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Abstract— In this work, a primary proof of concept of a real-
time shared planning system (SPS) for container trucks for the
port of Antwerp is presented. The aim of such an SPS is to
provide a flexible system which allows horizontal collaboration
between road carriers with the aim on improving the overall
efficiency of the logistic chain. Its impact on the drayage in
the port is studied in the context of a large-scale simulation
which models the relevant operations in the logistic chain that
handles container transport over roads. In this simulation, the
traffic network will explicitly be taken into account along with
the interaction between trucks on this network, which will
be modelled by a mesoscopic traffic model. A first version
of a globally optimising SPS will be implemented within this
simulation, and a comparison will be made to the situation
where each carrier optimises its own individual planning.

I. INTRODUCTION

The port of Antwerp is continuously facing new chal-
lenges in meeting transport growth rates while the capacity
of infrastructure stagnates. Roads become more and more
saturated in and near the port of Antwerp [1], leading to
extra costs for transport companies and other stakeholders
during their daily operations. A main problem is the lack of
transparency and predictability of the traffic situation around
the port (especially for trucks). This lack of transparency
also makes it difficult to take the different traffic situations
into account during the planning phase. Secondly, there is
a need for cross-process communication and collaboration
through the logistic chain. Many stakeholders are involved
in the containers transport, but there is little coordination
between them.

With the aim on tackling these problems, the authors in
[2] conducted a technical-functional analysis for a “truck
guidance system” in the port of Antwerp. The approach taken
by this report consisted of both desk research and interviews
with logistics stakeholders having their activity linked with
the port of Antwerp. This qualitative study gave a global
overview of a solution in which digital data is provided to the
end-users on a centralised platform. In our work presented
here, the focus will lie on an explicit horizontal collaboration
scheme for road carriers and its evaluation in a large scale
simulation.
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A. Literature Review

Collaboration within the logistic chain and the setting
of a port has been the subject of much research. Often a
distinction is made between horizontal collaboration and ver-
tical collaboration [3]. Horizontal collaboration encompasses
all cooperative schemes between two or more independent
parties belonging to the same level of the logistic chain, such
as joint distribution centres. On the other hand, a form of
collaboration that is established among stakeholders acting
at different levels of the logistic chain (for instance shippers,
carriers, and/or customers) is called a vertical collaboration.
Vertical collaboration schemes in hinterland chains of sea-
ports have been studied in i.a. [4] and [5]. The authors in
[6] proposed new concepts of collaborative transportation
management and carriers’ flexibility. They used a simulation
approach, based on a simplified supply chain including one
retailer and one carrier, to evaluate and optimise the proposed
collaborative management.

Horizontal collaboration has been studied before as well,
for example in [7] the authors provide an extensive quali-
tative overview of possible obstacles for truck-sharing and
successful ways to deal with them, based on a number
of semi-structured interviews with road carriers. In [8] the
cooperation between carriers is studied in a quantitative way.
An objective function is adopted which considers the total
carriers’ profit which is maximised by suitably combining
the import and export trips shared by the carriers involved
in the collaboration. Within their cooperative scheme, a
compensation mechanism is designed to take into account the
competitive nature of the trucking industry and to encourage
carriers to share some of their trips. The problem in their
work was formulated as a binary linear program and a few
cases were evaluated using real data sets from the Italian
port of Genoa. The scale of the case studied was however
small; the primary case only contained 30 daily trips in total
and only 3 road carriers were considered. The authors in [9]
present a collaborative framework for trucks to be operated
within a TAS, with an emphasis on reducing port-related
empty truck emissions. The framework was mathematically
described as a mixed linear program with an objective
function containing transit costs as well as explicit terms
for the emissions, based on the multiple travelling salesman
problems with time windows. The scale of the instances
tested on was again small; the number of trucks considered
range from 4 to 50. Side payments were not studied in their
experiments.

Collaboration in transportation and logistics have also
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been studied from a game theoretic point of view. For
example, [10] considers the optimal allocation of the cost of
an optimal route configuration among the customers in the
context of a vehicle routing problem. Regarding a collabo-
ration between road carriers, in order for it to be effective,
it is required that the costs and/or profits are divided in a
fair way between the participants of the coalition, such that
each participant has an incentive to stay in the coalition [11].
In [12] the distribution of costs and saving in a horizontal
collaboration between carriers is studied using cooperative
game theory; a simple allocation method was used, namely
the Shapely value. However, efficient algorithms or heuristics
for computation of allocations in large collaborations in
logistic planning remain to be investigated.

With regard to the adopted methodology in studying the
optimisation of drayage operations through collaboration
among carriers, and optimisation in logistics in general, two
types of experimental approach can be taken. One is formu-
lating the problem as a mixed linear program and optimising
it as such [8], [9]. Another, less common, approach is the
utilisation of simulations for measuring and testing proposed
schemes [6], [13]. Simulations are in general able to mimic
complex emergent behaviour, such as traffic jams, which
are difficult to capture in a linear program. As it already
might have become clear, the instances typically considered
in literature have a rather small scale. Here, the problem will
be studied on a very large scale, i.e. approximately 5 000
trucks and 600 road carriers. Since we will be considering
collaboration on a very large scale, the simulation approach
will be the one taken here for the evaluation of the collabo-
ration.

B. Statement of Contribution

The basic idea behind the proposed shared planning sys-
tem (SPS) is that as opposed to constructing a full planning
for the whole day beforehand, the planning will be dynam-
ically constructed on-the-go, enabling great flexibility and
allowing to take real-time information into account. The fact
that the planning is shared allows for participating trucking
companies to exchange orders, providing a bigger pool for
the algorithm to pick optimal orders from. To summarise,
our main contributions are:

• A flexible, yet simple shared planning scheme for
the horizontal collaboration between road carriers is
presented.

• The collaborative framework is studied in a large-scale
simulation, explicitly taking into account traffic and
congestion.

• The proposed SPS works in real-time, its on-the-go
character allows for great flexibility with regards to
carriers or single trucks entering or leaving the collab-
oration.

C. Organisation

The remainder of this article is organised as follows:
Section II will cover the different aspects of the simulation;
in Section III the planning strategies which are studied in

Fig. 1. The road network (for trucks) around Antwerp and its port and the
5 container terminals.

the simulation framework are described, including the shared
planning system; in Section IV the results are presented; fi-
nally, Section V contains the final discussion and conclusion
of this work.

II. SIMULATION

A. Traffic Simulation

At the base of every traffic model, being it micro-, macro-
or mesoscopic, lies a network structure that represents the
traffic network. The network considered in this simulation
is the complete road network in a rectangle of about 30
km × 25 km around Antwerp and its port, see Fig. 1. The
networks consists of |V | = 20 489 nodes or intersections
and |A| = 46 685 arcs or roads connecting them (only roads
where trucks are allowed are included). The traffic network
data was obtained from OpenStreetMap [14].

The framework that is used in this study is the one of
mesoscopic traffic modelling, allowing for realistic simu-
lations while being computationally efficient. More specif-
ically a model based on (state-dependent) queueing theory
will be used. In terms of queueing theory, each link of a
street network is regarded as a queue (obeying the FIFO
principle), i.e. a service device operating at a certain service
rate which corresponds to the flow capacity of the link,
being the maximum throughput in [vehicles/h] which can
be maintained. Queues of vehicles (congestion) occur in
the system, whenever the current demand exceeds the flow
capacity of a service. In consequence, vehicles queue up
in front of the service device, and experience additional
waiting times before being served. Moreover, the service
times will depend on the state (i.e. the density) of the
considered link. This allows to replicate the phase transition
that occurs in real vehicular traffic systems, namely from
the free flow phase to the jamming phase, where a jam or
shock wave propagates backwards through the system. The



model presented here is based on the work in [15], the µ-
Queue model, although some additions and adaptations are
made. The resulting simulator allows us to put vehicles in
the traffic network with a certain predetermined route and let
them drive through the network and interact with one another.
The efficiency of the mesoscopic model allows to simulate
ten thousands of vehicles in a large network with hundreds of
thousands of arcs/roads, while being able to reproduce traffic
jams and track individual vehicles. Routing trucks from their
origin to their destination is done by shortest paths based on
arc weight given by the exponential moving average (with
τ = 10 min) of the current travel time at each point in time
for each arc.

B. Simulation of Container Transportation in the Port

1) Terminals: The port of Antwerp has five large con-
tainer terminals [16], see Fig. 1. In Table I their annual
capacity is given in TEU (twenty-foot equivalent unit). The
total amount of containers handled in the port of Antwerp
in 2019 is 11 860 204 TEU, 58 % of which is handled by
trucks, 34 % by barge and 8 % by rail, [16]. This means that
3 439 459 40-foot (FEU) containers were handled by trucks
in the year 2019. We thus assume that all orders consist
of a 40-foot container, which is by far the most common
type. If there are any 20-foot container orders, it is assumed
that they are combined on one trailer. All of the terminals
are opened (landside) 24/5, except for Antwerp Container
Terminal which opened 5 days from 6:00 to 21:15. So there
is a total of about 250 operating days in a year, meaning that
on average No = 13 758 (40-foot) containers are handled
each day. Assuming that the number of containers processed
in each terminal is proportional to the respective capacity,
this can be converted to the average daily processed number
of containers by trucks for each terminal, see the last column
in Table I.

The terminals operate in similar ways although there is
a difference in how much of the truckflow inside each
terminal is automated. Some terminals have an online time
slot booking system (or TAS), however, these time slots are
not binding and trucks can arrive at any time in the day.
The internal operations of the terminals are abstracted away
and the processing time is modelled by a queueing model,
with a certain average service rate µ. The service rate is a
measure of how many trucks are processed per unit of time
and thus of the capacity of that terminal; it is assumed that
µ ∝ capacity (see Table I). The time at which a truck ν exits
the terminal tνexit is given by

tνexit = max(t, tν−1
serv ) + T ν

s + Th (1)

where tν−1
serv = max(t, tν−2

serv )+T ν−1
s is the service time of the

previous truck that entered the terminal and T ν
s ∼ Exp(µ) is

the service time (time between services), which follows an
exponential distribution with average service time 1/µ. This
first part of (1) is a direct consequence of a G/M/1 queue.
The last term Th ∼ N (µh, σh) represents the extra handling
time due to different kinds of operations inside the terminal

(multiple checks, waiting in the parking area for the container
to be loaded etc), which we assumed to follow a normal
distribution. Note that due to this last term, trucks will not
necessarily exit the terminal in the same order in which they
arrived. The parameters are set to 1/µ = 2.0 · (9 000 000/C)
s, with C the annual capacity of said terminal, µh = 1800
s and σh = 200 s.

2) Orders: In the context of this study, an order is a 40-
foot container which has to be picked up somewhere and
has to be dropped off in another location. One of these
locations, either the pick-up or drop-off, will be a terminal,
the other locations will be somewhere in an industrial area
in the hinterland. There are thus 2 types of orders, drop-off,
meaning a container is picked up somewhere and dropped
off at a terminal, and pick-up,the reverse. It is assumed that
roughly equal amounts of the orders are pick-up or drop-off,
[16], and that the handling times in the terminals are similar
for both.

Detailed data on the origin-destination pairs of containers
in the port of Antwerp is not available. In order to roughly
approximate potential drop-off or pick-up locations, map
data from [14] was used. On these maps, different areas
are classified according to the main activities or character-
istics of these areas (building, forest, waterway, etc.). All
patches that are classified as “industrial” are filtered out and
all road segments that fall inside one of those industrial
patches are used as potential locations for container pick-
ups or drop-offs, see Fig. 2 for the resulting distribution.
Finally, orders are generated as follows: a random terminal
is chosen (weighted by the capacities), a random industrial
road segment is chosen (with a probability proportional to
its length), and finally with 50 % probability, the order is
set to either drop-off or pick-up. During the simulation,
when an order is loaded or unloaded on a non-terminal
location, a delay is added to simulate the time needed to
carry out this operation, drawn from a normal distribution
N (µl = 1800 s, σl = 200 s).

3) Trucking companies: The players that handle the or-
ders and are responsible for the majority of the container
transport over land are the trucking companies, each having
their own fleet of trucks. Fig. 3 presents a snapshot of the
road transport market in Belgium. Note that of a total of
approximately 8 700 road transport companies, around 3 200
(37%) are companies with one vehicle. A similar distribution
of trucking companies and fleet sizes that operate in and
around the port of Antwerp will be assumed. The total
number of (container) trucks operating in the port will be
set to 1/3 of the total number of orders handled daily (such
that every truck handles 3 orders each day, on average), i.e.
Nt = 4586. The resulting distribution of the number of
companies Ni with fleet size i can be modelled by a power
law: Ni = N1i

−1.3. The constant N1 is determined by the
condition that the total number of trucks should be equal to
Nt, so Nt =

∑k
i iNi = N1

∑k
i i

−0.3 with k = 50 a cut-off.



TABLE I
THE 5 CONTAINER TERMINALS IN THE PORT OF ANTWERP.

Terminal Capacity (TEU) Daily throughput (FEU)
MSC PSA European Terminal (MPET) 9 000 000 7327 (53 %)
DP World Antwerp Gateway Terminal 2 500 000 2035 (15 %)
PSA Antwerp Europa Terminal 1 800 000 1465 (11 %)
PSA Antwerp Noordzee Terminal 2 600 000 2117 (15 %)
Antwerp Container Terminal 1 000 000 814 (6%)

Fig. 2. A heatmap showing the resulting distribution of drop-off or pick-up
locations that are not located at one of the five terminals.

Fig. 3. Overview of Belgium trucking companies’ fleet size, [17].

III. COLLABORATIVE PLANNING

With the framework described in the previous section, a
simulation can be set up: orders are allocated to trucks by a
certain planning strategy and trucks carry out the orders by
visiting the necessary location and terminal. The simulation
ends once all orders are processed. By planning strategy of a
trucking company, we mean the way in which pending orders
in the order book are allocated to trucks which will handle
them. It is by adopting different strategies that profit can
be made in terms of lost time. In describing and discussing

planning strategies, for reasons of simplicity, it will always
be assumed that all the orders for that day are known from
the start and that no new orders will be added during the
day, the contrary would however not pose a problem for the
techniques that will be used here (real-time planning).

It is possible to make a complete planning before the
start of the day, if all orders are known. Trucks could be
assigned all the orders they have to handle that day in the
order in which they have to be carried out such that e.g.
the total driven distance is minimised. A main problem with
this is that it is very difficult to make accurate predictions
of traffic situations and situations at the terminals and to
take them into account in optimising the planning. Another
main problem in the same line is that such a method is not
very flexible, which is a necessity when serving this many
independent road carriers. For example, new urgent orders
being placed during the day or trucks/drivers that cannot
drive that day for unforeseen reasons are difficult to take
into account. Which are things that are bound to happen
when such a large amount of trucks and orders are involved.
These are the main reasons why on-the-go real-time planning
strategies will be considered here. They are very flexible and
allow one to anticipate on real-time information on traffic
situations, terminal waiting times, etc. This flexibility will
be especially important when considering global planning in
the proposed SPS, see Section III-B below.

A. Local planning: individual planning

The first strategy that will be discussed is local planning,
denoting planning strategies where each competitive trucking
company plans for its own orders and trucks, without any
collaboration.

A first method of “planning”, to which others can be
compared, is random planning. This represents the case
where trucking companies do not really take any objectives
or information into account and just carry out orders on
the go. As will be the case with other real-time planning
strategies discussed here, trucks that are inactive (i.e. have
no order assigned to them) request an order and receive
one. Once they finished this order, they can again request an
order, if there are any left in the order book of that trucking
company, until all orders are processed.

An important factor that can be taken into account in
assigning orders to trucks is the expected driving times
from the current location of the trucks to the pick-up
location of the order. Given a set of pending orders and



pending trucks, one can assign (timewise) shortest order-
truck pairs to one another. One can see this as |Op| orders
and |Tp| trucks with |Op||Tp| links between them with a
weight representing the shortest timewise distance between
the location of the truck and the pick-up location of the
order. Trucks have to be assigned to orders such that the
total sum of the expected travelling times is minimised.
This is a well known combinatorial optimisation problem for
which good algorithms exist [18], [19]. The complexity of
the Hungarian algorithm which solves this problem exactly,
amounts to O(|Op||Tp|min(|Op|, |Tp|)) for our application.
This is, however, too slow for our application and here an
approximate technique will be used (this algorithm could in
practice be carried out on a powerful server, in which case
the exact solution might be feasible). Instead of looking for
the optimal combination of assignments, assignments with
the shortest travel times are picked in a greedy fashion, the
pseudocode is given in Algorithm 1. The time-complexity
of this approximate algorithm is O(|Op| + |Tp|). It works
by taking the set Tp and going over trucks one by one, and
assigning the closest order to it. This is done by doing a
Dijkstra search from one location to a set of possible loca-
tions (ClosestLeaf in the pseudocode), which can be done
efficiently, resulting in |Tp| calls to the Dijkstra algorithm.

Note that a lot of orders/trucks can have the same location,
namely one of the 5 container terminals. That is why the
map Lo is used, for each location they contain a linked
list (LL) with the orders with the same pick-up locations.
These linked lists are randomised for reasons of fairness. The
order in which the trucks are iterated through is randomised.
This will ensure no truck will be favoured over another and
more importantly, in the case of global planning that will
be discussed below, no trucking company gets an advantage
over another one when using this system.

Algorithm 1 Assign-Orders-Local()
1: Op = {...} ▷ Set of pending orders
2: Tp = {...} ▷ Set of pending (inactive) trucks
3: A = {(., .), ...} ▷ Empty map of (order, truck) pairs
4: if Op not empty and Tp not empty then
5: Lo = {(., LL[ ]), ...}
6: for each truck t in Tp do
7: a← ClosestLeaf(t.location(), Lo.keys())
8: o← Lo.get(a).pop() ▷ Closest order to truck t
9: A.put(o, t)

10: Op.remove(o)
11: Tp.clear()
12: return A

B. Global planning: a shared planning system (SPS)

By global planning we mean a planning strategy that aims
at optimising the container transport for trucking companies
and terminals by collaborating and sharing orders. An impor-
tant property/constraint to keep in mind is that the strategy
should be beneficial for all participating parties in order for

it to be successful, i.e. it should be individually rational in
a game theoretic sense. Keeping this in mind, the following
scheme is proposed: create a master set of pending orders in
which all pending orders of participating trucking companies
are put, all trucks of the participating companies are treated
equally. Upon requesting an order, trucks are assigned an
order in a similar fashion as in the local Algorithm 1.
The basic idea behind this is that the system now has a
bigger pool of orders from which optimal ones are picked
and allocated to trucks, compared to individual trucking
companies. This results in companies sharing orders while
being profitable for each company using this joint sharing
system. An important constraint that is introduced in this
global planning strategy is that each trucking company can
only get as many orders from the master set as it has put in
at the start of the day/simulation; assuming all orders are of
equal value; if they are not, it is straightforward to generalise
this to variable values. This will ensure no trucking company
can obtain more orders than they put into the shared system.
The pseudocode is given in Algorithms 2 (initialisation) and
3 (actual planning).

Algorithm 2 Initialize-Master-Set()
1: MOp = {...} ▷ Master set of pending orders
2: Cr = {(., .), ...} ▷ Empty map of (trucking company,

credit)
3: for each trucking company tc do
4: Op ← tc.pendingOrders() ▷ Set of pending orders

of tc
5: MOp.addAll(Op)
6: Cr.put(tc, |Op|)

Algorithm 3 Assign-Orders-Global()
1: MOp = {...} ▷ Master set of pending orders
2: Cr = {(., .), ...} ▷ Map containing credit for each

trucking company
3: A = {(., .), ...} ▷ Empty map of (order, truck) pairs
4: MTp = {...} ▷ Set of pending (inactive) trucks
5: for each trucking company tc do
6: if Cr.get(tc) > 0 then
7: MTp.addAll(tc.pendingTrucks())
8: if MOp not empty and MTp not empty then
9: Lo = {(., LL[ ]), ...}

10: for each truck t in MTp do
11: tc← t.truckingCompany()
12: C ← Cr.get(tc)
13: if C = 0 then
14: continue
15: a← ClosestLeaf(t.location(), Lo.keys())
16: o← Lo.get(a).pop() ▷ Closest order to truck t
17: A.put(o, t)
18: MOp.remove(o)
19: Cr.put(tc, C − 1)
20: return A



We thus propose a real-time planning system that is
used by multiple participating parties, being different road
carriers. In this dynamic on-the-go planning, pending orders
are shared between transport companies as a common good
which allows for a more profitable planning and allocation of
orders to trucks compared to individual planning. Every time
a truck is free, it can request a new order from the system,
which will return an optimal one taking into account current
traffic situations and the current position of the truck. The
real-time nature of this planning system inherently allows the
use of real-time information, such as current traffic situations,
which is done through the shortest-path allocation of orders
to trucks which uses the current load on the road network.
Moreover, this real-time booking allows for great flexibility,
orders, trucks and even trucking companies can join and
leave the system without the need of redoing the planning.

IV. RESULTS

In this section the results of the simulation and the dif-
ferent planning strategies will be discussed. The simulation
was implemented in Java 11.0.7 and the experiments were
performed on a computer with an Intel Core i7-8650U CPU
@ 1.90GHz×8 processor and 16 GB of RAM, under Ubuntu
18.04 x64. The time needed to complete a full simulation
depends on the parameters used, planning strategy, frequency
of updating the routing weights and trees, etc.; for the
parameters mentioned in the previous sections this amounts
to approximately 220 s.

A. Comparing planning strategies

To compare the different planning strategies described in
the previous section, 10 simulations were done for each strat-
egy, with otherwise the same parameters and initial condi-
tions. In Fig. 4 the distribution of the times spent in traffic by
each truck is shown for 4 different cases: random planning,
local planning, global planning, and a transitional case with
50 % of the trucks in the shared planning scheme and 50
% with an individual local planning (randomly picked). As
can be expected, by doing no planning or optimisation, i.e.
random planning, the traffic times are much greater. When
comparing random planning with local planning, the traffic
times are on average reduced by 27.4±3.9 % (errors denote
the standard deviation across the different simulations). On
average the reduction in traffic times amounts to 13.2± 1.3
% when going from local to global planning. When 50 %
of the trucks and their corresponding companies have joined
the SPS, the average time spent in traffic per truck is already
reduced by 9.2±1.3 % when compared to the case where all
trucking companies apply an individual real-time planning.
The average traffic times per truck for the different cases are
given in the first column of Table II.

B. Influence of fleet size

Let us now look in more detail at the impact of the fleet
size of a trucking company on its improvements when joining
the SPS. In Fig. 5, the average traffic time per truck for
companies with different fleet sizes is depicted. The results

Fig. 4. Distribution of time spent in traffic per truck for the three different
planning strategies: random, local and global.

TABLE II
AVERAGE TIME SPENT IN TRAFFIC (IN SECONDS) AND AVERAGE TOTAL

DISTANCE DRIVEN (IN KM) PER TRUCK FOR THE THREE PLANNING

STRATEGIES.

Strategy Traffic time Distance
Random planning 9 671 124.1
Local planning 7 022 92.0
Global planning 6 094 82.5
50 % Global - 50 % Local 6 373 87.2

are summarised in Table III. From this, it can be seen that
joining a coalition in the shared planning is relatively more
beneficial for trucking companies with smaller fleets. This
is a result which one intuitively expects, as the pool of
potential orders to choose from is increased more for smaller
companies joining the SPS than for larger companies. In
order to make the coalition more stable and the division of
profit more equal, side payments could be introduced, this is
however outside the scope of our work.

Fig. 5. The average time spent in traffic per truck for different fleet sizes
of the trucking companies under different planning strategies.

V. CONCLUSIONS

In this work, the possibility of a shared on-the-go planning
system for container trucks in the port of Antwerp is studied



TABLE III
RESULTS FOR AVERAGE TRAFFIC TIMES PER TRUCK FOR COMPANIES WITH DIFFERENT FLEET SIZES.

Fleet size: 1-4 5-9 10-14 15-19 20-29 30-39 40-50
Random planning (s) 9 734 9 742 9 782 9 807 9 777 9 760 9 780
Local planning (s) 8 157 7 473 7 149 6 976 6 903 6 810 6 760
Global planning (s) 6 288 6 127 6 086 6 043 6 113 6 074 6 088
Improvement: Random → Local (%) 16.2 23.3 26.9 28.8 29.4 30.2 30.9
Improvement: Local → Global (%) 22.9 18.0 14.9 13.4 11.4 10.8 9.9

by means of a large-scale simulation. It was demonstrated
that a real-time SPS showed great improvements when com-
pared to an individual real-time planning. This increase in ef-
ficiency is not only positive for the participating road carriers,
but may benefit the whole supply chain by decreasing road
congestion around the port, reducing carbon emissions, and
transportation costs, and increasing the system-wide truck
capacity.

Container terminals could also benefit from this system.
Firstly, greater efficiency in container transport on the side
of trucks and trucking companies means that more orders
can be processed each day. Secondly, this SPS would allow
for great transparency towards the terminals. For all trucks
using this booking/planning system, they can get precise
information on when to expect which truck and for which
order; this information could be used to further optimise their
internal operations. A possible extension of this system when
assigning orders to trucks would be to actively take into
account the current load on the terminals and the expected
future loads on the terminals. To accurately model this, more
detailed and accurate information on the internal operations
of each individual container terminal has to be available.

It was demonstrated that when only 50 % of the trucks and
their corresponding companies (picked at random) join the
shared system, the improvement in efficiency is already close
to the case where all trucks are in the SPS. This illustrates
that it is not necessary for all companies to join the system
before benefits are noticeable, which creates an incentive for
trucking companies to join the SPS in the early phase and
will facilitate the introduction of such a shared system in
practice. Note that in the description and experiments in this
work, the constraint was set such that each trucking company
gets the same number of orders allocated by the SPS as they
had at the start of the day. The sharing of orders is thus kept
in balance on the scale of one day. In principle, it is also
possible to extend this to longer time scales (i.e. building up
credit over a longer period of time). The issue of the correct
assignment of side payments between trucking companies in
order to make the coalition stable has not been covered in
this work. As mentioned in the literature review, efficient
methods for determining profit allocations in large coalitions
in the context of collaboration in transport remains an open
problem and a possible subject for future research.
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