that fuses several sensor521
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inputs together and makes predictions for a large number of windows (here522

30s, 15s, 10s, 6s and 5s windows). Predictions for each of these windows are523

later on combined to decide which activity happened in the last 30s. The524

different results in Table 5 also show the influence of using the information525

of previous events in this evaluation. The results using INK embeddings526

at depth 11 are significantly higher than when using the INK embeddings527

without incorporating past events (at depth 3).528

Our model does perform worse than the Finite Automata model. How-529

ever, this approach is especially designed to work with the given competition530

data. The Finite Automata approach is tailored to the tasks and context531

(e.g. the smart lab), making them not directly adaptable towards other use532

cases. The evaluation of new data by this approach has to be performed of-533

fline, which makes it hard to make these automata operational in a real-time534

setting. Finite Automata also takes into account the previously performed535

activity and uses probabilistic reasoning to determine which activity comes536

next. Our TALK approach does not take into account these previously per-537

formed activities.538

Other data-driven research exists that achieves more comparable results539

as our TALK approach, but in these approaches the original UCAmI Cup540

activity labels were modified (some labels were aggregated together to boost541

the performance and making it a more easy classification problem) [33]. Dur-542

ing our evaluations of the used models in Table 7 the original UCAmI Cup543

dataset was used as is, without any modification to compare with the created544

competition models.545

Table 7: Summary of the results obtained by other UCAmI cup participants.

Method Accuracy
Markov Model + NN [34] 45%
Random Forest [35] 47%
Neural Network [36] 60.10%
Naive Bayes Classifier [15] 60.50%
Multi-input Temporal Ensemble [37] 73%
TALK (with INK depth 11 embeddings) 76.44%
Finite Automata [20] 90.65%

TALK can be used in different scenarios as shown in the DAHCC eval-546

uation. Both DAHCC and UCAmI Cup evaluations are, however, hard to547

compare to each other. The UCAmI Cup tries to make predictions for the548
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next couple of days, for a single user, while the DAHCC evaluates one day549

of lifestyle activities for a new, unseen participant.550

In Table 6 and within the confusion matrix of Figure 5, most DAHCC551

activities were also predicted correctly by our TALK approach. However,552

some activities have a rather low prediction outcome. As the DAHCC dataset553

is captured in a free living environment, giving an accurate representation554

of real life activities, it can happen that different activities are performed555

in similar conditions. This is clearly the case for the activities: “Working”556

and “Eating”, which were, in the context of the DAHCC dataset, occurred557

in the same place and as almost all participants just took their lunch while558

working. Also more general activities like “Organizing” can be performed at559

any time in every room, and therefore conflicts with many other performed560

activities. In the context of our use case regarding enriching the personal561

call systems of elderly, the most important activities like going to the toilet,562

preparing meals, showering and going out for a walk can be detected by the563

TALK approach and will deliver useful information to the operator which564

has to decide the appropriate action.565

As stated in the description of the evaluation setup (Section 5), one gen-566

eral class “Other” was created to combine all labels that do not occur more567

than 120 times in the DAHCC dataset. This set of “Other” activities is quite568

diverse, and in combination with the ML classifier. which takes into account569

the class weights, the results of this class are rather low. More of these event570

samples will probably improve the “Other”’s class predictability. One could571

evaluate this whole setup without taking into account any of these activities572

that occur less than 120 times (removing them instead of relabelling them to573

one class). This would, however, reduce the applicability of such a model in574

a real-life, streaming context where these lower activities do occur and will575

then be mapped on one of the provided classes. By creating the “Other”576

class, we do already have the possibility to see the model’s performance in577

those cases.578

6.2. TALK’s Interpretability579

The TALK approach uses the INK embedding to represent the obtained580

KG into a tabular format. A wide range of KG embedding techniques how-581

ever exist. In the evaluations of Section 5, INK already showed that it can582

handle both categorical data (in the format of binary vectors) as well numer-583

ical values. These numerical values frequently occur in the context of sensor584

observations, which justifies the usage of INK in this context.585
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INK also keeps a level of interpretability, similar to the interpretability586

levels of the original KG. The created INK column features still have a human587

interpretable aspect and can be analysed to see which features, or nodes588

and edges within our original KG had an effect during the classification589

of events. To show this benefit, besides the INK representation, the INK590

implementation also contains semantic rule mining modules6 and is able to591

mine task-specific rules given a set of positive and negative samples [38]. An592

experiment was performed where for each of the 12 selected classes in the593

DAHCC dataset, a task-specific semantic rule miner was trained using INK.594

As a positive set, we used all positive samples for one class, while all other595

samples not from this class were used as negative evidence. A summary of596

the some found rules in combination with their predictive performance is597

provided in Table 8. They Show that several values regarding the phone,598

humidity level in the kitchen and the current off state of the television have599

a high impact on the fact that someone is working or not. Also the fact that600

water is being taken from the kitchen faucet and the loudness value increases601

in the kitchen indicates whether or not someone is eating a meal. The last602

two rules indicate whether a person is watching TV or going to the toilet.603

For the last rule, one can see that the fact that the toilet light changes in a604

previous event regarding the current event is a crucial aspect in the detection605

of this particular activity.606

The whole approach shows that the used TALK approach in combination607

with INK can create an interpretable tool to track activities in a smart home608

environment.609

7. Conclusion610

In this work, TALK, a new hybrid AI approach to track human activi-611

ties using linked knowledge is proposed and evaluated in detail. The results612

showed that both a high predictive performance and the ability to adapt to613

different use cases within this domain can be delivered by this new methodol-614

ogy. The TALK approach is competitive with knowledge-driven approaches615

by providing interpretable outcomes in the form of simple interpretable rules.616

While still can incorporate new information and learn from those cases such617

as the data-driven variants.618

6https://github.com/IBCNServices/INK/tree/master/ink/miner
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Table 8: INK task-specific rule mining precision and recall results on the DAHCC dataset.

Rule Prec. Rec.
Prev.Prev.phone.MagnetometerX.MinValue < -541.9
and Prev.Prev.Kitchen.humidity.MaxValue <= 62.5
and Living.Tv§off and
Prev.Prev.Wearable.AccelerationZ.MeanValue > 31.62
=>Working

0.89 0.74

Prev.Prev.phone.GravityY.MaxValue <= 0.0017
and Prev.phone.LocationLatitude.MaxValue > 51.012
and Prev.Kitchen.Peopledetected.MeanValue <= 0.84
and Kitchen.EnvironmentWaterrunning
and floorKitchen.Loudness.MaxValue > 44.5
=>EatingMeal

0.67 0.27

Prev.Localisation.location§living
and Prev.phone.AccelerationY.MeanValue > -6.59
and Kitchen.Window§closed
and Living.Tv§on
=>WatchingTVActively

0.86 0.68

Prev.Living.PeoplePresence.MinValue <= 0.5
and Prev.Toilet.Light.MinValue <= 988.5
and Toilet.Light.MeanValue > 494.25
=>Toileting

1.0 0.65

As future work directions we see additional resources and even made619

predictions to be linked back to the TALK KG to provide even more infor-620

mation to embed. The TALK approach could take the previous predictions621

into account by adding an additional relationship to each event. The INK622

embedding would then also generate a new feature column based on this623

information. Similarly, predictions from other ML models could also be in-624

corporated in the TALK KG. Another research direction can also extend the625

TALK approach towards other domains, which also uses a combination of626

domain knowledge and sensor data to predict event-related outcomes.627
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Studi di Firenze (2018).769

[38] B. Steenwinckel, F. De Turck, F. Ongenae, INK: Knowledge graph rep-770

resentation for efficient and performant rule mining, Semantic Web (un-771

der review) (Preprint) (2023).772

30

https://doi.org/10.3390/proceedings2191267
https://doi.org/10.3390/s20010216

	Introduction
	Related work
	Data-driven HAR
	Knowledge-driven HAR
	The need for a hybrid approach

	TALK methodology
	TALK KG
	TALK INK embedding
	TALK classifier

	DAHCC Ontology and Datasets
	Evaluation and Results
	UCAmI Cup results
	DAHCC results

	Discussion
	TALK compared to other approaches
	TALK's Interpretability

	Conclusion

