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Abstract: For ultra-reliable high-data-rate communication, the beyond fifth generation (B5G) and the
sixth generation (6G) wireless networks will heavily rely on beamforming, with mobile users often
located in the radiative near-field of large antenna systems. Therefore, a novel approach to shape both
the amplitude and phase of the electric near-field of any general antenna array topology is presented.
Leveraging on the active element patterns generated by each antenna port, the beam synthesis
capabilities of the array are exploited through Fourier analysis and spherical mode expansions. As a
proof-of-concept, two different arrays are synthesized from the same active antenna element. These
arrays are used to obtain 2D near-field patterns with sharp edges and a 30 dB difference between the
fields’ magnitudes inside and outside the target regions. Various validation and application examples
demonstrate the full control of the radiation in every direction, yielding optimal performance for
the users in the focal zones, while significantly improving the management of the power density
outside of them. Moreover, the advocated algorithm is very efficient, allowing for a fast, real-time
modification and shaping of the array’s radiative near-field.

Keywords: array signal processing; beyond fifth-generation (B5G) wireless communication;
holographic beamforming; multipole expansion; near-field focusing

1. Introduction

Key performance indicators for the evolved fifth generation (E5G) and upcoming sixth
generation (6G) mobile wireless communications networks promote continuous connection
availability, strong reliability, huge device density and low air interface latency [1]. To
unleash the full potential of E5G and 6G for indoor applications, a holistic multi-disciplinary
approach is required based on disruptive communication technologies and innovative
beamforming architectures [2–4]. In particular, to support extremely high data rates and to
improve link reliability, advanced beamforming networks operating in millimeter-Wave
(mmWave) and TeraHertz (THz) frequency bands play a key role. In such cases, however,
the near-field (Fresnel) distance can amount to several dozens of meters. Therefore, the
proper assumptions should be adopted to analyze the system’s performance, instead of the
conventional far-field approach [5–8].

To enable antenna arrays to set up wireless communication in the Fresnel region, an
appropriate focusing technique is essential to obtain properly shaped focal spots exhibiting
high energy concentrations in the near-field region [9]. Moreover, to be able to modify
the shape and position of focusing in real-time, the array’s antenna elements’ excitations
require fast updates in terms of new amplitudes and phases. Therefore, the design of a
practically feasible near-field focused array (NFFA) must fulfill stringent and sometimes
conflicting requirements, often not occurring in standard base stations. On the one hand,
the use of complex topologies or expensive materials must be prevented to reduce cost
and footprint [10,11]. On the other hand, to achieve an improved wireless efficiency,
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minimization of power consumption and a reduction of the overall electromagnetic (EM)
field emissions must be ensured [12,13].

This stimulated the development of a vast amount of numerical techniques, shaping
these strong Fresnel-zone fields to concentrate elevated energy densities at one specific
spot. These include methods based on the optimization of the power transmission effi-
ciency (PTE) [14,15], energy-based models [16], gradient-based methods [17], target-field
optimization techniques [18], far-field approximations [19–21], phase-conjugate [22] and
quadratic-phase approximation methods [23]. While these methods are very time-efficient
due to their simple nature, this also results in limited focusing capabilites. In multi-user
communication, for instance, a better signal-to-interference ratio (SIR) must be provided
by suppressing the radiation originating from undesired side lobes and secondary focal
spots. In this context, multi-target focusing techniques adopt the one-focal-spot-per-user
concept by exploiting the same time-frequency resources for increased throughput [24,25].
By making use of multi-target PTE [26], 2D time-reversal [27] or the angular spectrum
projection method [28], these methods combine the results obtained by simultaneously
solving several single-spot focusing problems over a number of target points. Decent
results can be achieved in this way when carefully choosing the distance between the spots.
These methods are, however, far from optimal due to the coherent interference between
these basic shaped fields, which might result in detrimental secondary focal spots.

To ensure a proper simultaneous manipulation of the electric near-field’s levels over
an entire 2D or 3D region of space, a full-fledged, field-shaping technique is required.
This, however, often implies costly iterative optimizations or complex, impractical setups,
which conflict with the rapid-response requirements of modern applications. Based on
the alternate projection method [29], the work in [30] produces the required aperture
field distribution by accurately placing and sizing the elements of a radial line slot array
(RLSA). While its iterative component is optimized through an efficient in-house Method
of Moment (MoM), it still requires a modification of the array structure to obtain different
target shapes. Alternatively, the optimized multi-target time-reversal (O-mt-TR) technique
proposed in [31,32], accurately models the characteristics of the simulation domain by
means of probing. This method pays a high price in terms of computational complexity,
with simulations taking several hours. In order to bypass the sensing step, the work in [33]
suggests a technique based on the linear sampling method (LSM) to shape the field intensity
within an unknown scenario. In this case, however, due to the ill-posedness of the problem,
the procedure becomes less computationally effective as the number of control points
grows. Hence, the development of a new, efficient tool to rapidly synthesize the excitations
required to shape the radiated power in the near-field of an antenna aperture constitutes a
timely and highly relevant research challenge.

In this paper, a novel method is presented, based on active far-field radiation pattern
data, to determine the complex current excitations required to shape the electric near-field
produced by general antenna arrays. The proposed method constitutes an important
extension of the conventional far-field beam-shaping technique, enabling the generation of
arbitrary field shapes on a sphere located in the array’s radiative near-field. Specifically, the
amplitude and phase of the electric field radiated by the array are controlled on a spherical
surface centered at the array’s phase center and with a radius such that the surface is located
in the array’s radiative near-field. The novel technique smoothly transitions between near-
and far-field shaping by modifying the radius of said sphere. In contrast to [34], the input
2D field data is highly compressed through a spherical Fourier transform and then used
to build an equivalent system matrix. After this one-time set-up operation, and owing to
compressed multidimensional data in the Fourier domain, the advocated method provides
a direct optimal solution in real-time to any near-field shaping problem in a fraction of a
second, bypassing lengthy iteration procedures or side lobes optimizations.
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This paper is organized as follows. Section 2 outlines the problem statement, details
the far-to-near-field transformation and the subsequent shaping of the fields radiated by
the array aperture’s current distribution, based solely on the compressed active far-field
data. Section 3 validates and demonstrates the technique through both numerical and
full-wave experiments. Conclusions and future plans are summarized in Section 4.

2. Theory
2.1. Problem Statement

Consider the application scenario of Figure 1, where a number of users are distributed
in the radiative near-field of an antenna array. The goal of this work is to determine the
complex excitation currents required to shape the array’s electric near-field E(r) in order to
ensure user-specific and quasi interference-free operation.

Antenna elementAntenna array

User 1

User 2

User 3

Figure 1. Application scenario. Users are distributed in the radiative near-field of the antenna array.
Each user is targeted by an individual focal spot to ensure the best quality of communication.

The array is conceptually represented in Figure 2a. Attached to its phase center is the
origin of the global coordinate system O(x, y, z), which also coincides with the center of the
array’s circumscribing sphere of radius R. In the following sections, E(r) is shaped so that
it corresponds to a prescribed target-field distribution T(RTr̂) over the surface of a sphere
of radius RT ≥ R (Figure 2a), where r̂ denotes the radial unit vector. Therefore, we propose
a novel algorithm that efficiently computes the required excitations of the array’s antenna
elements, using only their active radiation patterns as input.

2.2. Far-to-Near-Field Transformation

Consider the nth antenna element with its phase center indicated by the vector pn
and attached to the origin of a local coordinate system On(xn, yn, zn) (Figure 2b). To obtain
the nth active far-field radiation pattern, this element is excited via its port by a unit
current In = 1 A injected by an appropriate Norton equivalent source Ig,n. All other antenna
elements i 6= n are terminated by a 50 Ω impedance. This is schematically shown in Figure 3.
Due to mutual coupling, the excitation gives rise to a current distribution jn(r

′
n), flowing

over the whole volume V, i.e., on all antenna elements in the array, where r′n is defined in
the local coordinate system On.
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Figure 2. (a) Conceptual sketch of an array of volume V circumscribed by a sphere of radius R and
with its phase center coinciding with the origin of the coordinate system O(x, y, z). The goal is to
shape the array’s emitted field so that it corresponds to a desired pattern on a sphere with radius RT.
(b) Each nth array element, fed through the nth port, is attached to a local phase center, indicated by
a vector pn, and coinciding with a local coordinate system’s origin On(xn, yn, zn). The circumscribing
sphere with regard to the local coordinate system has a radius Rn. A current In is injected into the
nth port (see also Figure 3), generating a current distribution jn on the entire array.
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Ig,n Zn50 Ω

In = 1 A

Zi 50 Ω

Figure 3. Excitation of the nth active far-field radiation pattern. The nth port is excited by a Norton
equivalent source, formed by a current source Ig,n in parallel with a 50 Ω resistance. The source is
chosen such that a current In = 1 A is injected into the nth antenna, represented by its input impedance
Zn. All other ports for i ̸= n are instead terminated by a 50 Ω resistor.

where the coefficients fm
l,n are the result of a spherical Fourier transform of the nth current-

normalized and active far-field radiation pattern Fn, as [39, eq (8)]

fm
l,n =

‹

Ω
Fn(k̂)Ȳm

l (k̂)dk̂ , (6)

Fn(k̂) = − ȷωµ

4π

[
I − k̂k̂

]
·
ˆ

V
eȷk·r′n jn(r

′
n)dr′n . (7)

As explained in [39], when a far-field is expressed in the spherical basis, as F = Fθθ̂ + Fϕϕ̂, 129

both Fθ and Fϕ are not continuous functions on the unit sphere Ω. In particular, they exhibit 130

discontinuities at the north and south poles. Therefore, to compute (6), we express the 131

radiation pattern in Cartesian components as F = Fxx̂ + Fyŷ + Fzẑ [40]. These radiation 132

patterns are, for instance, obtained via simulations or measurements. 133

Further, it is known that each Fn is (quasi-)band-limited, meaning that it can be
efficiently described using a Ln-order spherical Fourier transform, as [39, eq. (9)]

Fn(k̂) ≈
Ln

∑
l,m

fm
l,nYm

l (k̂), (8)

ϵ(Ln) = 20 log10

(
max

k̂

∣∣∣∣∣Fn(k̂)−
Ln

∑
l,m

fm
l,nYm

l (k̂)

∣∣∣∣∣

)
, (9)

where ϵ(Ln) is the maximum absolute error in dBV stemming from (8). To minimize 134

ϵ(Ln), on the one hand, the fm
l,n coefficients (6) are computed through a Q-order Lebedev 135

quadrature [41]. The value of Q yielding the best performance is obtained by rounding up 136

Ln to the closest available quadrature order. On the other hand, for a radiating structure 137

with a radius Rn, modes of order l > kRn provide little additional information about its 138

radiation pattern and electric field [42]. As a rule of thumb, both the summations in (5) and 139

(8) may therefore be truncated at 140

Ln = ⌊kRn⌋. (10)

Whereas a higher value of Ln might reduce ϵ, a trade-off between accuracy and 141

performance must be carefully considered. Empirically, it was verified that a value of 142

maximally ϵ < 10 dBV is required to accurately model the device under test. To speed up 143

this computation, the values that the function Ȳm
l (r̂) in (6) assumes for all possible Lebedev 144

quadrature nodes are stored during the set-up phase of the algorithm, amounting to circa 145

100 MB of data, and used for future simulations. 146

2.3. Phase Center Translation 147

Owing to linearity, the total electric field E(r) produced by the array is given by the 148

weighted sum of the electric fields produced by all N antenna elements, as in 149

Figure 3. Excitation of the nth active far-field radiation pattern. The nth port is excited by a Norton
equivalent source formed by a current source Ig,n in parallel with a 50 Ω resistance. The source is
chosen such that a current In = 1 A is injected into the nth antenna, represented by its input impedance
Zn. All other ports for i 6= n are instead terminated by a 50 Ω resistor.

The electric field En(rn), generated by the current density jn(r
′
n) and defined with

respect toOn is then obtained by the electric field integral equation (EFIE) [35], which reads

En(rn) = −ωµ

ˆ

V
G(rn, r′n) · jn(r

′
n)dr′n , (1)

where ω is the angular frequency, and µ is the free-space permeability. In (1), we make use
of a multipole expansion for the dyadic Green’s function G [36] detailed in Appendix A
and valid for ‖rn‖ = rn ≥ Rn, i.e.,

G(rn, r′n) = −
k

4π

∞

∑
l,m
Hm

l (krn)

‹

Ω

[
I − k̂k̂

]
ek·r′n Ȳm

l (k̂)dk̂ , (2)

where Rn (Figure 2b) is the radius of the sphere circumscribing the current distribution
jn(r

′
n) and thus the antenna array, measured with respect to On. Further, k is the wavenum-

ber, I represents the unit dyadic, and Ȳm
l is the complex conjugate of the lth order, mth

degree scalar spherical harmonic [37]. The multipole functionHm
l in (2) is defined as

Hm
l (krn) = −lh(2)l (krn)Ym

l (r̂n), (3)
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where h(2)l is the lth order spherical Hankel function of the second kind ([38], p. 437).
Furthermore, throughout this Section, we make use of the following notation,

∞

∑
l,m

=
∞

∑
l=0

l

∑
m=−l

. (4)

Substituting (2) into (1) yields a compact multipole expansion of the electric field En,
valid for rn ≥ Rn and thus including the array’s radiative near-field, as

En(rn) = −k
∞

∑
l,m

fm
l,nHm

l (krn), (5)

where the coefficients fm
l,n are the result of a spherical Fourier transform of the nth current-

normalized and active far-field radiation pattern Fn, as ([39], Equation (8))

fm
l,n =

‹

Ω
Fn(k̂)Ȳm

l (k̂)dk̂ , (6)

Fn(k̂) = −
ωµ

4π

[
I − k̂k̂

]
·
ˆ

V
ek·r′n jn(r

′
n)dr′n . (7)

As explained in [39], when a far-field is expressed in the spherical basis as F = Fθθ̂ + Fφφ̂,
both Fθ and Fφ are not continuous functions on the unit sphere Ω. In particular, they exhibit
discontinuities at the north and south poles. Therefore, to compute (6), we express the
radiation pattern in Cartesian components as F = Fxx̂ + Fyŷ + Fzẑ [40]. These radiation
patterns are, for instance, obtained via simulations or measurements.

Further, it is known that each Fn is (quasi-)band-limited, meaning that it can be
efficiently described using an Ln-order spherical Fourier transform, as ([39], Equation (9))

Fn(k̂) ≈
Ln

∑
l,m

fm
l,nYm

l (k̂), (8)

ε(Ln) = 20 log10

(
max

k̂

∣∣∣∣∣Fn(k̂)−
Ln

∑
l,m

fm
l,nYm

l (k̂)

∣∣∣∣∣

)
, (9)

where ε(Ln) is the maximum absolute error in dBV stemming from (8). To minimize
ε(Ln), on the one hand, the fm

l,n coefficients (6) are computed through a Q-order Lebedev
quadrature [41]. The value of Q yielding the best performance is obtained by rounding up
Ln to the closest available quadrature order. On the other hand, for a radiating structure
with a radius Rn, modes of order l > kRn provide little additional information about its
radiation pattern and electric field [42]. As a rule of thumb, both the summations in (5) and
(8) may therefore be truncated at

Ln = bkRnc. (10)

Whereas a higher value of Ln might reduce ε, a trade-off between accuracy and
performance must be carefully considered. Empirically, it was verified that a value of
maximally ε < 10 dBV is required to accurately model the device under test. To speed up
this computation, the values that the function Ȳm

l (r̂) in (6) assumes for all possible Lebedev
quadrature nodes are stored during the set-up phase of the algorithm, amounting to circa
100 MB of data, and used for future simulations.
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2.3. Phase Center Translation

Owing to linearity, the total electric field E(r) produced by the array is given by the
weighted sum of the electric fields produced by all N antenna elements, as in

E(r) =
N

∑
n=1

InEn(r), (11)

where In is the nth feeding current, and En(r) is the electric field produced by exciting the
nth antenna element, expressed with respect to the global phase center O. To perform a
translation from the nth local to the global coordinate system, we make use of some simple
vector algebra:

En(rn) = En(r− pn) = −k
Ln

∑
l,m

fm
l,nHm

l (k(r− pn)), (12)

where pn (Figure 2b) is the vector indicating the position of the nth local phase center
in the global coordinate system. An addition theorem for (12) is easily derived from the
classic theorem for spherical Hankel functions ([43], Equation (6)). For ‖r‖ = r ≥ R ≥ ‖pn‖,
we have

Hm
l (k(r− pn)) =

Λn

∑
λ,µ

Tµm
λl (kpn)H

µ
λ(kr), (13)

where the translation operator Tµm
λl is defined as

Tµm
λl (kpn) = 4π(−1)λ−l+µ

l+λ

∑
q=|l−λ|

G(l, m, λ,−µ, q) J m−µ
q (kpn), (14)

in which the symbol G indicates a Gaunt coefficient ([44], Equation (A-2)) and where

J m−µ
q (kpn) = −q jq(kpn)Y

m−µ
q (p̂n), (15)

with jq being the qth order spherical Bessel function of the first kind. Plugging (13) into
(12), we express the nth global electric field, valid for r ≥ R, as

En(r) = −k
Λn

∑
λ,µ

fµ
λ,nH

µ
λ(kr), (16)

fµ
λ,n =

Ln

∑
l,m

Tµm
λl (kpn)f

m
l,n, (17)

where (17) is a linear mapping that transforms the original set of coefficients fm
l,n, determined

up to order Ln and with respect to the nth local coordinate system On(xn, yn, zn), into the
translated coefficients fµ

λ,n required up to order Λn and with respect to the global coordinate
system O(x, y, z).

To determine the optimal value of Λn, we make use of the nth cumulative power
spectrum Γn, defined as ([39], Equation (23))

Γn(Ln) =
Ln

∑
l,m
|fm

l,n|2, (18)

which is a measure for the power radiated when exciting the nth antenna element. We
exploit the property that, under translation of the antenna’s phase center, the cumulative
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power spectrum remains constant. Theoretically, Λn can be obtained from the following
equivalence

Γn(Ln) =
Ln

∑
l,m
|fm

l,n|2 =
Λn

∑
λ,µ
|fµ

λ,n|2 = Γn(Λn). (19)

Numerically, we compute Λn iteratively, since the new cumulative power spectrum
Γn(Λn) approaches Γn(Ln) asymptotically for increasing Λn, as shown in Figure 4. Simula-
tions have shown that defining Λn as the value for which Γn(Λn) is at least 99% of Γn(Ln)
yields the best balance between computational time and accuracy.

0 5 10 15 20 25 30
Λn

0%

20%

40%

60%

80%

100%

Γ n
(Λ

n
)/

Γ n
(L

n
)

Figure 4. Typical sigmoid behavior of the cumulative power spectra ratio Γn(Λn)/Γn(Ln) for increas-
ing Λn. A sufficient value for Λn is reached when this ratio is at least 99%.

2.4. Near-Field Intensity Shaping

Assume that the antenna array is designed to emit an electric field with a specific
polarization û. We split each nth electric field En as

En(r) = Eco
n (r)û + Ecross

n (r), (20)

Eco
n (r) = En(r) · û, (21)

Ecross
n (r) = En(r)− Eco

n (r)û, (22)

so that by combining (11), (16) and (21), the desired co-polar component of the array’s
electric field values, at a distance RT from the array’s phase center, i.e., for r = RTr̂, is
given by

Eco(RTr̂) = −k
N

∑
n=1

In

Λ

∑
λ,µ

f µ,co
λ,n H

µ
λ(kRTr̂), (23)

where f µ,co
λ,n = fµ

λ,n · û, and Λ = max (Λn). To achieve near-field shaping, we set the left-hand
side of (23) equal to a target field T(RTr̂) = T(RTr̂) · û. Subsequently, the currents In that
best approximate the desired pattern are obtained as

−k
N

∑
n=1

In

Λ

∑
λ,µ

f µ,co
λ,n H

µ
λ(kRTr̂) ≈ T(RTr̂). (24)

It is important to note that the only restriction imposed by the addition theorem is that
RT ≥ R, meaning that it is possible to obtain the values T(RTr̂) on the surface of a sphere
located entirely in the array’s radiative near-field. Combining (3) and (24) and performing
a Λ-order multipoles expansion (8) of T(RTr̂) yields

N

∑
n=1

In f µ,co
λ,n =

‹

Ω
T(RTr̂)Ȳµ

λ (r̂)dr̂

−λ+1kh(2)λ (kRT)

∆
= tµ

λ. (25)



Sensors 2023, 23, 3323 8 of 16

For very large values of RT, the advocated method smoothly transitions into a more
refined version of the traditional far-field beamforming technique. This is easily proven
by calculating the denominator in (25) for large arguments. Employing the identity ([38],
Equation (10.1.17)) yields

lim
RT→∞

[
−λ+1kh(2)λ (kRT)

]
= lim

RT→∞

[
− e−jkRT

RT

λ

∑
n=0

(
λ + 0.5

n

)
(2kRT)

−n

]
≈ − e−jkRT

RT
, (26)

which is equivalent to a simple change of overall amplitude and phase reference of T(RTr̂).
In this way, for very large RT values, the advocated method translates to a far-field shap-
ing technique.

Finally, we collect the sought-after excitation currents In into the unknown vector i
and the target Fourier coefficients tµ

λ into the known vector t. This way, we cast (25) into
the following linear system of equations,

M · i = t, (27)

where the elements of the system matrix M are the antenna element’s coefficients f µ,co
λ,n . As a

result, M has dimensions M×N, where M = (Λ+ 1)2 is the number of harmonics involved
in the computation, and N is the amount of antennas in the array. Before solving (27),
however, we have to verify that the problem is well-conditioned. This is equivalent to
the columns (or rows) of M being linearly independent and, as a consequence, a limited
condition number κ(M).

The nth column of M collects the translated spherical Fourier spectrum’s coefficients
of the nth antenna element’s active radiation pattern (17). Therefore, the elements of M
are only a function of the original active radiation patterns and of their respective element
positions pn. In general, for antenna arrays consisting of identical elements with sufficient
inter-element spacing (i.e., several λ), the difference between all the active radiation patterns
is practically negligible. In this scenario, κ(M) becomes solely a function of the array layout.
In other words, by ensuring that the antennas are spaced sufficiently far from each other,
the columns of M will be sufficiently linearly independent. For denser antenna arrays, it
was empirically verified that a spacing of at least λ/3 yields values of κ(M) in the order
of 103∼104, while a spacing of λ/2 reduces it further to order 102∼103. For very dense
antenna arrays with a spacing smaller than λ/3, the problem of an increasing condition
number is partially mitigated by the higher coupling between the antenna elements. Owing
to the asymmetries in the array layout, a larger variation in the data is introduced, reducing
the correlation between the rows of M. While in this case the set-up time would inevitably
increase, the novel method is still applicable to very dense arrays owing to this set-up
operation (i.e., obtaining the active far-field data and computing M) being performed
only once per layout. However, special care should be taken when interpreting this
superdirective solution, as it might be very sensitive to small changes in array geometry,
excitations and operating frequency. On the other hand, it is known from the literature [45]
that the value of Λ increases linearly with the array size. Since the value of M, and therefore
the number of rows of M, scale quadratically with Λ, it is generally the case that M� N,
meaning that (27) corresponds to an overdetermined linear system. Since we can ensure
that M has full column rank, we opt for a least-squares solution as

i = M+ · t, (28)

M+ = (M†M)−1M†, (29)

where † indicates the conjugate transpose operation. Note that the construction of the
system matrix M and the subsequent computation of its pseudo-inverse M+ are part of
the set-up process of the algorithm. Once M+ has been determined for a specific array,
the process of adjusting the target in both distance and shape and obtaining the necessary
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feeding currents simply boils down to two simple steps that can be performed in real
time. First, the target vector t is determined via (25) by a Λ-order Lebedev numerical
quadrature, requiring circa Λ samples. Its evaluation requires 2Λ multiplications and Λ
additions. For all orders λ and degrees µ, the construction of t needs 3Λ(Λ + 1)2 ≈ 3Λ3

operations. Second, one matrix–vector multiplication is performed to evaluate (28). Since
the pseudo-inverse matrix M+ has dimensions N ×M, while the vector t has dimensions
M× 1, a total of 2NM operations are required. Since M = (Λ + 1)2, the total number of
operations scales as 2NΛ2. Therefore, the near-field shaping procedure is performed in
less than a second, rendering the proposed method suitable for real-time field-shaping
applications.

3. Validation
3.1. Numerical Validation

To validate the novel method, we make use of an x-polarized half-wave dipole antenna
of length 136 mm, 0.9 mm wire diameter and operating at the frequency of 1 GHz (λ = 30 cm)
as the elementary antenna element in our array configurations. A planar array consisting
of N = 197 such elements is then synthesized. The antennas are distributed inside a circular
region of radius R = 4λ = 1.2 m, forming a grid with inter-element spacing of λ/2 = 15 cm.
In this experiment, we choose the radius of the target sphere as RT = 6λ = 1.8 m. As this
size amounts to approximately 75% of the array’s aperture dimension, the shaping process
takes place on a sphere in the radiative near-field of the structure.

The theory described in Section 2 dictates that each of the 197 active radiation patterns
Fn is to be determined, which represents quite a cumbersome task. However, owing to
the rather large inter-element distance, the mutual coupling between neighboring antenna
elements remains quite limited. Therefore, we may approximate all Fn by the active
radiation pattern F0 of the element closest to the array’s center, i.e., the one located at
x = y = 0. This is obtained via a full-wave simulation performed by the frequency domain
solver of CST Microwave Studio [46] and normalized according to Figure 3. These data are
used as input for a Python [47] script implementing the advocated algorithm. The spherical
Fourier transform of F0 is computed via (6) with an accuracy of −10 dB, requiring a value
of L0 = 18. Using (17), the resulting fm

l,0 coefficients are then translated to the 197 different
antenna positions. According to (19), a value of Λ = max (Λn) = 30 is needed, corresponding
to M = (Λ + 1)2 = 961 harmonics involved in the numerical computation. This results
in a 961 × 197 system matrix M, with a condition number κ(M) ≈ 3547. Subsequently,
the target’s spherical Fourier transform and its corresponding target coefficients t are
determined via (25). Finally, the unknown vector i is obtained via (28). This process
required only 230 ms on an Intel Core i7-8650U processor running at 1.90 GHz with 16 GB
of memory. Two examples are shown in Figures 5 and 6, where the plots’ labels are given by

u = sin θ cos φ, (30)

v = sin θ sin φ, (31)

where θ ∈
[
0, π

2
]

and φ ∈ [0, 2π]. In Figures 5a and 6a, the required excitation currents for
all 197 antennas computed by the novel method for the two target fields are shown.

The current amplitudes produced by the advocated algorithm naturally exhibit a
Gaussian-like distribution, with elements closer to the array’s center receiving higher exci-
tations. This is typical of tapering techniques [48], which are usually required in traditional
array focusing methods as an additional step to reduce side-lobe levels. On the other hand,
the current phases exhibit a checkerboard-like pattern, with neighboring elements having
close to perfectly opposing phases. This is required to achieve radiationless interference be-
tween adjacent elements, allowing the remaining evanescent fields to carry shape features
to the target surface [34]. The corresponding co-polar electric near-fields’ values obtained
for the upper hemisphere of the target surface are shown in Figures 5c and 6c.
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Figure 5. Results for a synthesized planar array consisting of 197 x-polarized dipoles. The figures
show the amplitudes (top) and phases (bottom) of (a) the feeding currents obtained by the novel
algorithm, for a (b) circle-like shaped target near-field and (c) the co-polar electric field solution
obtained by the novel method. The results in (b,c) are drawn for the upper hemisphere of a target
sphere of radius RT = 6λ, where u = sin θ cos φ and v = sin θ sin φ.
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Figure 6. Results for a synthesized planar array consisting of 197 x-polarized dipoles. The figures
show the amplitudes (top) and phases (bottom) of (a) the feeding currents obtained by the novel
algorithm, for a (b) triangle-like shaped target near-field and (c) the co-polar electric field solution
obtained by the novel method. The results in (b,c) are drawn for the upper hemisphere of a target
sphere of radius RT = 6λ, where u = sin θ cos φ and v = sin θ sin φ.

A very close resemblance to the target fields of Figures 5b and 6b, which are shapes
with sharp edges, is obtained. While at first sight the phase profile is not overall flat, the
novel method ensures the correct values over the areas of interest, i.e., where the shapes are
defined. Note that the phase values are irrelevant in areas where the magnitudes of the field
values are very low. Since the advocated algorithm operates in the Fourier domain, where
a large amount of far-field data is replaced by a compact angular spectrum description, it
requires only about 100 ms to import any new target shape and then determine the currents
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necessary to obtain it. As previously mentioned, our novel method is therefore applicable
to real-time field-shaping.

3.2. Full-Wave Validation and Application

To further validate the method, the results of the synthesis using the advocated
technique are compared to accurate full-wave simulations using CST Microwave Studio.
To limit the simulation time in CST, we design a 7 × 7 planar array using the same dipole
antenna as antenna element. The inter-element spacing is 0.6λ = 18 cm, for a total size of
circa 121 × 108 cm2. The radius of the target sphere is now RT = 4λ = 1.2 m, corresponding
to one array aperture, to guarantee that the shaping process happens on a sphere located
in the radiative near-field. The target fields are shown in Figure 7b,f. As in the previous
section, the fm

l,0 coefficients pertaining to the center antenna element are processed by
(17), yielding a value of Λ = max (Λn) = 22. This corresponds to M = (Λ + 1)2 = 529
harmonics involved in the numerical computation, resulting in a 529 × 49 system matrix
M, with a condition number κ(M) ≈ 3. Computing the required currents for this array
took circa 160 ms.

Figure 7a,e show the feed currents that are computed by means of the novel method in
order to obtain the target fields. The resulting field values are shown in Figure 7c,g. We now
also use the computed currents to feed the array in CST Microwave Studio and perform a
full-wave simulation of the array’s resulting fields. These are shown in Figure 7d,h. Finally,
we return to the application scenario of Figure 1, where U users are located close to one
another. To ensure a good coverage for each individual user, the currents (and resulting
electric near-field) obtained from the experiment of Figure 7a are combined in order to focus
the power separately at U different spots. Furthermore, through a proper implementation
of the feeding architecture of the array system, this permits us to deliver U different data
streams to the users. The outcome of such a scenario, with U = 4, is shown in Figure 8.

When comparing target patterns, numerical solutions and full-wave results, an excel-
lent agreement is observed, in both amplitude and phase. Any small difference is due to the
approximation made by employing the center element active radiation pattern to represent
all the remaining elements. This choice is, however, justified by both the enormous amount
of time saved in performing the simulations of the antenna patterns and by the very good
match between the numerical results and the full-wave simulations. Note that compared to
the previous section, there is a loss of resolution as the sharp edges of the target fields are
less accurately reproduced. Nevertheless, this is merely due to the use of a smaller array
aperture rather than to the algorithm’s loss of accuracy.

3.3. Discussion on Computational Efficiency

All the methods referenced in this work, including the presented technique, require
a one-time set-up operation. While an accurate description of this set up is not always
provided by the respective authors, it can be estimated to be approximately the same across
all algorithms. Therefore, we focus the following comparison on the time required for the
actual electric near-field shaping process across different methods:

• Novel method: The number of operations required is approximately 3Λ3, where Λ
is the chosen order of the spherical Fourier transform. For the largest array studied,
with N = 200 and Λ = 30, the shaping procedure required around 200 ms and circa
100 MB of pre-computed data.

• O-mt-TR [31]: The amount of operations required is of order ML, where M are the
variables to optimize, and L is the amount of control points used. As the computational
time scales exponentially with L, several hours are required to achieve shaping, hence
excluding this algorithm from real-time applications. A variation of this technique,
being O-mt-LSM [33], does not require any set-up phase, but this results in reduced
computational efficiency and resolution.
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• Smart skin holography [13]: While a quite good resolution is obtained in near-field
shaping, the process required circa 20 min per shape. Again, this algorithm is also not
suited to real-time applications.

• Method of Moments (MoM) [30]: A radial slot array is synthesised with an in-house
MoM code and tailored for a specific target shape. The amount of time usually required
to fill an MoM matrix and solve the matrix system is not compatible with real-time
applications.

• Angular spectrum projection method [28]: This method’s efficiency is quantified as
largely faster than the O-mt-TR. At the same time, the obtained target shapes exhibit a
very poor resolution and are obtained as a discontinuous collection of discrete points.

Therefore, we conclude that when compared to other available near-field shaping
methods, the technique proposed in this work excels in terms of computational efficiency,
resolution and suitability. Furthermore, in contrast to most state-of-the-art literature, an
accurate quantification of the number of operations, computational time and memory usage
were provided.
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Figure 7. Results for a 7 × 7 planar array consisting of 49 x-polarized dipoles. The figures show the
amplitudes (top) and phases (bottom) of (a,e) two sets of feeding currents obtained by the novel
algorithm corresponding to (b,f) two differently shaped target near-fields. Further, we have (c,g)
the co-polar electric field solutions obtained by the novel method and (d,h) the co-polar near-fields
resulting from a full-wave simulation of the 7 × 7 array, excited by the currents in (a) and (e),
respectively. The results are drawn for the upper hemisphere of a target sphere of radius RT = 4λ,
where u = sin θ cos φ and v = sin θ sin φ.
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Figure 8. Results for a 7 × 7 planar array consisting of 49 x-polarized dipoles. The figures show the
amplitudes (top) and phases (bottom) of (a) the feeding currents obtained by the novel algorithm
corresponding to (b) four separate focal spots. Further, we have (c) the co-polar electric field solutions
obtained by the novel method and (d) the co-polar near-fields resulting from a full-wave simulation
of the 7 × 7 array, excited by the currents in (a). The results are drawn for the upper hemisphere of a
target sphere of radius RT = 4λ, where u = sin θ cos φ and v = sin θ sin φ.

4. Conclusions

A novel algorithm was developed to obtain near-field intensity shaping through gen-
eral antenna array topologies, outperforming traditional techniques. The method leverages
the simulated active far-field radiation patterns of the antenna elements. By making use
of a spherical Fourier transform and multipole expansion of these radiation patterns, the
advocated algorithm performs a far-to-near-field transform to quickly determine the am-
plitude and phases required to shape the co-polar component of the electromagnetic field
produced by general array topologies. Specifically, and as an extension of conventional far-
field beam-shaping techniques, the proposed algorithm achieves an accurate shaping over
the surface of a sphere with a prescribed radius located in the array’s radiative near-field
region. The novel method produces sharp patterns, while consuming a very small amount
of resources, making it suitable for real-time operation.

As a proof-of-concept, 197-dipoles arrays were exploited to implement near-field
focusing for two different intricate shapes. The undesired secondary beams within the target
region were significantly suppressed by around 30 dB. Furthermore, intensity-shaping
with smaller arrays, comprising 49 dipoles, was also validated using commercial full-
wave software. The complex currents required for the shaping and obtained by the novel
method were used to excite the full-wave models of the 49 element arrays. A very good
agreement between the electric near-fields resulting from both the implemented algorithm
and the full-wave calculations was obtained. In an important application scenario, it was
shown that the method manages to target individual users who are distributed close to
one another in the radiative near-field of the antenna array, as such ensuring the best
quality of communication. The method has thus been validated via numerical and full-
wave experiments, clearly demonstrating its applicability in (future) B5G and 6G real-time
applications and communications scenarios.

Future plans include employing an accurate system impulse response to model appli-
cations defined in domains with specific shapes and symmetries. Moreover, an extension
to 3D shaping is possible by making use of efficient optimization procedures owing to the
algorithm’s impressive computation speed.
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Appendix A. Green’s Function Multipole Expansion

The dyadic Green’s function G in (1) determines the electric field that an elementary
point source, located at r′, generates at the observation point r. It is defined as

G(r, r′) =
[
I +
∇∇

k2

]
G(r, r′), (A1)

in which I represents the unit dyadic, k is the wavenumber, and G is the scalar Green’s
function, defined as

G(r, r′) = − jk
4π

h(2)0 (k
∣∣r− r′

∣∣), (A2)

where h(2)0 is the zeroth-order spherical Hankel function of the second kind ([38], p. 437).
We now make use of

∇G(r, r′) = −∇′G(r, r′), (A3)

where ∇ is the gradient performed with respect to r, while ∇′ represents the gradient
performed with respect to r′. By plugging (A3) in (A1) and by expanding (A2) according to
the addition theorem for spherical Hankel functions ([43], Equation (2)), if ‖r‖ = r ≥ R, we
obtain

G(r, r′) = −k
[
I +
∇′∇′

k2

] ∞

∑
l,m
J̄ m

l (kr′)Hm
l (kr), (A4)

where the bar symbol indicates a complex conjugate. The multipole functions J m
l andHm

l
are defined as

J m
l (kr′) = −l jl(kr′)Ym

l (r̂′), (A5)

Hm
l (kr) = −lh(2)l (kr)Ym

l (r̂), (A6)

where jl and h(2)l are the lth order spherical Bessel function of the first kind and spherical
Hankel function of the second kind ([38], p. 437), respectively, and Ym

l denotes the scalar
spherical harmonic [37]. By leveraging the plane wave expansion [49], we express the
complex conjugate of (A5) as

J̄ m
l (kr′) =

1
4π

‹

Ω
ejk·r′ Ȳm

l (k̂)dk̂ , (A7)
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which, plugged into (A4), yields the dyadic Green’s function’s multipole expansion (2) of
Section 2, as

G(r, r′) = − jk
4π

∞

∑
l,m
Hm

l (kr)
‹

Ω

[
I − k̂k̂

]
ejk·r′ Ȳm

l (k̂)dk̂ . (A8)
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