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a b s t r a c t

Growing healthcare needs leverage the potential savings of using resources efficiently. To that end,
ProMoBed is a comprehensive model that supports strategic planning of bed capacity in inpatient
hospitals. The model consists of an extrapolation and simulation component, the former supplying
input for the latter. The extrapolation model forecasts admission rates and the average Length of
Stay for pathology groups, and corrects for demographic changes. Subsequently, the simulation model
emulates the demand for bed capacity, and makes service-level based bed capacity suggestions.
Additionally, the model uses the Shapley value principle to disaggregate the effects on demand for
inpatient days due to different causes. Results from the extrapolation model are applied to regions in
Belgium, showing expected divergence in inpatient day demand evolution.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the Belgian healthcare landscape, hospitals play a central
ole, with general hospitals alone covering 18.2 billion of health-
are expenses in 2017 [1]. Consistently growing costs have forced
overnments to cut healthcare budgets and find ways to make the
ystem more efficient. An apparent option is to reduce inefficien-
ies in how demand for care is met, by reducing overcapacity and
xploiting economies of scale where possible. In hospital beds, for
nstance, a report by KCE [2] found that a general overcapacity
xisted in Belgium in 2017, except in geriatrics and rehabilita-
ion, for which a shortage was found. The authors expect these
mbalances to continue to grow in the future. Additionally, the
eport recommends that healthcare authorities consider merging
ealthcare facilities or specific wards to meet cost and quality
bjectives.
Given the long-term nature of infrastructure capacity deci-

ions, consequences of under or overdimensioning hospitals can
e long-lived. Overcapacity leads hospitals to incur costs on un-
erutilized resources, and shortages can harm patients due to
elays in care or sub-optimal hospital accommodations.
Consequently, when a new hospital is built, or a renovation is

onsidered, it is crucial that capacity is thoughtfully examined.
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Practically, that implies some challenges. Forecasting required
bed capacity is challenging because of the extensive set of fac-
tors that influence demand. A large set of predictors reinforce
or counteract one another, directly and indirectly, while few of
them are known in advance. For example, ageing, combined with
population growth might induce admission growth, while the
elderly also stay in the hospital for longer periods of time. All the
while, medical science is improving procedures, reducing the av-
erage stay length and moving some treatments from the inpatient
hospital to daycare. In addition, epidemiological changes, such as
declining obesity can impact the incidence of particular diagnosis.
Aside from the complexity of interacting predictors, translating
inpatient hospital day demand into a capacity decision is subject
to its own difficulties, as described in the literature section.

Currently, Belgian practitioners involved in this research in-
dicate that the primary sources of data to support bed capac-
ity decisions are peer benchmarking tools and straightforward
business intelligence dashboards. What analyses often lack is
the impact of demographic evolution, epidemiological transitions,
and governmental decisions. When studies are available that in-
clude those factors, they are usually national studies that exclude
regional parameters that affect outcomes for specific hospitals
differently than the average. Examples are market shares and the
local demographic distribution.

The ProMoBed model (Projection Model for Bed capacity plan-
ning) supports hospital administrators in forecasting the future
need for bed capacity in their hospital, taking into account and
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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disentangling effects from a wide set of variables that affect it. It
is a model that primarily addresses the need for insights into how
longer-term changes impact bed capacity requirements, though
it could be applied to explore potential capacity optimizations
with immediate effect, for example, by merging bed capacity for
complementary wards.

This paper describes how hospital stay data can be used to
odel future demand for hospital beds and to support bed count
ecisions, and illustrates it with an application to an anonymized
xample hospital. First, a review of the literature shows how
odelling hospital activity has been tackled in other work and
hat can be learned from those research efforts with respect
o the objectives of this paper. Second, the methodology is ex-
lained, along with the evidence that justifies it. Concretely, it
ontains a discussion of how admissions, the LoS (Length of Stay),
easonality, and relevant factors that impact model parameters
re derived and used to achieve the output of the model. In
ddition, it is shown how the output can be used to obtain
he results that hospital administrators require in order to make
ecisions.

. Literature overview

As Pitt et al. explain [3], a diverse array of quantitative model
ypes has been deployed to study health services in general, each
f which suitable for analyses with particular objectives and chal-
enges. An initial distinction is made between analytical models
nd numeric simulation models. Analytical models include tech-
iques such as optimization [4,5], Queuing Theory [6,7], Markov
odelling [8,9], and Data Envelopment Analysis [10]. Numeric
imulation models include Discrete Event Simulation models [11–
5], System Dynamics [16,17], or Agent-Based Simulation [18–
0]. Analytical models are generally used to address problems
hat are mathematically well-defined; the structure of the prob-
em needs to be clear enough in order to be modelled with
he restrictive assumptions that this type of model requires [3].
omparatively, simulation models are generally flexible.
It is relatively rare for studies to predict the need for bed ca-

acity for the wards of an entire inpatient hospital. More common
s research that covers a specific department, with emergency
oom studies as the most extensive branch. Cochran et al. [21]
s one of the exceptions that tackled capacity estimates for an
ntire hospital. The author divided the hospital in four capacity-
arrying units, and used a queueing model, with the average LoS
nd admission numbers per patient group as input. The model
argets a specific occupancy level, as is common practice [22].
hese methods have been criticized as being too simplistic and
eneral [23], however. Furthermore, the daily admission arrival
attern does not take into account seasonal patterns or con-
ider differences in arrival pattern types between pathologies.
he work of Mallor et al. [24] partially addresses this issue by
ntroducing empirical admission distributions for patient groups
hose daily arrival pattern significantly differs from the Poisson
istribution. The simulated patient day demand distribution sig-
ificantly differs from the observed distribution, as shown by a
olmogorov–Smirnov test, until a set of management decisions,
uch as discharging rules, are included in the model.
The Strategic Bed Analysis Model (StratBAM) [25] is a holis-

ic model with some degree of operational detail. A high-level
rocess flow, of patients transferring between departments and
nits, is constructed. Four primary units, according to the re-
uired level of care, are identified. As output, it includes patient
ait times as well as occupancy information, such that cost and
enefit trade-offs can be evaluated. Patients’ pathologies are not
odelled explicitly. Rather, transfer probabilities largely capture

he relative volume of required care for patients, along with
2

department-specific Length of Stay (LoS) figures. A crucial advan-
tage of this methodology is that the effort required in different
parts of the patient journey can be simulated. If a further distinc-
tion had been made according to the pathology of the patient,
it is likely that the confidence in transfer probability estimates
would have fallen below acceptable levels, except for particularly
large facilities. Nonetheless, that also implies that pathology-
related factors, such as growth in the prevalence of orthopedic
surgeries due to an ageing population, cannot be explicitly taken
into account. In other words, the authors leaned towards explicit
operational representation in the trade-off between modelling
pathology details and operational ones.

Harper and Shahani [26] developed a broadly applicable model
to plan hospital capacity down to the specialism level. The au-
thors closely examine the effects of variability of demand on bed
capacity requirements, especially in the context of planned as op-
posed to unplanned admissions. Accordingly, daily and monthly
seasonality patterns are included. The model strikes a balance
between operational and strategic decision-support, allowing the
user to apply aggregated trends on the data by adjusting input
parameters at the specialism level.

This paper takes an approach to patient demand modelling
that leans towards representing pathologies in relative detail,
such that the origins of changes due to pathology prevalence
can be modelled explicitly. It thus forgoes more detailed insights
into effects of changing operational parameters, such as trans-
fer rates between bed types, and it assumes local operational
conditions that affect admission timing or stay duration, such as
holiday periods or operating room planning schedules, to remain
identical.

One study that does not model operational conditions at all
is Van de Voorde et al. [2]. They focus on forecasting inpatient
days per Diagnosis Related Group in Belgium by applying a trend
analysis and by reweighting according to changes in age distribu-
tions and population growth or decline. Further, results of a set
of scenarios, such as accelerated ageing or higher-than-expected
substitution of inpatient by ambulatory care, are evaluated. Al-
though the objectives of Van de Voorde et al. are to forecast on
the national level and this study focuses on individual hospitals,
a comparison of the forecasting results on the national level will
be provided for benchmarking purposes (Section 4.3).

A lot of recent literature has focused on forecasting the short-
term need for bed capacity and other healthcare resources related
to the covid-19 pandemic [27,28]. This research distinguishes
itself from that branch of the literature because it operates on a
different timescale. Given predictions across various timescales,
different types of context variables can or cannot reasonably be
assumed to remain unchanged and have to be modelled explic-
itly. While short-term capacity models might focus on disease
transmission and its immediate inhibitors and accelerants, re-
quirements for this research are support for demographic shifts,
epidemiological changes, and other factors that change more
slowly over time.

3. Material and methods

The objectives of the ProMoBed model are to forecast future
bed requirements, and to support hospital capacity planning de-
cisions. In order to achieve these goals, the model must mimic the
frequency distributions of demand levels, in terms of daily occu-
pied beds, as reliably as possible. Additionally, it is required that
pathology-related factors that affect admissions and the average
LoS can be taken into consideration when constructing those
frequency distributions. Subsequently, frequency distributions of
inpatient bed demand per ward or specialism can inform refined
bed capacity decisions based on desired service levels.
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Fig. 1. ProMoBed model.
The ProMoBed model reproduces the expected demand pat-
tern in a hospital given a particular set of input parameters.
Additionally, in order to better support decision making, it al-
locates changes in total inpatient day demand compared to the
status quo to different causes, such as demographic redistribu-
tion. The latter allocations are primarily based on the same input
parameters as the hospital bed demand pattern, but are processed
separately. Fig. 1 shows this distinction. The upper right part
of the figure shows the part of the process that leads to the
calculation of the allocations of demand differences, while the
lower part of the figure is dedicated to the simulation of the daily
inpatient bed demand pattern.

In order to characterize the evolution of the number of ad-
missions and the LoS, two categories of factors are distinguished:
those showing general trends applicable nationwide, and those
capturing environmental conditions that are hospital-specific.
The first category contains trends derived from historical data on
the national level (3.7) and epidemiological and other forecasts
based on literature research. The second one contains effects due
to changes in demography or market share (3.6) and option-
ally, factors that depict scenarios in which administrators are
interested, such as the implementation of new technology.

In the following sections, the components of the model are
elaborated on. First, the data and cases used in the context of
this paper is described (3.1). Subsequently, the representation of
admission patterns in the model is discussed (3.2), followed by
the Length of Stay implementation (3.3). A set of factors that
capture change over time of the core parameters, admissions
and LoS, are endogenous to the model. Concretely, these are
the impact of changes in demographics and market shares. The
computation method for the relevant factors is elaborated on
in Section 3.4. Additionally, the methodology applied to derive
trend-related factors is discussed in Section 3.5.

What follows in Section 3.6 is a discussion of how capacity
requirements are derived from raw simulation output. Lastly, the
allocation method that attributes inpatient day demand changes
to various causes is described.

3.1. Application and input data

The ProMoBed model itself is generic, and could ingest pathol-
ogy data from different types of sources. In this research, it is
applied to Minimal Hospital Data (MZG), a data standard com-
pulsory for Belgian hospitals [29] which contains pathology and
stay duration information. Though the model has been applied to
diverse hospitals in Belgium, the output described in this paper is
anonymized to protect sensitive hospital and patient information.

Concretely, a random subselection of MZG stays was sampled

3

from a set of hospitals and aggregated to form a new dataset, from
which the analyses in this paper are derived. Nonetheless, each
methodological step and test in this paper has been replicated
with data from individual hospitals, exhibiting consistent results
in terms of occupancy distribution accuracy.

Aside from MZG data, the results in this paper rely on regional
demographic forecasts by the Federal Planning Bureau [30] and
national pathology data from the Federal Public Service of health,
food chain, and environment [31]. The latter contains the relative
prevalence of and average LoS for pathologies in Belgian regions
on the arrondissement level and among age cohorts.

3.2. Admissions

3.2.1. Pathology categorization
Admission numbers are derived from the amount of observed

admissions with a particular pathology in a given reference year.
In order to ensure accurate estimates of admission numbers,
pathologies for which few patients are admitted are grouped
together. Assuming that admissions are Poisson distributed, more
than 170 observations must correspond with a pathology group
in order to estimate the admission figure with 95% confidence

within confidence bounds of 15%, as in λ̂ ± 1.96
√

λ̂/n. This min-
imum is applied throughout the paper. Pathologies are grouped
together based on the characteristics that they have in common
and within a specialism. Pathologies with a similar LoS, severity
of illness, and historical evolution of the national amount of ad-
missions and LoS are clustered through a hierarchical clustering
method [32]. The resulting groups of pathologies are referred to
as pathology categories.

3.2.2. Planned and unplanned admissions
In the model, patients are assumed homogeneous per pathol-

ogy category, meaning that admissions and the LoS are sampled
from common probability distributions. Nonetheless, other op-
tions were considered. As discussed by [26], considerable differ-
ences in the admission patterns between planned and unplanned
hospitalizations can be observed. It is expected that planned ad-
missions show less variability than unplanned admissions, given
the operational incentive to spread out workloads. Therefore, a
set of different admission modelling methods were considered.

Method A proposes that the admission pattern, defined as
the number of patients per day, follows a Poisson distribution,
regardless of whether admissions are planned or unplanned.
Method B considers that unplanned admissions reflect a Poisson
process, while an empirical frequency distribution is used to
model planned admissions. Both are probability distributions of
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Table 1
Arrival modelling method accuracy comparison on CHI-square test (95%). 49
categories are tested.
Method Description Pass rate

A Poisson 38.9%
B Hybrid: Poisson and empirical 5.6%
C Seasonality-adjusted Poisson 77.6%

Fig. 2. LoS empirical distribution scaling.

the number of patients per day. Alternatively, method C presumes
all admissions follow a Poisson distribution corrected for season-
ality patterns. This means the probability distribution of daily
admissions is also a function of the day of the month, and the
day of the week. Method C assumes that operational conditions,
such as personnel and operating quarter availability on weekdays,
significantly affect admission rates, especially for planned admis-
sions. Its performance is discussed here in comparison with other
methods. A more detailed description of the mechanism is found
in Section 3.2.3.

A CHI-square test is used to evaluate the quality of the differ-
ent methods [33]. The observed arrival pattern in a reference year
is compared to the expected distribution used in the different
methods. For methods B and C, a large number of simulations
is performed to accurately estimate the frequency distribution.
Table 1 shows that method C outperforms the other methods,
and yields results that are statistically indistinguishable from the
observed pattern 77.6% percent of the time on the test data, with
95% confidence.

3.2.3. Seasonality
As described in Section 3.2.2, seasonality patterns are included

in the best performing admission generating process. Concretely,
a regression model derives the coefficients that determine sea-
sonality effects. The effects are calculated on the pathology cate-
gory level as modelled below:

AdmissionsOnDayi = α̂ +

6∑
d=1

β̂d × isDayOfWeekdi

+

11∑
m=1

β̂m × isMonthOfYearmi + ε̂i
4

Thus, admission estimates are made per day, taking into ac-
count the day of the week and month. Still, the ProMoBed model
includes the possibility to apply multiplication factors to admis-
sion numbers. In order to achieve this, the model stores the
coefficients in a standardized way. First the coefficients are trans-
formed such that the results are relative to the average instead
of the intercept by adding intercept − average to all DayOfWeek
coefficients, and by adding a coefficient for Mondays that equals
intercept − average. Subsequently, the coefficients are divided
by the average. When the model uses the coefficients, they are
multiplied by the applicable overall daily average admission rate.
The result is a scaled seasonality pattern.

3.3. Length of stay

Mallor and Azcárate [24] observe that common distributions,
such as lognormal, Weibul, or Gamma distributions, used to
model the LoS, are often not suitable. The authors addressed this
issue by developing non-normal regression models. For this work,
the required variables to build such regression models were not
available. The lack of fit to the usual fat-tailed distributions is
confirmed in this work. Using the Scipy Python package, LoS sam-
ples per pathology category were fitted to Weibull, Lognormal,
and Gamma distributions. Only the lognormal fitted distributions
were sufficiently credible to pursue. Even then, only 5.9% of
the fitted distributions passed a CHI-square test. That is why
empirical frequency distributions are used in this work.

In order to scale the empirical frequency distributions accord-
ingly with the applicable factors, a scaling heuristic is developed.
Its objective is to conserve the shape of the frequency distribution
as much as possible, while ensuring that the resulting average
LoS is achieved with high accuracy. Fig. 2 illustrates the devel-
oped process and algorithm 1 shows related pseudocode. The
observed frequency distribution is discrete with a granularity of
days. The assumption is made that these distributions behave as
concatenated uniform distributions between days ±0.5. In order
to scale the distribution, it is transformed horizontally with a
constant, the difference between the target average, and the orig-
inal average. The average of the transformed distribution is then
re-evaluated and the procedure, with the same target average
is repeated until the resulting distribution’s average is within
1 × 10−5 of the target.
Algorithm 1: LoS Scaling algorithm

Input: Original volume distribution V = Array with
volumes for each stay length, where the stay
length corresponds with the index

Input: Displacement factor d = number by which the
distribution needs to be transformed

Input: New frequencies F = zero-filled array
Input: New bin limits L = [(i − 0.5) + d for i in

range(length(V ))]
1 foreach for i in range(length(L)) do
2 mlb = L[i]
3 mub = L[i + 1]
4 v = V [i]
5 foreach for j in range(round(mlb),round(mub)+1): do
6 lb = j − 0.5
7 ub = j + 0.5
8 L[j]+ = (min(mub, ub) − max(mlb, lb))/(ub − lb) ∗ v

Output: V = scaled volume distribution
Repeat: Repeat until difference of average LoS of V and

target is < 1e−6
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Fig. 3. Illustration of derivation market share and demographic impact.
.4. Impact of demographic and market share evolution

An important driver of inpatient day demand evolution is
emographic change. In many countries, ageing impacts demand
or healthcare resources through a higher prevalence of many
athologies, and the longer average LoS required in treatment.
he ProMoBed model estimates the impact of demographic evo-
ution on admissions and LoS. Since the model targets individ-
al hospitals rather than the entire health system, it takes into
ccount local demography, insofar as the considered hospital’s
atient population is localized. Concretely, market shares in dif-
erent geographic regions per pathology category are derived
y taking together hospital and regional admissions data. Mar-
et shares in different geographic areas are not known per age
roup and therefore assumed to be identical across age groups.
onsequently, the combination of market shares in different re-
ional populations is taken to reflect the demographic profile of
hospital’s constituency. In other words, a demographic profile
eighted according to market shares is used, rather than the
emographic profile of the region a hospital is based in. Thus,
he impact of demographic evolution is entwined with that of
hospital’s market shares in different regions. Fig. 3 illustrates

he process of deriving expected admissions given a particular
emographic context, which forms the basis for the derivation
f demographic impact factors. In essence, a proportional system
s used, in which national admission probabilities per age group
nd the LoS per age group are assumed to be constant locally and
ver time. Expected admissions and average LoS are calculated
or the current demographic context, and subsequently for the
rojected demographic context. The fraction of future and current
xpected admissions is the demographic impact factor applied in
he model. Optionally, projections of shifting market shares are
ncluded in these calculations. Importantly, the assumption that
dmission probability is constant over time is only used here to
solate the studied effects. Other model components (3.7) account
or shifting admission probabilities and LoS evolutions over time
ot related to demography. The calculation of LoS factors requires
5

an additional step as compared to the admission factors because
the average LoS is weighted according to the expected admis-
sions. By themselves, these calculations yield some interesting
insights, as discussed in the results section.

3.5. Historical extrapolation

Historical extrapolations are performed on timeseries data
from the Belgian Technical Cell for hospital data [34] extending
from 1997 until 2017. The data is aggregated according to pathol-
ogy category on the national level and corrected for demographic
changes matching the methodology in the previous section.

Some issues exist with the input data. While admissions are
identified by APR-DRG-code [35] and severity of illness, the APR-
DRG classification system has been modified several times since
1997, leading to an inconsistent time series for some pathologies.
The pathology categories for which these changes are relevant are
modelled differently than others.

The standard modelling method is as follows: for admissions, a
linear trend is assumed, and a maximum of two dummy variables,
covering the changes in APR-DRG grouper version, are included in
an OLS regression model. If a CHOW-test with 2012 as assumed
transition point indicates that a structural change in the series
exists, only data from after 2012 is used in the OLS regression. If
the trend coefficient is significant, the trend is used. Otherwise,
a constant admission rate is assumed. Additionally, if the fit of
the model to the data for specific pathologies is unsatisfactory, a
stable admission rate is assumed. For the average Length of Stay,
OLS regression models assuming a linear and a logarithmic trend
are compared. For 88% of pathology categories, the model with
the logarithmic trend has a higher adjusted R-squared. Conse-
quently, a logarithmic trend is taken to represent the average LoS
timeseries well, and applied for all pathology categories.

3.6. Simulation and capacity recommendations

In order to support the determination of capacity needs, clar-
ification is required of which resource constraints are relevant
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Fig. 4. Frequency distribution for capacity class 262.

Fig. 5. Illustration capacity suggestions based on a service level of 80%.

in the considered hospital. The ProMoBed model enables the
flexible mapping of pathology categories with what the authors
dubbed capacity classes. Capacity classes are groups of pathology
categories that access the same resource pool, primarily beds.
Thus, a hospital can regroup pathologies according to the layout
of a ward, or the resource that is examined.

A numeric rather than analytical approach is taken since ex-
isting analytical methods do not support the seasonality-adjusted
Poisson admission process that this research, in Section 3.2.2,
found to outperform a standard Poisson process.

The simulation process, corresponding to the bottom flow in
Fig. 1, contains the following steps:

1. Collect input

– Admission distributions yearref
– LoS distributions yearref
– Relevant impact factors yearsim

2. Preprocess

– Scale admission distributions
– Scale LoS distributions
– Scale seasonality pattern

3. Simulate

– Stochastically create demand pattern using season-
ality, admission, and LoS distributions per capacity
class.
6

4. Analyse

– Construct demand frequency distribution from output
– Derive decision support metrics.

In step 1, the required data, current admission distributions,
LoS distributions, and relevant impact factors are fetched.

In step 2, preprocess, factors are applied to admission and
LoS distributions of pathology categories with the information
collected in step 1. Endogenously, the factors include those rep-
resenting historical trends in admission numbers and LoS per
pathology category, and demographic changes. Additional factors
capturing expected or induced evolutions, such as the imple-
mentation of a LoS-reducing novel process or anticipating on
short-term trends, are included at this stage.

Step 3 starts with the application of the seasonality pattern to
the simulated year, resulting in an average number of admissions
for each day of the simulated year for a pathology category.
Subsequently, each day of the year is iterated over, using the
encountered average values to initialize a Poisson distribution
which is sampled to represent the effective simulated admission
number. For each admission, the relevant empirical distribution is
sampled to assign a LoS to each admission. The resulting pattern
on inpatient days for each pathology category is combined within
the relevant capacity classes, such that one stream of demand
per capacity class is created. This process is repeated hundreds
of times in order to be able to estimate the desired metrics of the
model accurately.

In step 4, the inpatient bed demand frequency distribution
is derived from the stochastically created demand pattern (refer
to D in overview figure). Additionally, other derived metrics are
calculated, such as the capacity required to achieve a particular
service level. A set of filtered service level recommendations
yields support for different policy questions. Here, the service
level refers to the percentage of days on which there is sufficient
capacity to fulfil demand.

Fig. 4 shows the demand frequency distribution resulting from
step 4 for capacity class 262. Fig. 5 illustrates the results for a
target year of capacity class 132. In order to offer a service level of
80%, it requires a capacity of 47 beds. Nonetheless, if capacity can
be set more flexibly, capacity needs can be determined for more
granular timeframes. For instance, a capacity level can be set for
each month, or a different capacity can be set for weekends as
opposed to weekdays.

3.7. Impact allocation

In the ProMoBed simulation model, many different impact fac-
tors can interact and compound each other, collectively affecting
demand outcomes. In order to reduce the opacity of the model,
the allocation analysis derives the causes of growth or decrease
in inpatient day demand from the primary input (refer to C
in overview figure). Concretely, the differences in demand are
allocated to particular factors and groups of factors across types,
pathology categories, capacity classes, or fields. The changes in
average inpatient day demand are entirely driven by factors that
impact the underlying parameters of LoS or admissions. Interac-
tion effects between factors are allocated using the Shapley value
principle [36], a fair allocation method used to divide common
costs or benefits when causes are ambiguous.

Since the ProMoBed model supports strategic decision making,
results are often aggregations of many underlying influences and
factors. The allocation should enable decision-makers to review
the causes of aggregated outcomes in a manner that is staged,
deepening complexity and detail as more insight is required. In
order to enable this type of drill-down analysis, input to the
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Table 2
Optional input attributes for impact allocations.
Attributes Attribute enumerations

Factor id Unique id of impact factor
Field Demography&Marketshare; Historical extrapolation;

literature research
Type Admission; LoS
Pathology category Unique id of pathology category

allocation model determines the granularity of the output. Con-
cretely, the attributes along which demand differences should
be allocated are chosen by the user. The options are shown in
Table 2. Concretely, the algorithm groups all impacts factors that
share the values of the given attributes. For instance, if only the
attribute field is submitted, the algorithm will yield the demand
difference allocations to the three different fields, relating how
much is due to demography and market share evolutions, how
much is due to historical trends, and how much is due to factors
added based on literature research. Alternatively, if the attribute
type is also added as input, then the algorithm would yield six
outputs, for each combination of the values of the attributes
field and type. Thus, a decision-maker would not only be able
to identify whether growth is due to demographic changes, but
whether that effect is counteracted by the historical decline in the
average LoS.

The algorithm calculates the allocated impact according to the
following steps:

1. Group all factors fipj according to the input attribute values,
but separated per pathology category, and take the product
of each group. With i as a unique input attribute value
combination, p as a pathology category, and j as a unique
identifier for the factor.

fip =

J∏
j

fipj ∀i ∈ I, ∀p ∈ P

2. Calculate the share of the total growth or decline in inpa-
tient day demand that is allocated to each group using the
Shapley value.

A Construct sets Gp that contain all fip.
B Let set Dip be the increment set for fip
C For each permutation of Gp:

Set value = 1
Iterate over each i

incrementip = value − value × fip
value = value × fip

Append incrementip to Dip

3. Calculate difference in inpatient day demand δip per
grouped factor fip

δip = Admissionsp × LoSp × AVG(Dip)
∀i ∈ I, ∀p ∈ P

4. If the grouping attributes excluded the pathology category
option, then sum the inpatient day demand differences for
the different groups over the relevant pathology categories.

δi =

P∑
p

δip ∀i ∈ I

Thus, the allocated impact on demand is expressed in inpatient
ays. Allocation can be performed within a capacity class, or
7

cross capacity classes for the entire inpatient hospital. Fig. 6
hows an example of allocation results for different input at-
ributes. Tile (a) results when only type is given as an attribute,
hile tile (d) shows a more granular subdivision of the effects
ased on attributes type, field, and pathology category.

. Results

In this results section, the reliability of the model is discussed
irst. Subsequently, its results are compared to other, publicly
vailable studies. Finally, results concerning the substance of
ong-term inpatient day demand evolution are discussed.

.1. Model reliability

The accuracy of bed capacity decisions is partially based on the
ruthful representation of the required beds frequency distribu-
ion. Accordingly, in order to evaluate the accuracy of this model,
comparison could be made of the frequency distribution of re-
uired beds that is generated by the model without projecting to
future date and the one that is observed in contemporary data.
his can be problematic however, since capacity itself affects the
ength of Stay through managerial actions taken by hospital ad-
inistrators. Mallor and Azcárate [24] discuss this phenomenon
nd improve their own base model by introducing mechanisms
hat mimic management decisions, impacting the LoS distribu-
ion. Since this model is meant to be used to set capacity, it does
ot make sense to work analogously, and to attempt to improve
he similarity between the generated and observed distribution
y taking into account management decisions that are driven by
apacity shortages or surpluses.
Applying a CHI-square test to compare the simulated fre-

uency distribution of required beds with the one observed in
he data, 63.2% of the 38 capacity classes are statistically indistin-
uishable on the 95% confidence level. Given the aforementioned
xpected differences, the metric should not be interpreted as
straightforward measurement of performance. An alternative
pproach is to evaluate the components of the required bed ca-
acity distribution that are not affected by the managerial action
ssue. Since managerial actions act on the LoS distribution, that
eaves the admission distribution component. As described in
ections 3.2.2 and 3.3, the methodology to generate admissions
as chosen based on performance. Concretely, generated arrival

requency distributions per pathology category are statistically
ndistinguishable from observed ones 77.6% of the time on the
5% confidence level. Since insufficient historical data is available,
t is not possible to evaluate the model’s forward projections.

.2. Application randomized hospital

As described in the methodology section, the model is applied
o a fictional hospital containing a randomized subset of hospital
tays from 5 different hospitals. As shown in Fig. 7, the total
npatient day demand in the hospital is expected to remain stable,
hough the isolated effects demographics and trends derived
rom historical data could significantly affect its trajectory. The
urves show the aggregated effect of the impact allocated to one
articular cause added to the total amount of inpatient days in
017.
While in aggregate, the demand for inpatient days is expected

o remain relatively stable, specific, individual specialisms are
xpected to grow or shrink significantly.
In terms of required bed capacity, a service level approach

an be applied since the concrete daily required bed pattern is
enerated. The service level could be defined as the proportion
f days on which a shortage is tolerated, or the relative number



T. Latruwe, M. Van der Wee, P. Vanleenhove et al. Operations Research for Health Care 36 (2023) 100375

(
a

r
d
T
t
I
f
t
a

Fig. 6. Results of impact allocations applied to orthopedic surgery. The figures show the allocated delta in expected inpatient admissions in 2025 versus 2017. From
a) to (d), allocation is done more granularly. From allocation to changes in LoS or admissions (a), to allocations to changes related to a combination of field, type,
nd pathology category, e.g. demographics impacting the LoS of a particular pathology that results in more or fewer inpatient days for the capacity class (d).
Fig. 7. Shows hospital-wide inpatient day evolution exclusively allocated to one
source. A relatively stable inpatient days evolution is the result of other effects
compensating each other: primarily a steep rise in admissions (NoS) due to
demographic changes, and significant decline in average LoS.

of inpatient days for which capacity unavailability is tolerated.
Aside from setting a service level-based capacity, optimizations of
which wards or specialities should share capacity can be based on
the care pattern analysis. Different capacity classes can be merged
virtually and a lower safety capacity, i.e. capacity on top of what
is required on average, could be achieved by merging capacity
classes with more complementary demand patterns.

Fig. 6 zooms in on a particular capacity class, which cor-
esponds to Orthopedic Surgery. It shows to which causes the
ifference in demand, in terms of inpatient days, can be allocated.
he graphs in the figure contain the results for different combina-
ions of impact factor attributes type, field, and pathology category.
n (a), (b), (c), and (d), factor impact is grouped according to type;
ield; type and field; and type, field, and pathology category respec-
ively. This dissection allows administrators to trace and critically
ssess the origins of particular growth or decline estimates.
8

Fig. 8. Sources of inpatient day growth by 2027 for test hospital.

Figs. 8 and 9 illustrates the type of output that the model
generates by showing in which specialisms the largest gains and
declines are expected for the test hospital.

4.3. Application: Belgian regional differences

The extrapolation and inpatient day demand impact allocation
part of the model, as represented by the top lane in Fig. 1, can
be also applied to entire regions. In that case, regional admission
figures and national average LoS numbers are extrapolated ac-
cording to national trends and corrected for local demographic
conditions. Consequently, divergence in results between regions
is due to demographics and the relative prevalence of different
pathologies.

Fig. 10 shows how expected growth or declines are distributed
across the Belgian regions on the administrative arrondissement
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Fig. 9. Sources of inpatient day declines by 2027 for test hospital.

Fig. 10. Aggregated expected inpatient day growth per arrondissement by 2032
s compared to 2017.

evel, which are identified by the two most significant digits of
he NSI code [37]. The largest increase by 2032 is expected to
ccur in Borgworm, 8.6%, the largest decline by 2032 is expected
n the Brussels capital region, −10.8%. Additionally, Figs. 11 and
2 show the difference in inpatient days expected in 2027 as
ompared to 2017, per arrondissement and per capacity class. The
esults are dissected and allocated to different causes.

These results show that a decline in inpatient days is expected
n most of the country. In those arrondissements where growth
s expected, the effects of an ageing population on inpatient
ays is stronger than those in others. The decline in average
oS trend is consistently responsible for a decline in inpatient
ays by 2027 of approximately 14% in most arrondissements. As
xpected, declines in average LoS are observed in almost all spe-
ialisms, with exceptions where it remains constant. Nationally,
he effects of ageing and population growth inflate the number
f inpatient days for all specialisms, including those that typically
reat younger people, such as obstetrics and neonatology. In some
pecific arrondissements, however, the local effect is a reduction
n inpatient days, as shown in Fig. 13.

These results aggregated on the national level are largely in
ine with the results found in the 2017 study by Van de Voorde
9

et al. [2]. The work cites an overall decrease in inpatient days of
−5.4% for the period of 2014 to 2025, consisting of a growth in
admissions of 11.8% and average LoS decreases of between 10
and 20%. For the period of 2017 to 2028, the ProMoBed model
forecasts overall decrease of −3.4%, consisting of the following
components: −0.5% due to the admission rate trend, −15.7% due
to the trend in the LoS, +9.3% due to the demographic effect on
admissions, and +3.53% due to the demographic effect on the
average LoS.

5. Conclusion

The ProMoBed model does not address all challenges con-
cerning hospital capacity predictions, but it innovates in ways
that help the authors achieve long-term bed capacity planning
objectives. It provides a pathology-driven method to forecast
inpatient days and the need for bed capacity that is adaptable
to the context of individual hospitals. By focusing on pathol-
ogy rather than operational details, pathology-specific predictions
and hospital layout can be taken into account. It furthermore
offers considerable transparency as a rule, without which it might
be perceived as a black box. These attributes, pathology-driven,
flexible, and transparent, capture the primary contribution of this
methodology to the literature.

In feedback sessions, hospital administrators confirm their
interest in capacity forecasts. The transparency provided by con-
textual information, such as the impact allocation and regional
comparisons, offers an added value. Shortcomings that are ex-
pressed include the policy-driven nature of inpatient demand.
Governments consider adopting hospital financing schemes that
can thoroughly affect the expressed number of inpatient days. Ad-
ditionally, experts contend that additional technological progress
should be more explicitly taken into account, which was not
part of the current phase of the research project. Although the
model for the most part does not endogenously account for these
trends, it is well-equipped to adopt exogenous input figures that
quantify them. Lastly, physical units of beds do not generally
mirror specialisms, except in large hospitals. Capacity classes in
the model should be defined in a way that reflects the physical
units that are present in a hospital, which is not a trivial task.

6. Future work

Several avenues for improvement to the model exist. First, the
accuracy of the current output could be improved by increasing
the confidence in estimates of the current admission amount per
pathology. Concretely, multiple years of data could be used to
compute that figure. Additionally, multiple scenarios depicting
potential policy interventions could be studied. An evident ex-
ample is moving treatments from inpatient hospitals to daycare
facilities. The impact of that shift could be made explicit, and
outpatient clinics themselves could similarly be modelled. The
latter is planned within the scope of the ProMoBed project.

Further, the mapping between patients and treatment units
could be refined. In the context of this application, predefined
bed indexes could be used for that purpose. This expansion is also
planned as future work.

Given the current convention of using occupancy rates to
translate the number of inpatient days to capacity requirements,
it would be interesting to analyse the current practical service
levels offered in hospitals and especially the difference between
them in different facilities. A related inquiry could quantify the
consequences of capacity deficits or surpluses by unravelling the
relationship between occupancy and the Length of Stay in differ-
ent types of wards or units, as has been applied in emergency

rooms [38].
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Fig. 11. Aggregated change in inpatient days per arrondissement in 2027 as compared to 2017. The figure shows the impact on inpatient days allocated to 4
categories of impact sources. The expected net impact for the arrondissement is indicated above the bars.
Fig. 12. Aggregated change in inpatient days per capacity class in 2027 as compared to 2017. The figure shows the impact on inpatient days allocated to 4 categories
of impact sources. The expected net impact for the capacity class is indicated above the bars.
Fig. 13. Isolated impact of demographic changes on inpatient days per
arrondissement and specialism in 2027 as compared to 2017.
10
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