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A B S T R A C T

The increased number of security cameras in modern cities has elevated the video-feed monitoring
demands of closed-circuit television (CCTV) operators. As a result, new AI-driven support systems
that leverage the power of computer vision algorithms have been deployed to facilitate the operators’
work. However, to effectively design intuitive, AI-driven interfaces and validate their impact on the
operators’ performance, extensive user testing is required. To address this, we previously developed
and tested a virtual reality (VR) control room that can be used to iteratively evaluate intelligent
computer assistants and interfaces while operators are subjected to different cognitive load. In the
present study, we use this VR environment and physiological markers (e.g., eye tracking measures)
to investigate how AI-based visual cueing (i.e., pushing forward video streams on which detections
are highlighted by rectangles drawn around targets) affects operator performance and cognitive load.
Results suggest that support systems using such technology in a control room improve operators’
performance and decrease their cognitive load, as reflected by changes in pupil dilation and subjective
reports irrespective of induced cognitive load.

1. Introduction
Police services began exploring the idea of using video

cameras as means of patrolling public spaces over fifty
years ago. In the past few decades, closed-circuit televi-
sion (CCTV) monitoring for security purposes has grown,
resulting in an exponential increase of security cameras in
public and private places (Hollis, 2019; Norris et al., 2004).
Despite the development of modern computer vision tech-
nologies (see Sreenu and Durai, 2019), many control rooms
still operate in a traditional fashion. Control room operators
are taxed with monitoring a large mosaic comprised of
different camera streams. In addition, it is not unusual to have
more cameras than screens, whereby operators frequently
switch between video streams. This monitoring style relies
heavily on human operators that have cognitive limitations
such as limited working memory capacity (Keval and Sasse,
2006) and the fact that sustained attention heavily strains
one’s cognitive resources (Warm et al., 2008). As a result,
the increased surveillance demands provided by multiple
cameras can promote poor detection performance (Stainer
et al., 2017).
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Given the aforementioned limitations of human opera-
tors, it appears inevitable that intelligent surveillance tech-
niques such as computer vision algorithms will increasingly
be employed to assist operators. One such intelligent system
that aims to overcome the operator’s cognitive limitations is
one that automates aspects of the operator’s task (Hodgetts
et al., 2017). A major part of CCTV control room operators’
tasks is proactive surveillance (Keval and Sasse, 2006),
which involves scanning many video streams to visually
detect anomalies. As described by Keval and Sasse (2006),
operators usually don’t use a specific strategy here. Rather,
operators often scan through video feeds at random. Conse-
quently, many events are at risk of being missed. On this
point, assistive computer vision technology, which auto-
matically highlights events that need inspection, would be
beneficial. Additionally, the development of interfaces that
display video feeds to facilitate the process of monitoring
and switching between multiple feeds during a surveillance
task can decrease operators’ cognitive demands (e.g., Pel-
letier et al., 2015). Therefore, it is imperative to investigate
the added value of such assistive technologies and –because
such systems still necessitate a human element– their effects
on operators. In addition to validating, such iterative tests
will inform the development of future optimal user-centric
systems and add to existing –yet non-exhaustive– control
room design guidelines (e.g., Grozdanovic and Janackovic,
2018; Pikaar et al., 2015).
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1.1. Cognitive load
Although the concept of cognitive load is intuitively easy

to understand, there is no consensus on how it should be
defined, leaving us with an incoherent theoretical under-
standing (Van Acker et al., 2018; Young et al., 2015). One
operational definition is provided by Young and Stanton
(2001, pp. 507). They suggest that cognitive load reflects
“the level of attentional resources required to meet both
objective and subjective performance criteria, which may
be mediated by task demands, external support, and past
experience”. In their definition, attentional resources are
limited. Thus, when available attentional resources are fully
allocated, a cognitive overload results which often hinders
performance. Evidently, this outcome is undesirable in con-
trol room environments. Next to the mediating factor of
inter-individual differences, this definition highlights the
possibility of mediating cognitive load by manipulating task
demands (e.g., complexity, temporal pressure) and external
support. It therefore suggests that it is valuable to review
the effects of both assistive technology and task demands on
workers.

In a recent study by Van Acker et al. (2018), however, the
authors formulated an implementable framework on cogni-
tive load by disentangling the concept into its antecedents,
defining attributes and consequences. The authors of this
paper pointed out the misuse of the term mediator in the
above-cited definition by Young and Stanton (2001). In
fact, they claimed that task demands are more a predictor
(i.e., an antecedent) than a mediator of mental load. On the
other hand, past experience and external support operate
as moderators according to this framework. As an example,
assistive technology influences the effect of task demands on
cognitive load.

The framework proposed by Van Acker et al. (2018)
states clearly that cognitive work demands are predictors
of cognitive load, and consequently, high cognitive load
can have detrimental work-related consequences (e.g., lower
and slower performance). Interestingly, external support is
a factor that can moderate this influence, especially in the
current context of operator support systems.

Indeed, external support by intelligent technology has
been shown to positively affect control room operators’ sub-
jective load. For instance, Dadashi et al. (2013) examined the
effects of automation accuracy and reliability on attention
capacity and perceived cognitive load in a video monitoring
task. Participants monitored a video stream from one camera
while assisted by simulated automation. Their task was to
detect a previously described actor (i.e., the target) when
he entered a scene. The automated assistance system drew
rectangles around (potential) targets in specific colors. The
color of these rectangles resembled the system’s confidence
in the highlighted actor being the target. The reliability of
the simulated automation was manipulated by changing the
frequency of each color. As an example, in the unreliable
confidence condition, half of the hits (i.e., the detected actor
is the target for detection) were identified with the color
indicating high system confidence, and the other half were

presented as low system confidence. The results illustrated
an advantageous effect of reliable automated assistance on
load — when the system consistently identified hits and false
positives with high and low confidence levels, respectively,
participants reported reduced load. Participants also per-
formed a secondary task while engaged in monitoring where
they counted the number of people carrying backpacks in
the video feed. Secondary task performance was an indirect
indication of spare mental capacity which is inversely related
to cognitive load. The findings suggested more spare mental
capacity when participants were assisted by a reliable auto-
mated system.

Although this study provided valuable insights for future
system development, it was limited by its lack of a non-
assisted control condition. Furthermore, in the experiment
participants only monitored a single video stream at a time
— a far cry from real-life control room settings, character-
ized by dozens of concurrent video streams. The first aim
of the present study is to bridge this gap by immersing
participants in a virtual reality simulator of a fully equipped
CCTV control room. Also, the cognitive load framework of
Van Acker et al. (2018) indicates that the antecedents task
complexity and task demand are likely to indirectly affect
task performance, which can itself be moderated by external
support. Therefore, the second aim of the present study is
to investigate and demonstrate how support systems can be
evaluated under different cognitive loads. Lastly, in the study
of Dadashi et al. (2013), cognitive load was only measured
subjectively. However, there are multiple possibilities to
measure cognitive load objectively.

1.2. Measuring cognitive load
Cognitive load as a multi-dimensional construct (Young

et al., 2015) has been assessed through a wide range of proce-
dures. First, questionnaires such as the adapted versions of
the NASA-TLX questionnaire (Hart and Staveland, 1988a)
are regularly used to measure perceived cognitive load (e.g.,
Di Nocera et al., 2007; DiDomenico and Nussbaum, 2008;
Grier, 2015). Second, researchers have studied a number of
physiological correlates of cognitive load, from electrical
brain activity (Antonenko et al., 2010) to electrodermal
activity (Setz et al., 2009) and pupil dilation (see, van der
Wel and van Steenbergen, 2018). Better still, Vanneste et al.
(2020) demonstrate that cognitive load assessment accuracy
increases with a multimodal approach that includes multiple
measures.

Electrical brain activity is typically measured using elec-
troencephalography (EEG), which is a non-invasive neu-
roimaging technique that measures electrical brain activ-
ity via electrodes placed on the scalp. The resulting EEG
signal is composed of oscillations in multiple frequency
bands (e.g., delta, theta, and alpha). Performing spectral
power analysis on this continuously recorded data allows
researchers to investigate the power of these oscillations at
different frequency bands. For instance, oscillations in the
alpha range (8-12 Hz) are highly pronounced when people
are in a relaxed yet wakeful state, and while their eyes are
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closed. However, when people open their eyes (i.e., moving
from a relaxed to an attentional state of alertness) alpha ac-
tivity is suppressed (or desynchronized). Importantly, there
is ample evidence that when cognitive load increases, there
is a reduction in alpha power (most prominent in parietal
areas) and an increase in theta activity (most prominent in
frontal areas) (Antonenko et al., 2010; Brouwer et al., 2012;
Klimesch, 1996; Sauseng et al., 2010). Moreover, it has been
shown that these cognitive load markers can be measured in
actual control room working conditions (Fallahi et al., 2016).

Furthermore, it has been illustrated that pupil dilation
and blink rate (i.e., number of eye blinks per minute) cor-
relate with cognitive load. More precisely, the human pupil
has been shown to dilate and blink rate to decrease with
increasing cognitive load (e.g., Gavas et al., 2017; Krejtz
et al., 2018; Ledger, 2013; van der Wel and van Steenbergen,
2018; Zheng et al., 2012). However, the effects of cognitive
load on blink rate require distinguishing between visual
demands and mental activity. The effect of cognitive load on
blink rate, when driven by increased visual demands (e.g., in
a search task), can be explained by an automatic adaptation
that inhibits blinking as this impedes visual information
processing (Borghini et al., 2014; Wanyan et al., 2018).
In contrast, cognitive tasks that require no visual process-
ing induce a speed-up blink rate with increasing cognitive
load (Magliacano et al., 2020; Recarte et al., 2008). Blink
rate also increases during mental rehearsals (De Jong and
Merckelbach, 1990), that is, silently repeating information
that needs to be remembered. In this sense, conflicting ef-
fects are expected when both a visual and a mental task (e.g.,
an arithmetic task) are to be performed interchangeably.
Another study illustrated that the blink rate is generally low
when the visual load is high. During such states, cognitive
load does not have an identifiable impact on blink rate (i.e.,
floor effect). Thus, blink rate seems only influenced by cog-
nitive load when visual load is low (Chen and Epps, 2014).
Because of these conflicting predictions on the relationship
between cognitive load and blink rate, in this study, blink
rate is not used as a marker of cognitive load. However,
it is still measured to explore how blink rate changes in
the manipulated conditions to understand the possibility and
suitability of using blink rate as a cognitive load marker in
future research regarding the current context.

1.3. Virtual reality as a research tool
To effectuate a multimodal approach to assess cogni-

tive load during CCTV monitoring, immersive virtual real-
ity (VR) appears a promising testing environment. In VR,
people can watch and interact with an immersive virtual
environment (VE) by means of a head-mounted display
(HMD). Building VR simulators offers multiple advantages
over classical approaches.

First, it is less time-consuming to build and evaluate
operator support systems in VR than it is to construct fully
operational support systems before they can be tested (see
also, Oberhauser and Dreyer, 2017). Also, VEs allow imple-
mentating Wizard of Oz (Dahlbäck et al., 1993) prototyping

approach very easily to test initial ideas without the need
of developing automated systems. Therefore researchers can
simulate automated systems by manually steering in-scene
events so that the participant believes these events are oc-
curring automatically.

Second, it is mostly impossible to occupy existing and
operational control rooms for prototype testing and exper-
imenting, because that would impede ongoing work for
several hours or even multiple days. Given that most CCTV
control rooms should be operational 24/7 to guarantee, for
instance, general safety in cities, it would be rather inap-
propriate to shut down such control rooms for experimental
tests.

Third, VR allows researchers to create an environment
that is fully controlled. Researchers can alter the lighting
conditions, background noise, the presence of colleagues,
etc. This facilitates a rigorous and more ecologically valid
investigation of the experimental manipulation effects (e.g.,
the addition of assistive technology in surveillance rooms)
during numerous controlled circumstances. In sum, VR em-
powers researchers to find an ideal balance between ecolog-
ical validity and the advantages of a controlled design.

Finally, since all interactions with the VE are recorded,
researchers can benefit from a rich data set that describes the
participants’ behavior (e.g., performance on a task, physical
interaction with another agent or object in VR etc.). Further-
more, state-of-the-art HMDs with built-in eye trackers con-
tinuously log eye-related indices. As an example, insights on
participants’ preferences (e.g., where do they look the most?)
as well as indirect indicators of cognitive load (pupil dilation
and blink rate) can be derived from this data. Additionally, a
study by Tauscher et al. (2019) demonstrated that, with some
minor modifications, it is possible to also combine EEG
and VR. Moreover, researchers have already been able to
discriminate between different levels of cognitive load using
a classical n-back task in an interactive VR environment
regardless of the increase in muscle tension and activity as a
result of the interactive environment (Tremmel et al., 2019).

1.4. The present study
Given the ongoing change toward semi-automated CCTV

control rooms and because such systems require a human
element, it appears important that the use and effectiveness
of (new) assistive technology is investigated. Evaluating
the effectiveness of these systems –and having an adequate
method to do so– is crucial not only for assessing their
performance, but also for informing the development of
future user-centric systems, expanding control room design
guidelines and evaluating their effects on human operators.

This study investigates how two visual cueing techniques
that can be used in automated camera selection systems in-
fluence operators’ performance, cognitive load, and behavior
in camera surveillance control rooms under different levels
of work pressure. The support system highlights specific
events to the operator in two ways. The first is to push the
camera feed of interest to one of the operator’s personal
screens, which serves to watch one of the camera streams
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into more detail. The second approach is to have the system
draw rectangles around the person of interest in the camera
stream that is pushed forward (Figure 1).

Figure 1: Flow of support system. The video of interest is pushed
to one of the operators’ personal screens by the support system and
there a rectangle is drawn around the target.

In a previous study, a virtual CCTV control room was
developed, where an operator’s job was simulated and work
pressure was manipulated (De Bruyne et al., 2021). Partici-
pants wore an HMD to interact with the virtual control room.
They were asked to perform a simplified monitoring task
(primary task) and from time to time were interrupted by
auditory requests that required a response (secondary task).
The secondary task either consisted of low demanding task
rules and long response-stimulus intervals (RSIs) or high
demanding task rules and short RSIs. The results suggested
that manipulating these two features (task difficulty and
RSIs) altered cognitive load as measured by a subjective
measure (i.e., NASA-TLX questionnaire) and physiological
markers (e.g., eye-tracking). Therefore, the secondary task
manipulation of (De Bruyne et al., 2021) offers the oppor-
tunity to investigate the effect of new support systems while
operators are under different cognitive loads.

The present study uses the same virtual control room
and dual-task manipulation. The primary task in the present
study, however, consists of an actual video monitoring task.
While performing this task, participants are either assisted
by the support system outlined above, or are not assisted at
all. Given the general purpose of such support systems (i.e.,
increasing performance), the researchers investigate not only
the influence of AI assistance on cognitive load but also on
primary task performance. Furthermore, the interplay be-
tween the work pressure manipulation (i.e., current cognitive
load levels) and the addition of the assisting technology is
explored. In other words, higher task performance and lower
experienced cognitive load are expected when participants
are assisted by the visual cueing system. These outcomes are

expected to be visible in the pupil size data (larger pupil size
when not assisted), the EEG data (i.e., less alpha power when
not assisted), and the subjective data (i.e., higher reported
cognitive load when not assisted). Finally, we investigate
whether an interaction exists between cognitive load and the
assistive technology used (e.g., stronger effects of support
system in high load conditions).

In sum, the present study aims to investigate the potential
influence of an operator support system on the relationship
between task performance, behavior, and cognitive load.

2. Method
2.1. Participants

31 participants (11 male, Mage = 24.56, SDage = 2.93)
took part in the experiment. Inclusion criteria were the
type of hair (e.g., no dreadlocks as it interferes with EEG
recordings) and history of simulator sickness (i.e., applicants
who often suffer simulator sickness were not invited to the
lab). Each participant signed informed consent and received
20 euros for their participation. The protocols of this study
were approved by the Ethical Committee of the Faculty of
Political and Social Sciences of Ghent University.

2.2. Materials and equipment
The VR setup consisted of a computer running SteamVR

(v.1.14.16) and an HTC VIVE Pro Eye. The HMD and the
controllers were tracked by two Vive SteamVR Base Sta-
tions 2.0. A wireless connection between the computer and
the HMD using a Vive Wireless module (www.vive.com)
was used to reduce the number of cables because both the
HMD and an EEG cap were placed on the participant’s head.
The HMD’s built-in eye-tracker and the Vive Eye-tracking
Software Development Kit (SDK) SRanipal were used to
obtain eye-tracking measures (incl. pupil sizes). This built-in
eye-tracker had a sampling rate of 120 Hz. However, in this
experiment, the eye-tracking data was recorded at frame rate
(i.e., 50-60 Hz).

The experiment was built in Unity (version 2019.4.3f1)
using the VRTK framework (vrtoolkit.readme.io/) for in-
scene interactions. The VR environment was a pre-existing
police control room asset that was modified according to the
experiment’s needs. The eventual virtual control room was
equipped with a video wall consisting of 8 large screens and
two desks with 3 monitors each (figure 2). One of the opera-
tor’s (i.e., the participant) personal workspace monitors was
used as a response screen with buttons that could be pressed
using a pointer and the trigger button of the controller (which
participants held in their hand of preference). Also, a walkie-
talkie radio was present in the scene which was the audio
source for the presentation of the auditory stimuli.

During experimental blocks, the six leftmost screens of
the video wall each rendered one of the six camera angles
while the two rightmost screens presented irrelevant news
shows. One of the three personal screens of the operator
showed a mosaic of all the six camera angles (see figure 2).
The screen that was positioned in the middle of the operator’s
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desk rendered one of the six videos in an enlarged format
in order for the participant to see one of the videos on a
more detailed level. When participants were not supported
by the system, they could choose which of the six camera
angles they wanted to see on that screen by clicking on one
of the videos in the mosaic on the left screen. In contrast,
this selection was done by the algorithm during AI-assisted
conditions. In other words, during those conditions, the
video selection montage was presented on the middle screen.
Throughout the whole experiment, the artificially simulated
luminance of the virtual control room was kept constant.

Figure 2: Overview of the virtual control room with displayed
videos.

The video footage consisted of simulated camera surveil-
lance videos that were shot in a bicycle storage room from
six different angles. All angles were filmed using Go-Pro
cameras (2x Go-Pro hero3, 2x Go-Pro hero7, and 2x Go-Pro
hero5 session). Altogether, these cameras covered the entire
bicycle storage. Four video sets were made of 6.5 minutes
each. In the scene, actors simulated criminal events such
as bicycle thefts and robberies. These events were spread
randomly over the duration of each video. Next to criminal
events, normal events such as people picking up their own
bicycle, parking a bicycle or just passing by occurred fre-
quently.

The video selection montage that was shown in the
AI condition was created by Robovision (Belgium, robovi-
sion.ai) using an algorithm that detects people in a scene
(based on RetinaNet; Lin et al., 2017). At any moment, the
video in which most detections (i.e., people) were flagged
by the algorithm was selected. A background subtraction
approach, inspired by MOG2, was used to reduce false pos-
itives (Zivkovic, 2004). As a result, the algorithm ignored
camera angles where there was a detection, yet no move-
ment. Additionally, a temporal low pass filter was applied
to the stream selection. This avoided very fast switches
between different streams, and thus gave the operator time
to interpret the content of the selected stream. Detections
in the resulting video sequence – a montage that contin-
uously switches between the six angles – were indicated
by a green rectangle that was drawn around the detected
person (figure 3). The video montage that represented the
AI assistance was made so target events could not be missed
if only the automatically selected stream was looked at.

Importantly, the algorithm used in this study does not rep-
resent a commercially viable product. It was chosen to fit
this experiment’s goal, i.e., to investigate the influence of a
system pushing forward one of many video streams on the
operator’s performance and cognitive load.

Figure 3: Example of video stream pushed by the algorithm with
a highlighted detection (rectangle).

The EEG data were recorded using eegoTM mylab soft-
ware (version 1.7.1; ANT Neuro, Netherlands, www.ant-
neuro.com). WaveguardTM actively shielded caps (ANT
Neuro, Netherlands, www.ant-neuro.com) with 64 Ag/AgCl
electrodes placed according to the 10-20 system were used.
These caps prevent 50/60 Hz environmental noise and arti-
facts arising from the movement of the cables in the recorded
data. Recordings were referenced online to the CPz site
electrode and the ground electrode was placed on AFz.
The sampling frequency during recording was 512 Hz and
impedance was kept below 25kΩ.

The perceived load was assessed at the end of every
block using an adapted version of the NASA-TLX (Hart
and Staveland, 1988b). The NASA-TLX is a well-known
assessment instrument that indicates perceived load on six
domains of task requirements (e.g., mental demand, physical
demand, etc.).

2.3. The dual-task paradigm
2.3.1. The primary task

The primary task was actual video monitoring. Par-
ticipants monitored the surveillance camera footage and
were asked to report criminal events like bicycle thefts
or robberies. They were instructed to press the ‘detected’
button on the response screen to flag an incident. When the
participant pressed the ‘detected’ button, a timestamp was
logged. These timestamps were used to assess performance
on the primary task.

2.3.2. The secondary task
The currently used secondary task followed the outlines

of the one illustrated in De Bruyne et al. (2021). Thus,
it consisted of an auditory presentation of a sequence of
randomly selected single-digit numbers ranging from 1 to
6. The length of each sequence varied from 2 to 6 digits
at the trial level. In the low demand condition participants
responded by clicking the last digit of the heard sequence
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on the response screen and then pressing the ‘send’ button.
In contrast, the high demand condition imposed task rules
dependent on the number of digits in the sequence. When
the number of digits in the sequence was odd, participants
clicked the last two heard digits and then press the ‘send’
button. When the number of digits in the sequence was
even, participants clicked the first two digits they heard
followed by the ‘send’ button. Moreover, the secondary task
differed in RSI over both conditions. In the low demand
condition, the RSI varied ad random between 25 and 30
seconds whereas in the high demand condition the RSI
varied between 2 and 7 seconds. Reaction times as well as
accuracy were measured.

2.4. Procedure
Upon arrival, participants signed informed consent and

were briefed on how the EEG cap would be mounted and
installed. After mounting the cap and adding conductive gel
for the electrodes to have ideal impedance, the controller
buttons and their usage were explained followed by a general
introduction to the experiment. Participants wore the HMD
on top of the EEG cap and held one controller in their
hand of preference. Participants were clearly instructed that
the primary task should be prioritized. Further detailed
instructions on the tasks were presented onscreen in VR.
Before the start of the experiment, baseline EEG data was
recorded for 1 minute. During this minute, participants were
asked to relax as much as possible with their eyes open.
Subsequently, an eye-tracker calibration procedure was per-
formed. After mounting the HMD, participants were allowed
to get used to being in VR and familiarise themselves with
the controller. Each participant performed every condition
of the 2x2 design. Each of these conditions corresponded
to one block. Participants were divided into four groups
based on their subject number. Each group had a different
combination of the order of secondary task demands con-
ditions and the assistance condition (see, Figure 4). The
condition randomization was generated following a Latin
square design. The secondary task was practiced before the
start of the experiment and before the start of the third
block because, after the second block, the task rules of the
secondary task changed. In other words, a participant either
first performed two block with the task rules for the low load
condition and subsequently two blocks with the task rules
of the high load condition, or vice versa. After each block,
participants answered the questions of the adapted version
of the NASA-TLX questionnaire orally while they were still
wearing the HMD.

Figure 4: Overview of randomization of condition order.

2.5. Data analysis
The data was analyzed using two within-subject factors

(i.e., load and assistance - high or low and manual or AI,
respectively). However, as participants were only able to
click on the mosaic screen in the manual condition, the
dependent measure number of clicks (i.e., interactions with
the interface) was analyzed using only load as a factor.
All data pre-processing was performed in Python 3 and
linear mixed-effects models (LMMs) were constructed in
R using the lme4 package (Bates et al., 2014) specifying a
random intercept for each participant. Degrees of freedom
for the LMMs were corrected using Kenward-Rogers cor-
rection (Kenward and Roger, 1997). Before each analysis,
outliers were removed from the data set. Outliers are defined
as datapoints lower than -1.5 times the interquartile range
(IQR) or higher than 1.5xIQR.

2.5.1. Performance on the primary and secondary task
Performance on the primary task was scored manually.

Each ‘detected’ button press was categorized as either a true
positive (TP) or a false positive (FP). Next, the criminal
events that participants did not detect were counted and
labeled as false negative (FN). The remaining non-criminal
events that occurred in a block were counted as well and
were labeled true negative (TN). Using the absolute counts
of all TPs, TNs, FPs, and FNs during each block, two dif-
ferent measures were calculated for accuracy on the primary
task for each condition: sensitivity (true positive rate; TPR)
and specificity (true negative rate; TNR). Sensitivity (TPR)
represents the probability with which a criminal event is
detected as such. In contrast, specificity (TNR) represents
the probability that a truly non-criminal event is marked
as such. In other words, the proportion of non-criminal
events that the operator correctly identified as non-criminal.
In analytical terms, TPR is given by the number of TPs
divided by the total number of positive events. Likewise,
TNR is calculated by dividing the number of TNs by the
total number of negative events.

To illustrate the concepts of sensitivity and specificity,
imagine two operators, operator A and operator B. Operator
A was able to detect all criminal events during a monitoring
task. When he was in doubt, however, he flagged the doubtful
event as criminal activity. By doing so, he decreased the
probability of missing events (false negatives) but increased
the probability of wrongfully labeling non-criminal events as
criminal (false positives). Operator B was more conservative
during the task. He marked events as criminal only when he
was 100% sure. As a result, he often failed to detect criminal
events (false negatives), but the probability of wrongfully
judging an event as criminal (false positives) decreased.
When comparing the operators, operator A would score
better on sensitivity while operator B would score better on
specificity.

Other than the measures described below, primary task
performance was analyzed using a non-parametric test for
repeated measures because the normality assumption did not
hold given the nature of the data (i.e., skewed due to a ceiling
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effect). These models were built using the package nparLD
(Noguchi et al., 2012) in R.

Performance on the secondary task was scored automat-
ically during the experiment. If the response provided by
the participant matched the correct response, the trial was
scored 1. If the participant’s response did not match the
correct response, the trial was scored 0. The score on each
trial was summed and divided by the total amount of trials
within a block. Finally, this summed score was converted
to a percentage. Reaction times on the secondary task were
not analyzed as the different task rules across conditions
required different responses.

2.5.2. Perceived cognitive load.
Responses on the adapted version of the NASA-TLX

were scored on a scale ranging from 0 to 100. As has often
been done in previous research, the mean of the responses
across items was calculated resulting in one score of subjec-
tive cognitive load per participant.

2.5.3. Eye-tracking
Due to technical issues, eye-openness and pupil size

were only recorded for 18 participants. However, the blink
rate could also be calculated based on the EOG data (in-
cluded in the EEG recording) instead of using the eye-
openness data captured by the HMD. As a result, the mean
blink rate (blinks/minute) was calculated per block for 30
participants. This calculation was performed using the neu-
rokit2 package (Makowski et al., 2021).

Pupil size was logged at frame rate (50-60 Hz). This data
was pre-processed by interpolating outliers (i.e., values that
were smaller or larger than – 3 SD or larger than + 3 SD)
and missing values due to blinks linearly on the subject
level. Next, the mean pupil size for each participant for each
condition was calculated.

As for eye gaze, three participants were excluded be-
cause their data was not captured continuously, resulting in
critical data loss. The dependent variable that was calculated
for eye gaze was time spent looking at the monitor rendering
one enlarged video (i.e., the video pushed by the algorithm
in the AI assistance condition) divided by the sum of the time
spent looking at that monitor, and the time spent looking at
the mosaic or the videowall (excluding the distractor video
feeds on the video wall).

2.5.4. EEG data
The recorded EEG data were re-referenced to the average

across all electrodes and filtered using a band-pass filter of
1-50 Hz. Ocular artifacts (blinks and eye movements) were
isolated and removed from the continuous EEG data using
independent component analysis (ICA) and by comparing
these to the EOG data and, to confirm, after visual inspection
of the components for each participant. Bad electrodes (drift-
ing or flat-lining electrodes) were interpolated. Following,
the data were resampled to 100 Hz and segmented per block
before spectral power analyses were performed. Power in
the alpha band and theta band was averaged across central
parietal electrodes (CP1, CPz, CP2, P1, Pz, P2) and frontal

electrodes (F1, Fz, F2, AF3, AFz, AF4) respectively and
was calculated using Welch’s method for spectral density
estimation with a moving window of 2 seconds and 50%
overlap. Also, a cognitive load index was calculated based on
the theta Fz/alpha Pz ratio (Holm et al., 2009). This measure
is another method used to assess cognitive load through
EEG. The resulting dataset included alpha and theta power
for the above-mentioned regions of interest and a cognitive
load index. The dataset was analyzed using LMMs with a
random intercept for each participant. For the analysis of
the EEG data, one participant was excluded due to recording
failure.

3. Results
3.1. Performance on the primary task.

For TPR, there was neither a main effect of assistance,
F(1, ∞) < 0.01, p = 0.986, or load, F(1, ∞) = 1.16,
p = 0.282, nor was there an interaction effect between load
and assistance, F(1, ∞) < 0.01, p = 0.978. For TNR, there
was a main effect of assistance, F(1, ∞) = 3.95, p = 0.046.
This effect shows that TNR increased when participants
were supported by the AI assistant (see, figure 5). Addi-
tionally, TNR was not influenced by load, F(1, ∞) = 2.78,
p = 0.096, and there was no interaction effect between
assistance and load, F(1, ∞) = 0.94, p = 0.331. The main
effect of assistance on TNR illustrates that participants made
fewer false positive errors when they were assisted by AI.

Figure 5: Average score on specificity by assistance condition.
Error bars represent 95 CI.

3.2. Performance on the secondary task.
A main effect of load was found for accuracy on the

secondary task, F(1, 90) = 179.55, p < 0.001, 𝜂2𝑝 = 0.67,
95% CI [0.56, 0.74]. Finding such a convincing large ef-
fect size again serves as a positive manipulation check
as participants performed better in the low load condition
(M = 94.20%, SD = 6.80%) relative to the high load
condition (M = 67.20%, SD = 17.10%). No main effect for
assistance, F(1, 90) = 0.433, p = 0.449, 𝜂2𝑝 < 0.01, 95%
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CI [0, 0.08], and no interaction between load and assistance
was found, F(1, 90) = 0.43, p = 0.515, 𝜂2𝑝 < 0.01, 95% CI
[0, 0.07].

3.3. Interactions with the navigation system in
manual condition.

Load condition significantly affected the amount of
clicks participants performed on the mosaic screen during
the manual condition, F(1, 27) = 22.09, p< 0.001, 𝜂2𝑝 = 0.45,
95% CI [0.17, 0.64]. Specifically, participants clicked less
on the mosaic screen to look at one of the video feeds in
more detail during the high load condition (M = 54.93,
SD = 32.42) compared to the low load condition (M = 80.93,
SD = 46.42). This large effect suggests that there were less
mental resources available to actively scan through the video
streams when cognitive load induced by the secondary task
was high.

3.4. Eye gaze.
A main effect of assistance was found for the propor-

tional time spent looking at the enlarged video screen,
F(1, 77) = 4.41, p = 0.039, 𝜂2𝑝 = 0.05, 95% CI [0, 0.18] (fig-
ure 6). This small to moderate effect shows that participants
spent more time looking at the enlarged video feed when the
AI assistant pushed one of the video feeds to the monitor
in the middle of their desk (M = 67.85%, SD = 22.29%)
relative to when they had to manually select video feeds to
watch them in detail on that same monitor (M = 61.97%,
SD = 19.57%). Inversely, this also means that participants
visually explored the other video feeds presented on the
mosaic screen and the video wall to a lesser extent when they
were supported by the algorithm. For this measure, there was
no main effect of load, F(1, 77) < 0.03, p = 0.873, 𝜂2𝑝 < 0.01,
95% CI [0, 0.04], and no interaction effect between load and
assistance, F(1, 77) = 0.435, p = 0.512, 𝜂2𝑝 < 0.01, 95% CI
[0, 0.08].

Figure 6: Average score on the proportion of time spent looking at
the enlarged video by assistance condition. Error bars represent 95
CI.

3.5. Cognitive load.
Cognitive load was assessed using one subjective and

three physiological measures. A main effect of load was
found in the analysis of responses on the adapted version of
the NASA-TLX questionnaire, F(1, 84) = 108.79, p < 0.001,
𝜂2𝑝 = 0.56, 95% CI [0.43, 0.67]. This large effect indicates
that the load manipulation affected perceived cognitive load.
As such, the perceived cognitive load was higher in the
high load condition compared to the low load condition.
Next, a (moderate) main effect for assistance was observed,
F(1, 84) = 8.34, p = 0.005, 𝜂2𝑝 = 0.09, 95% CI [0.01, 0.22].
Participants’ cognitive load increased with increasing load
and was lower when they were supported by the AI sys-
tem (figure 7). No significant interaction between load and
assistance was found, F(1, 84) = 0.74, p = 0.392, 𝜂2𝑝 < 0.01,
95% CI [0, 0.09].

The same main effects were found for pupil size. Specif-
ically, participants’ mean pupil size was higher when load
was high (M = 3.51, SD = 0.35) compared to when load
was low (M =3.45, SD = 0.35), F(1, 48) = 7.08, p = 0.011,
𝜂2𝑝 = 0.13, 95% CI [0.01, 0.31]. Also, pupil sizes were larger
when participants were not supported by AI (M = 3.52,
SD = 0.36) compared to when they were (M = 3.45,
SD = 0.35), F(1, 48) = 8.31, p = 0.006, 𝜂2𝑝 = 0.15, 95%
CI [0.01, 0.33]. Similar to what was found in the subjective
measure of cognitive load, there was no interaction between
load and assistance for pupil size, F(1, 48) = 1.05, p = 0.310,
𝜂2𝑝 = 0.02, 95% CI [0, 0.16]. Next, blink rate also showed a
main effect of load, F(1, 51) = 5.21, p = 0.027, 𝜂2𝑝 = 0.09,
95% CI [0, 0.26]. Blink rate was higher in the high load
condition (M = 12.86, SD = 9.03) relative to the low load
condition (M = 10.76, SD = 7.65). In contrast to the two
previous measures, however, no main effect of assistance on
blink rate was found, F(1, 51) = 3.41, p = 0.071, 𝜂2𝑝 = 0.06,
95% CI [0, 0.22]. Additionally, in parallel with perceived
cognitive load and pupil size, no interaction between load
and assistance was found for blink rate, F(1, 51) = 0.11,
p = 0.934, 𝜂2𝑝 = 0.06, 95% CI [0, 0.04].

As for the EEG data, alpha power in central parietal
regions, theta power in frontal regions and the cognitive
load index were analyzed. There was no main effect of
load, F(1, 87) = 3.74, p = 0.057), 𝜂2𝑝 = 0.04, 95% CI
[0, 0.15], and no main effect of assistance on alpha power,
F(1, 87) = 3.36, p = 0.070, , 𝜂2𝑝 = 0.04, 95% CI [0, 0.14].
Also, no interaction between load and assistance was found,
F(1, 87) = 0.18, p = 0.674, 𝜂2𝑝 < 0.01, 95% CI [0, 0.06].
An additional analysis investigating the alpha power in the
lower alpha range (8 Hz – 10 Hz) also showed no significant
effects (p > 0.05). Theta power in frontal electrodes did not
show a main effect of load, F(1, 81) = 3.66, p = 0.059,
𝜂2𝑝 = 0.04, 95% CI [0, 0.16], nor a main effect of assistance,
F(1, 81) = 0.31, p = 0.581, 𝜂2𝑝 < 0.01, 95% CI [0, 0.08], nor
an interaction between load and assistance, F(1, 81) = 0.19,
p = 0.667, 𝜂2𝑝 < 0.01, 95% CI [0, 0.06]. Similar to the findings
on parietal alpha power and frontal theta power, no main
effects of load, F(1, 81) = 2.87, p = 0.094, 𝜂2𝑝 = 0.03, 95%
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Figure 7: Mean scores on NASA-TLX questionnaire (A) and pupil size (B) across participants. For plotting purposes, baselined pupil size
values are shown here. In the LMM, raw measures were used and individual variability was captured by a random intercept. Error bars
indicate 95% confidence intervals.

CI [0, 0.14], and assistance, F(1, 81) = 0.47, p = 0.497,
𝜂2𝑝 < 0.01, 95% CI [0, 0.08], were found for the cognitive
load index. Also, the interaction between load and assistance
was not significant, F(1, 81) = 0.27, p = 0.605, 𝜂2𝑝 < 0.01,
95% CI [0, 0.07].

4. Discussion
In the current study, the researchers investigated the in-

fluence of two visual cueing techniques, employed in paral-
lel, on operators’ performance, behavior, and cognitive load
in CCTV surveillance rooms. Because of the varying cir-
cumstances regarding cognitive load that are encountered by
operators in control rooms, high and low load situations were
simulated to gain insight into possible interactions between
the operators’ cognitive state and the (dis)advantageous ef-
fects of AI-based support systems. The virtual environment
of a previous study (De Bruyne et al., 2021) was used, in
which cognitive load was manipulated using a secondary
task manipulation. The same manipulation was implemented
in the current experiment to investigate the effects of the
AI-based support system on performance, behavior, and
cognitive load during different working circumstances (i.e.,
the operator experiences high or low cognitive load).

The effects of the current AI-based support system are
promising. Results showed advantageous effects on opera-
tors’ performance when helped by the intelligent computer
assistant, as indicated by TNR. In-depth, this increase in
performance seemed largely due to a decrease in false pos-
itive detections. This means that operators that are in fact
binary classifying events as being criminal or non-criminal
are less prone to judging an event that is truly non-criminal
as criminal. This is advantageous because this means that
resources will not be spent on false positive alarms. Think of
a patrol unit that would be sent out to inspect the event in the
field. However, one of the purposes behind offering assistive
technology in CCTV control rooms is to increase sensitivity

(i.e., TPR). In other words, to decrease the probability that
target events are missed and thus increase the probability that
all target events are detected. This effect was not found in the
current study using the described support system. It remains
possible, however, that such an effect would have been found
if there would have been more than six different video
streams in the experiment, because in real life, operators
have to monitor an enormous amount of video streams and
usually they randomly scan through the video streams (Keval
and Sasse, 2006).

Next to an increase in performance, the rather large main
effect of assistance on both subjective reports and pupil
size strongly suggested a decrease in overall cognitive load
when participants were assisted by the support system. This
means that operators can benefit from assistive technology
as more mental resources become available when they are
assisted by the support system. Strikingly, no interaction
effect between induced cognitive load and the presence of
assistive technology was found. The findings on cognitive
load as reflected by pupil size and the subjective reports,
however, were inconsistent with the results of the other
cognitive load markers. As an example, no main effect of
assistance was found for performance on the secondary task.
When the load elicited by the primary task decreases, one
would expect an increase in performance on the secondary
task (due to spare mental capacity). This would mean that
this behavioral indicator of cognitive load was not influenced
by the assistance manipulation. Explicitly requesting partic-
ipants to prioritize the primary task, however, might have
biased this finding.

Also for blink rate, even though the underlying drivers
of the effect are still unknown, an effect that suggested a
decrease in cognitive load when AI support was provided
was not found. If increased blink rate could be attributed to
increased mental activity and thus cognitive load, a decrease
in blink rate when assisted by a support system would be
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expected. However, if the increased blink rate reflected the
use of mental rehearsal (De Jong and Merckelbach, 1990)
as a strategy to complete the secondary task, an effect of
assistance would not be expected. Therefore, the absence of
a main effect of assistance on blink rate does not yield con-
cerns, except for the use of blink rate as a potential marker
for cognitive load in the current experimental context. A
solution for future research would be to include a secondary
task for which it is impossible or not necessary to use mental
rehearsal as a strategy to increase performance.

As for the neural markers of cognitive load in the cur-
rent experiment, the measures reported might have been
insensitive to changes in cognitive load given the highly
demanding dual-task paradigm, including a primary task
that required constant vigilance and active search. It has been
demonstrated in the past that neural markers of cognitive
load can reach a plateau after which cognitive load changes
are no longer visible (Puma et al., 2018). As a consequence,
and from what we learned from this study, it might be
undesirable to include EEG measurements as a marker for
cognitive load in the current and in similar contexts.

In sum, although there are inconsistencies in the find-
ings regarding cognitive load as measured by different
approaches, these inconsistencies might be the result of
experiment-specific features and limitations which served
the purpose of making this experiment as ecologically valid
as possible.

Notably, this study did not control for every possible
moderator from the implementable framework formulated
by Van Acker et al. (2018) that might interplay with the
effects of support systems on performance and cognitive
load. One of these moderators, for instance, is experience.
Future research should, therefore, consider including expert
control room operators in the sample, as experts may interact
differently with support systems or they may have developed
different surveillance strategies over time. Other possible
moderators such as job autonomy and visuospatial intelli-
gence could also be considered in future experimental design
reviews.

Using VR in this study was relatively new as compared
to previous work in the field. There are, however, some
concerns regarding generalisability to real-life control rooms
when using a simulator as potential confounds – other than
the simulator not being an exact copy of the real-world
setting – that haven’t been thought of for this study might
have had an impact on the operators’ behavior. Therefore,
the results of this study have to be replicated, if practically
possible, in existing surveillance rooms with professional
control room operators, should strong claims about the effec-
tiveness of the presented or similar operator support systems
be made.

Because this study employs a novel methodology, we
highlight some key takeaways regarding the use of VR in
the current context both regarding the inclusion of the ma-
nipulation of cognitive load and the testing of new support
systems in practice. First, it is important for the participants
to familiarise themselves with the virtual environment and

the controller(s). As VR remains novel for many people, pro-
viding some time for the participant to look around and try
out in-scene interactions at the beginning of the experiment
is highly recommended to avoid potential confounds induced
by the novelty aspect. In this sense, it is especially desirable
to include practice blocks in VR. Secondly, when simulating
a surveillance task in VR, typical ways to control computer
systems will have to be translated to a VR setting. Conse-
quently, these translations have to be carefully considered to
minimize the gap between operating the task in the simulator
and in real life. Thirdly, most of the currently available
HMDs have a limited field of view that is considerably
different from what we are used to in real life. In a VR
control room, this means that, for instance, fewer displays
are positioned in an operator’s peripheral field of view. This
might result in less attention being paid to screens that would
typically be able to attract more attention. Lastly, as for the
manipulation of cognitive load, it might be interesting to test
new support systems without adding a secondary task to the
operator’s daily operations during the tests as well. This way,
one could first examine how an operator interacts with the
new system in a familiar working environment. Afterward,
it is still interesting to add the manipulation to see how
operators would interact with the new system during more
stressful periods by adding the secondary task to simulate a
moment when the task demands would be very high.

5. Conclusion
Given that AI-based surveillance systems have not yet

achieved 100% accuracy and it is unlikely that this will
change in the near future, the current objective of these sys-
tems is to assist human operators. Therefore, it will remain
important to investigate the influence of such systems on
their human collaborator. The present study demonstrated
how existing and future operator support systems in CCTV
surveillance rooms can be tested using VR as a useful tool
that can help to better design AI-driven support systems
during the initial prototyping stages and to inform control
room design guidelines. Additionally, by having investigated
visual cueing techniques in the present study, the results
provide insight into the possible advantageous effects of
support systems in CCTV surveillance rooms, that is, an
increase in the operators’ monitoring task accuracy and a
decrease in cognitive load measured by subjective reports
and pupil size. As the results also demonstrate, future re-
search should not merely evaluate the effectiveness of AI
algorithms embedded in operator support systems, but also
incorporate UX and usability research. This way, not only
the effectiveness of the algorithm itself, but the full human-
computer interaction and system design is investigated. Fur-
thermore, the presented methodology can inspire research
that focuses on different types of control rooms such as
control rooms in nuclear power plants, in petro-chemical
plants or even in air traffic control towers.
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