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Abstract

Background: The detection of suspicious microcalcifications on mammography represents one of the earliest signs
of a malignant breast tumor. Assessing microcalcifications’ characteristics based on their appearance on 2D breast
imaging modalities is in many cases challenging for radiologists. The aims of this study were to: (a) analyse the
association of shape and texture properties of breast microcalcifications (extracted by scanning breast tissue with a
high resolution 3D scanner) with malignancy, (b) evaluate microcalcifications’ potential to diagnose
benign/malignant patients.

Methods: Biopsy samples of 94 female patients with suspicious microcalcifications detected during a
mammography, were scanned using a micro-CT scanner at a resolution of 9μm. Several preprocessing techniques
were applied on 3504 extracted microcalcifications. A high amount of radiomic features were extracted in an attempt
to capture differences among microcalcifications occurring in benign and malignant lesions. Machine learning
algorithms were used to diagnose: (a) individual microcalcifications, (b) samples. For the samples, several
methodologies to combine individual microcalcification results into sample results were evaluated.

Results: We could classify individual microcalcifications with 77.32% accuracy, 61.15% sensitivity and 89.76%
specificity. At the sample level diagnosis, we achieved an accuracy of 84.04%, sensitivity of 86.27% and specificity of
81.39%.

Conclusions: By studying microcalcifications’ characteristics at a level of details beyond what is currently possible by
using conventional breast imaging modalities, our classification results demonstrated a strong association between
breast microcalcifications and malignancies. Microcalcification’s texture features extracted in transform domains, have
higher discriminating power to classify benign/malignant individual microcalcifications and samples compared to
pure shape-features.
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Background
Breast cancer is the most commonly diagnosed can-
cer in women worldwide counting more than 2 million
new cases in 2020 [1]. Early detection and diagnosis of
breast cancer is crucial for the overall prognosis and the
improvement of the patient’s therapeutic outcome.
Historic evidence related to early indicators of breast

cancer, dates back to 1913 when Soloman reported micro-
calcifications’ (MC) presence in the radiographic exam-
ination of a mastectomy specimen [2]. Several decades
later (1949), radiologist Leborgne postulated that the pres-
ence of MCs may be the only mammographic manifes-
tation of a carcinoma [3]. Ever since first evidence was
reported, the role of MCs in the detection of breast cancer
has been widely studied.
MCs are present in approximately 55% of all non-

palpable breast cancers and responsible for the detection
of 85-95% of cases of ductal carcinoma in situ (DCIS)
during mammogram scans [4, 5]. However, they are also
present in common benign lesions [6] (i.e: breast abnor-
malities, inflammatory lesions, fibrocystic changes, etc).
Once detected in mammograms, they are categorized

according to the Breast Imaging Reporting and Data Sys-
tem (BI-RADS) into typical benign, suspicious and typical
malignant. Benign MCs are reported to be larger, round
with smooth boundaries; suspicious MCs are reported
as coarse heterogeneous, and typical malignant MCs are
described as clustered, pleomorphic, fine and with linear
branching [7–9].
To date, the chemical composition of breastMCs is cate-

gorized into three distinct types: hydroxyapatite (HA), cal-
cium oxalate (CO) and magnesium-substituted hydroxya-
patite (Mg-Hap), a special subtype of HA. According to
[10], the presence of CO coincided in 81.8% of the cases
tested with benign lesions, while HA and Mg-Hap were
found in 97.7% of malignant lesions. Further investiga-
tion of the chemical composition of MCs is outside of the
scope of our paper, but these findings show that there is
a physical difference in composition between benign and
malignant MCs and hence that it is worth investigating
their morphology and texture differences in high contrast
3D images.
Over the years, significant improvements have been

achieved regarding breast cancer imaging modalities
such us in magnetic resonance imaging (MRI), ultra-
sound, computed tomography, digital breast tomosynthe-
sis (DBT), etc [11]. Regardless their advantages and disad-
vantages, mammography still remains themain diagnostic
technique. However, the adoption of mammography is not
without controversy. As mammography is a projection
image, the superposition of tissue can hide MCs or/and
alter their appearance depending on their orientation rel-
ative to the image plane [12, 13]. Moreover, according to
Naseem et al [14], 52.2% of the MCs extracted from 937

patients, were absent in mammograms and they were only
visible under a histological examination. Hence, mammo-
graphic interpretations related to the link between MCs
characteristics and malignancy, need to be interpreted
with care as their interpretations continue to be a critical
element in the on-going efforts to improve the quality of
early detection of breast cancer [15, 16].
Several computer aided detection and diagnosis (CAD)

systems have been developed to assist radiologists to
detect and characterise MCs and tumors in different
breast imaging modalities. Even though evidence shows
promising results [17, 18], the current CAD systems
involved in clinical or preclinical studies, have still a high
number of false positives and false negative rates and so
far, MCs characteristics have been mostly studied in 2D or
3D low resolution images.
Since the most accurate and realistic way to determine

characteristics of a 3D structure is to use a high resolution
3D imaging technique, attention has been paid to X-
raymicro-computed tomography (micro-CT). A relatively
small number of studies has focused on high resolution 3D
MCs characteristics to detect and diagnose breast cancer
[19–25].
For the first time, a feasibility on using micro-CT to

assess the interior structure of MCs was reported in 2011.
The study performed on 16 biopsy samples demonstrated
different interior structure patterns of benign and malig-
nant MCs [19].
Willekens et al. [20], were the first to analyze the rela-

tionship between 3D shape properties of individual MCs
and malignancies. Initially, six 3D shape characteristics
of 597 MCs (extracted from 11 samples) were analyzed
and it was concluded that MCs belonging to malignant
samples, have a more irregular shape compared to benign
ones [20]. In a follow-up study on 100 samples, a promis-
ing automated sample classification system based only
on eight shape and twelve boundary zone features [21]
was proposed. A new classification approach (using the
same dataset as in [21]) was later on proposed in [22] by
clustering MCs based on their shape and texture features.
The relevance of MC’s 3D characteristics as malignancy

predictors was further studied in 2017 in 28 samples [23].
Some of their findings were in line with [20], however
their structure model index (SMI) was not significantly
associated with B-classification of breast lesions. In 2018,
the clinical use of MC images generated with high res-
olution 3D micro-CT scanners was discussed in details
by Baran et al [24]. Results of this study concluded that
high resolution 3D scanners can provide information at
a level of details near that of histological images, which
would allow much better diagnosis compared to what
X-ray imaging modalities allow for.
In our latest work [25], we proposed a CAD system for

the characterization of individual MCs. Our classification
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results confirmed that there is definitely an important link
between MCs characteristics and malignancies. A recent
study [26], affirmed significant differences between MCs
found in malignant and benign canine mammary tumours
and their results suggested similarities to MC findings in
malignant and benign human breast lesions. Hence, their
findings support the further use of this animal model to
study human breast cancer.
The main aims of this study were to: (a) explore the fea-

sibility of an automated CAD system that classifies benign
and malignant individual MCs and patients based solely
on high resolution 3D MCs features and (b) to explicitly
contribute to amore accurate understanding ofMCs char-
acteristics, the main signs of an early breast cancer. To
this end, we perform experiments on a high amount of
samples where we: extend our preliminary studies [20–22,
25, 27, 28] by performing more image preprocessing tech-
niques, extracting a higher amount of radiomic features
and combining individual MCs results to provide patient
diagnosis.

Materials
Patients
In this study we have retrospectively included female
patients with suspicious MC findings detected during
a mammography examination performed between 2007-
2012. Subjects underwent minimally invasive vacuum-
assisted stereotactic biopsy at the university hospital Brus-
sels (UZ Brussels). Biopsy specimens of 94 women (43
benign and 51 malignant samples), age range 36-83 years
and mean subjects age 56.9 ±9.5 years (benign mean age:
57.2±9.7, malignant mean age: 56.7±9.4 ) were randomly
selected from the UZ Brussels’ breast biopsies archives.

Breast biopsy
Biopsies were performed with the Mammotome Biopsy
System (Ethicon Endo-Surgery, Inc., Johnson & Johnson,
Langhorne PA, Pennsylvania, USA) by the department
of radiology at UZ Brussels. The extracted samples were
stored in blocks of paraffin and they were anatomopatho-
logically examined to obtain the final diagnosis. The tissue
samples extracted have a diameter of 3 mm and a length
of 23 mm. Further details are explained in [21, 27].

Sample andMCs labeling
During the anatomopathological examination, the pathol-
ogist classified samples as malignant or benign depending
on whether cancer cells were observed or not. MCs labels
were assigned based on the nature of the sample they orig-
inated from. As a consequence, it is possible that benign
MCs are present in malignant samples [29–31]. However,
they were labeled as malignant although their features
might indicate benign characteristics. We present in Table
1 an overview of the clinicopathological characteristics for

Table 1 Patients’ clinicopathological characteristics. BI-RADS
breast density assessment is expressed from A-D scaling: A (<25%
glandular), B (25% - 50% glandular), C (51% - 75% glandular, D
(>75% glandular). Patient reproductive history is expressed using
Gravida-Para (GP) terminology (’has children’ label refers to
patient with children but exact number was not specified/saved).
The label ’undefined’ indicates cases for which information could
not be retrieved from the hospital’ archives or the patient did not
provide it

Characteristics Benign (n=43) Malignant (n=51)

Mean age (years± std) 57.2 ±9.7 56.7 ±9.4

A (n=4) A (n=8)

B (n=19) B (n=26)

BI-RADS breast density C (n=14) C (n=14)

D (n=6) D (n=3)

No (n=40) No (n=44)

Breast mass Yes (n=3) Yes (n=7)

No (n=43) No (n=47)

Distortion Yes (n=0) Yes (n=4)

G0P0 (n=4) G0P0 (n=3)

G1P1 (n=3) G1P1 (n=8)

G2P1 (n=1) G2P1 (n=2)

G2P2 (n=6) G2P2 (n=8)

G3P1 (n=1) G3P3 (n=3)

G3P2 (n=2) G4P3 (n=1)

Reproductive history G3P3 (n=1) G6P6 (n=1)

G4P3 (n=1) G9P9 (n=1)

G6P6 (n=1) Has children (n=2)

G8P7 (n=1) Undefined (n=22)

Has children (n=2) -

Undefined (n=20) -

No (n=10) No (n=7)

Family history with breast cancer Yes (n=5) Yes (n=7)

Undefined (n=28) Undefined (n=37)

No (n=5) No (n=0)

Family history with other cancer/s Yes (n=2) Yes (n=6)

Undefined (n=36) Undefined (n=45)

all the involved subjects. In the current study, no clini-
copathological information was incorporated in the CAD
model.

Micro-CT imaging
Samples were scanned using a SkyScan 1076 scanner
(Brucker microCT, Kontich, Belgium) [32]. The scanner
(tube current 167μA) was composed of a sealed 10-W
micro-focus X-ray tube that generated x-rays with a focal
spot size of 5μm. The lower X-ray energies were selected
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by limiting the spectrum to 60 kV. The X-ray detector
(4000 x 2300) consisted of a gadolinium powder scintilla-
tor optically coupled with a tapered fiber to a cooled CCD
sensor. Further information related to scanner settings can
be found in [21, 32]. For each sample, projection images
were taken every 0.5° covering a view of 180° with an expo-
sure time of 1.8 seconds per projection. The total scanning
time per sample was 24 minutes. Images were recon-
structed using a modified Feldkamp cone-beam algorithm
yielding a stack of 2D slices. The 3D sample images have a
resolution of 9μm per voxel and 2291x988x339 voxels.

Image segmentation
MCs appear on images as regions with higher intensity
compared to the local surroundings even though their
borders are not always clearly delineated. We used the
custom-based segmentation results of [27] as volumes of
interests (VOI). The segmentation technique of [27], used
six level connected components connectivity to detect
connected regions. The connected components with a
size smaller than 10 voxels and segments larger than a
sphere with a diameter of 1 mm (known as macrocal-
cifications) were excluded [27]. In total, 3504 MCs were
segmented from 94 samples: 1981 MCs from 43 benign
samples and 1523 from 51 malignant ones. The mean
number of extracted MCs was 46.1±58.5 for benign sam-
ples and 29.9±27.5 for the malignant ones. The image
segmentation was performed in Matlab.

Feature extraction
We extracted a high amount of radiomic features con-
sisting of first order statistical features, shape, tex-
ture (Gray Level Co-occurrence Matrix (GLCM), Gray
Level Run Length Matrix (GLRLM), Gray Level Size
Zone (GLSZM), Gray Level DependenceMatrix (GLDM),
Neighbouring Gray Tone Difference Matrix (NGTDM))
and higher order statistical features. Radiomics, aims to
quantify phenotypic characteristics on medical images
into a high dimensional feature space containing data
with high prognostic value [33, 34]. In our previous
study [25], results were considerably improved when fea-
tures were computed in Laplacian of Gaussian (LoG) and
Wavelet transform domains (area under the curve (AUC)
value improved by 11%). Consequently, in this study we
extended the amount of image transforms applied.
The applied transform methods are: LoG, three level

decomposition of Daubechies Wavelet filters, square, log-
arithm, squareRoot, exponential and gradient transform.
In total, we extracted 2714 features per image. Shape
features were extracted only in raw images. The same
amount of features per feature class was extracted for all
transforms, except for the wavelet transform. For every
decomposition level of wavelet filters, features were com-
puted in eight Wavelet subbands (LLL, HLL, LHL, HHL,

LLH, HLH, LHH, HHH) as derived by applying a High
(H) or Low (L) pass filter in each of the three dimen-
sions. Some wavelet features were removed due to invalid
feature values obtained. A summary of all feature classes
and the amount of the extracted features per transform
method is shown in Table 2. All radiomic feature values
were standardized (z-score) prior to classification. Feature
extraction was performed on the VOI using PyRadiomics
library (version 2.2.0) [35] in Python (version 3.7.3).

Feature selection
Starting from the high dimensional feature space, we per-
formed feature selection by means of recursive feature
elimination (RFE) [36], in order to reduce the risk of over-
fitting due to the high dimensionality and to achieve our
goal to identify a small MCs signature. Chi-squared and
fisher score feature selection methods were also explored
in our preliminary study [28]. In all the experimental
setups, RFE outperformed all the above-mentioned meth-
ods. For this reason, in this study we focused only on the
RFE method.
RFE is a wrapper feature selection method which selects

different subsets of features (to be given as an input for the
training of machine learning models) and evaluates their
significance based on the classification performance. To
select the optimal number of features, for the first 20 fea-
tures we started with a minimum amount of 2 features to
be selected and increment this number with one (aiming
to identify a very small number of discriminative features).
After the first 20 features tested, we incremented the
number of features by 10 until all the extracted features
were included. We defined the final best subset of fea-
tures according to the feature selection frequency among
all iterations. In such a way, all the used features were
selected on the basis of their stability and relevance.

Table 2 Number of extracted features (extracted on original
images and transform domains) per each feature class (shape,
first order, GLCM, GLRLM, GLSZM, GLDM, NGTDM)

Shape First Order GLCM GLRLM GLSZM GLDM NGTDM

Original
image

17 19 24 15 16 14 5

LoG

0 19 24 15 16 14 5

Exponential

Square

Logarithm

Square Root

Gradient
Transform

Wavelet 0 418 528 330 352 308 110

Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM),
Gray Level Size Zone Matrix (GLSZM), Gray Level Dependence Matrix (GLDM),
Neighbouring Gray Tone Difference Matrix (NGTDM), Laplacian of Gaussian (LoG)
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Classification
Individual MCs classification
The performance of four classification algorithms was
investigated: Random Forest (RF), Support Vector
Machine (SVM), Multilayer Perceptron (MLP) and
AdaBoost. Experiments were performed using leave-
one-subject-out cross validation. Every experiment was
repeated 30 times on shuffled data to ensure the stability
of results. When SVM and AdaBoost algorithms are used,
results among multiple iterations are the same as there is
no stochasticity in the methods, nor are they influenced
by training data order. Models’ performances were mea-
sured in terms of accuracy, sensitivity, specificity, AUC
and F-score. All implementations of the classification
algorithms and RFE were done in Python (version 3.7.3)
using ScikitLearn (version 0.21.2).

Sample classification
One of the clinical goals, is the possibility to establish
diagnosis at a patient level. Therefore, we investigated:
A thresholding approach - if the number of malignant

MCs predictions for a given sample exceeded a specified
threshold value, the sample was considered to be malig-
nant (i.e: if the number of the predicted malignant MCs of
a sample was larger than 20% of the entire sample MCs,
the sample was classified asmalignant). The threshold val-
ues evaluated start from 5% up to 50%, incremented by 5.
We adopted this approach, because it is practically impos-
sible to establish a ground truth label for each MC, while
for a sample this is perfectly feasible.
Multiple instance-learning (MIL) algorithms - the gen-

eral assumption of MIL algorithms is that every positive
bag (i.e. sample) contains at least one positive instance (i.e.
malignant MC) while negative bags contain only negative
instances (positive/negative refers to malignant/benign
and bag/instance refers to sample/MC respectively). We
considered suitable the use of MIL algorithms for sample
classification given the ambiguity in MCs inheriting sam-
ple labels. The algorithms used are: normalized set kernel
(NSK), statistics kernel (STK), sparse multiple instance
learning (sMIL), maximum bag margin SVM (MISVM),
maximum pattern margin SVM (miSVM), multi instance
learning by semi-supervised SVM (MissSVM) [37, 38].

Different MIL algorithms make different assumptions
about positive instances present in samples as explained
in details in [37, 38]. All the resulting representations were
used to train a base SVM classifier. In terms of feature
selection, we test the performance of the MIL algorithms
starting from 5 up to 300 best features (as derived from
RFE), incremented by 10.

Results
Results of individual mCs classification
Results of individual MCs classification experiments for
the four aforementioned classifiers (with/without feature
selection) are shown in Tables 3 and 4. We initially calcu-
lated accuracy, sensitivity, specificity, AUCs and F-score
values for every classifier and iteration separately. Results
reported in Tables 3 and 4, represent the average and
standard deviation (std) of these metrics among the 30
repetitions for each classifier.When using all the extracted
features, we reached an accuracy of 77.03%, sensitivity of
60.46%, specificity of 89.77%, F-score of 76.35% and AUC
value of 80.10% with RF classifier.
When RFE feature selection was applied, an accu-

racy of 77.32%±0.09, sensitivity of 61.15%±0.16, speci-
ficity 89.76%±0.14, F-score 76.67%±0.01 and AUC
81.18%±0.04 were obtained with the RF classifier using
300 features (see Table 4). All AUC values improved
(except the AdaBoost AUC value) when we performed
RFE feature selection method (see also Fig. 1). A paired
t-test was used to analyze whether feature selection had
a significant influence on the classification performance
(tested on AUC values). At a p value <0.05, we got sig-
nificantly different results for both MLP and RF when
performing feature selection. For SVM and AdaBoost, no
statistical significant difference could be computed since
there are no differences among the 30 repetitions.
To determine the diagnostic performance of the clas-

sification algorithms, we focus on AUC values. Among
the 30 repetitions, RF showed the best performance: AUC
of 81.18%±0.04. Among the features that were mostly
selected, for the best classification result obtained (RF,
300 features), 87 features belonged to first level wavelet
decomposition, 44 second level decomposition wavelet,
64 third level wavelet decomposition, only 1 shape related

Table 3 Results (expressed in percentage) of individual MCs classification experiments among 30 repetitions, no feature selection
method applied

Classifier Accuracy Sensitivity Specificity AUC F score

MLP 71.79±1.05 64.65±1.21 77.28±1.34 77.16±0.93 71.68±0.01

RF 77.03±0.13 60.46±0.21 89.77±0.15 80.10±0.06 76.35±0.01

SVM 73.80±0.0 61.39±0.0 83.34±0.0 77.87±0.0 73.39±0.0

AdaBoost 75.68±0.0 61.58±0.0 86.52±0.0 77.89±0.0 75.17±0.0

Area Under the Curve (AUC), Multi Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM)
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Table 4 Results (expressed in percentage) of individual MCs classification experiments among 30 repetitions, RFE feature selection
method applied

Accuracy Sensitivity Specificity AUC F score Features

MLP 75.46±0.65 63.44±1.20 84.70±0.74 80.57±0.58 75.08±0.01 300

RF 77.32±0.09 61.15±0.16 89.76±0.14 81.18±0.04 76.67±0.01 300

SVM 75.74±0.0 60.93±0.0 87.12±0.0 78.24±0.0 75.17±0.0 80

AdaBoost 76.42±0.0 63.09±0.0 86.67±0.0 77.40±0.0 75.97±0.0 300

Area Under the Curve (AUC), Multi Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM)

feature, 40 exponential, 10 gradient, 14 LoG, 5 loga-
rithm features and 7 texture features extracted on original
images.

Results at sample level
Sample level results for the different classifiers and thresh-
old values tested (with/without feature selection) are
shown in Tables 5 and 6. They are calculated as fol-
lows: for a given sample, we group all its individual MC
predictions over the 30 repetitions (same predictions as
outputted from MCs classification experimental-setups
described above) and we apply the different threshold val-

ues mentioned over the grouped predictions; if the num-
ber of malignant-predicted MCs exceeds the threshold
value, we labeled the sample as malignant, otherwise as
benign. We computed sensitivity, specificity, F-score and
accuracy on these re-labeled patients whereas the indi-
vidual sample accuracy is defined as 100% if the assigned
label matches with the sample ground-truth label, else
0%. The accuracy reported is calculated as the average
of 94 sample accuracies per classifier tested. AUCs val-
ues can not be computed for sample classification as we
do not have classification probability prediction values
per sample.

Fig. 1 ROC curves and AUC values corresponding to experimental results reported in Tables 3, 4. The green points represent the decision threshold
for the reported results in the corresponding tables
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Table 5 Sample classification, thresholding approach results (expressed in percentage), no feature selection

No Feature Selection

Threshold Classifier Accuracy Sensitivity Specificity F score

50% MLP 78.72±41.15 70.59 88.37 78.67

45% SVM 78.72±41.15 74.51 83.72 78.75

40% MLP 80.85±39.56 80.39 81.39 80.87

35% AdaBoost 79.79±40.37 72.55 88.37 79.77

35% MLP 78.72±41.15 80.39 76.74 78.72

30% SVM 78.72±41.15 76.47 81.36 78.76

30% AdaBoost 77.66±41.88 74.51 81.40 77.70

25% RF 80.85±39.56 76.47 86.04 80.88

25% AdaBoost 78.72±41.15 80.39 76.74 78.72

20% RF 78.72±41.15 76.47 81.39 78.76

15% RF 78.72±41.15 82.35 74.41 78.67

10% RF 75.53±43.22 86.27 62.79 75.09

10% AdaBoost 71.28±45.49 92.16 46.51 69.46

5% RF 74.47±43.84 96.07 48.83 72.69

Multi Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM)

Some of the best results obtained are shown in Tables 5
and 6. We obtained an accuracy of 80.85%±39.56, sen-
sitivity of 80.39%, specificity of 81.39% and F-score of
80.87% for a 40% threshold value using MLP classifier
(Table 5). When applying RFE and using a 25% thresh-
old value, we were able to reach higher results and predict
samples with 84.04%±36.82 accuracy, 86.27% sensitivity,
81.39% specificity and 84.03% F-score, using AdaBoost
classifier (Table 6).
By using multiple instance-learning algorithms, we clas-

sified samples with an accuracy of 75.53%, sensitivity
80.39%, specificity 69.76%, F-score 75.44% and AUC value
of 80.94% with a NSK classifier (150 features). Results
are shown in Table 7 and ROC curves (computed on 94
sample probability predictions) in Fig. 2.

Discussion
In this study, we extend our latest work [25] by: (a)
exploring more image transformmethods, (b) extracting a
higher amount of radiomic features, (c) optimising feature

Table 6 Sample classification, thresholding approach results (expressed in percentage), RFE feature selection

Feature Selection

Threshold Classifier Accuracy Sensitivity Specificity F score

50% MLP 76.6±42.57 64.70 90.69 76.37

45% MLP 77.66±41.88 68.62 88.37 77.58

40% AdaBoost 79.79±40.37 70.59 90.70 79.71

35% AdaBoost 80.85±39.56 74.51 88.37 80.85

35% SVM 78.72±41.15 70.58 88.37 78.67

30% AdaBoost 80.85±39.56 78.43 83.72 80.89

30% SVM 78.72±41.15 72.55 86.05 78.72

25% AdaBoost 84.04±36.82 86.27 81.39 84.03

25% RF 78.72±41.15 76.47 81.39 78.76

20% AdaBoost 80.85±39.56 88.24 72.09 80.66

15% RF 77.66±41.88 82.35 72.09 77.57

10% RF 75.53±43.22 86.27 62.79 75.09

10% SVM 74.47±43.84 88.24 58.14 73.74

5% RF 73.4±44.42 92.15 51.16 72.03

Multi Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM)
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Table 7 Sample classification, multiple instance-learning algorithms results (expressed in percentage)

Accuracy Sensitivity Specificity AUC F score Nr of features

NSK 75.53 80.39 69.76 80.94 75.44 150

STK 65.95 82.35 46.51 72.87 64.70 150

sMIL 73.40 78.43 67.44 79.66 73.30 50

MISVM 73.40 62.75 86.04 70.59 73.21 150

miSVM 72.34 64.70 81.39 70.63 72.28 150

MissSVM 72.34 58.82 88.37 74.33 71.93 30

Area Under the Curve (AUC), Normalized set kernel (NSK), Statistics kernel (STK), Sparse multiple instance learning (sMIL), Maximum bag margin support vector machine
(MISVM), Maximum pattern margin support vector machine (miSVM), Multi instance learning by semi-supervised support vector machine (MissSVM)

extraction, feature selection and classification parameters,
(d) evaluating the performance of more machine learn-
ing algorithms to classify individual MCs, (e) analysing
and evaluating the relevance of individual MCs to provide
breast cancer diagnosis at a sample level using a vot-
ing scheme methodology and multiple instance-learning
classification algorithms, (i) providing robustness of our
results.
We outperform 1 the individual MCs results reported

in our previous work [25]: accuracy 75.88%, sensitivity
62.13%, specificity 86.39% and AUC 77.03%. In the cur-
rent paper we obtain an accuracy of 77.32%, sensitivity
of 61.15%, specificity of 89.76%, AUC of 81.18%. We also
outperform the sample classification results reported by
Temmermans et al. (in [21]): accuracy 70%, sensitivity
98%, specificity 40% with the following figures of merit:
accuracy of 84.04%, sensitivity of 86.27%, specificity of
81.39%).
Among all the preprocessing steps performed, the image

transform methods applied and parameter’s optimiza-
tion, had a significant contribution to achieve the above-
mentioned results. The robustness and reliability of our
system are confirmed by: (a) the low standard devia-
tion values obtained for all the reported metrics during
the individual MCs classification repeated trials, (b) the
consistency of results over different machine learning
algorithms.
All the individual MCs extracted from a sample inherit

the sample label. Therefore, it is not feasible to obtain
results close to 100% for the individual MCs classification
because benign MCs may occur in malignant samples.
Moreover, biopsy samples were only collected because
the radiologist found suspicious signs on the mammo-
gram, which causes a significant bias in all the collected

1This footnote further illustrates that we really outperform the results of [25].
If we select on the AUC curve in [25] a sensitivity value of 61.15%, which is the
value reported in the current paper, then the corresponding performance
values in [25] are: specificity 85.54%, accuracy 74.96%, which are all smaller
than the values obtained in the current paper. If we select on the AUC curve
of the current paper the sensitivity reported in [25], namely 62,13%, we obtain
a specificity of 86.5% and an accuracy of 76.35%, which are all higher than the
values reported in [25].

data. Nevertheless, our ability to discriminate so accu-
rately between suspicious MCs (present in benign lesions)
and malignant ones, confirms that there is a clear differ-
ence betweenMCs originating frommalignant and benign
lesions.
The association between MCs and breast malignan-

cies has already been stated for decades by studying
MCs properties on 2D projections or low resolution 3D
images. It is worth stating that the effectiveness of conven-
tional breast imaging modalities to diagnose breast cancer
based only on MCs properties provided they are com-
bined with other clinical examinations, is widely accepted
(approaching nearly 100% sensitivity and specificity [39]).
MCs show high contrast on mammograms, and more
and more claims related to the properties of MCs are
made based only on observations of 2D mammography
images. The fact that even by studying MC characteristics
in high resolution 3D images, we still encounter difficul-
ties to characterize malignancy indicates that current 2D
mammography analysis of MCs should be used cautiously.
The classification of individual MCs served as an inter-

mediate step towards our ultimate goal of performing
patient classification. We assessed several threshold val-
ues on the amount of MCs classified as malignant to
provide patient diagnosis solely based on MCs properties.
Our proposed thresholding approach for patient classifi-
cation, tends to overcome the fact that we deal with a so-
called weakly supervised classification problem because
the ground truth for individual MCs is not available and
only the ground truth of complete samples is known.
Despite the fact that in clinics one malignant MCs

should classify the entire sample as malignant, benign
MCs may coexist in a malignant sample. Therefore, to
avoid miss-classifying the entire sample because of some
miss-classified instances, a high AUC-threshold value is
appropriate, namely up to 25% as the one we obtained in
Table 6.
The high std values obtained in all sample classifica-

tion experiments should be interpreted with caution. As
explained, if the final sample prediction matches with its
corresponding ground-truth label, the sample accuracy is
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Fig. 2 ROC curves and AUC values, multiple instance-learning algorithms. The green points represent the decision threshold for the reported results
in the Table 7

100% otherwise 0%. Even with only one miss-classified
sample, the std value would still be more than 10% due to
fact that it is calculated over these two extreme accuracy
values.
Performance results obtained by using MIL algorithms,

were lower than expected. Despite considerable efforts,
we managed to only classify correctly 75.53% of our
samples using the NSK classifier. Ideally, MIL algorithm
should have yielded superior classification performance
compared to the manual thresholding approach. A poten-
tial reason might be that in all the algorithms tested, the
classifier used to classify bags (i.e. samples) is SVM. The
performance of SVM in Tables 5 and 6, also shows that
SVM does not perform better compared to other classi-
fiers used (i.e: MLP, RF, AdaBoost). A combination of the
usedMIL algorithms but tested with other base classifiers,
would probably result in similar or higher results. More-
over, it is unclear how well MIL algorithms’ assumptions
match the real distribution ofmalignantMCs inmalignant
samples.
There exists only one other study that has directly eval-

uated the relevance of 3D MCs structures as a predictor
of malignancy [23]. In their evaluation, they analyse in all
lesion groups (classified according to the B-classification
system) the number, volume, SMI and morphology of sus-
picious non-monomorphic (fine linear, fine pleomorphic,
coarse heterogeneous) MCs. Their findings show that the
shape (based on the SMI) of MCs is not significantly
associated with the B-classification of breast lesions. Even
though we follow different classification approaches and

perform experiments at a larger scale on almost a three
times larger dataset, our findings confirm that pure shape
features are not the most significant features to capture
differences among MCs found in benign and malignant
lesions.
Despite the fact that in other similar studies shape fea-

tures extracted from 2D or 3D images have almost always
been reported among the most important selected fea-
tures [20, 27, 40], we found that high order texture features
are ranked higher in terms of feature importance. Only
one shape feature (elongation) was selected during the fea-
ture selection process (chosen as the 205th most impor-
tant one) whereas, texture features extracted in transform
domains (mainly in wavelet domain) have the most signif-
icant predictive power in our classification model. Their
potential to be used as an important tool for MCs classifi-
cation has already been argued for many years [36, 41, 42]
and also proven in our preliminary study [25].
The results achieved are relevant for several potential

application scenarios. One such scenario is to provide
(almost) real-time diagnosis immediately after extracting
the biopsy sample. A multitude of studies have reported
that patients experience high levels of anxiety and depres-
sion while waiting to obtain their breast biopsy results
[43–45]. Although largely unstudied, a few patient sur-
veys exist on current practice versus patient preference
with respect to the disclosure of biopsy results [46, 47].
According to Attai et al., 82% of breast cancer patients
who received their cancer diagnosis two days after the ini-
tial biopsy, would have preferred to receive their results
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in a shorter wait time [46]. Usually, patients have to wait
around one week to get their biopsy results. This wait-
ing period, besides the significant economical costs for the
healthcare system, considerably impacts the mental state
of the patient. Even though this is a rough estimation,
with our system patient diagnosis can be provided within
the next 30 minutes from the tissue extraction process
(including scanning time, loading the large image vol-
ume, performing all pre-processing steps and classifying
samples).
If in-vivo high resolution 3D screening would be pos-

sible, our results have the potential to be translated
into clinical practise immediately. Under this assump-
tion, as soon as the radiologists would suggest that the
patient should do a screening examination, the breast
can be screened in vivo and combined with radiologist
assessment [48], the system could be used to provide
benign/malignant diagnosis immediately. Two direct ben-
efits would be: (a) a considerable reduction on the number
of unnecessary biopsies that turn out to be benign, (b) the
possibility for early detection of the tumor before it has
aggravated. Important to emphasise is that early diagno-
sis is vitally important to develop an effective treatment
strategy.
The usage of micro-CT scanners to provide (near) real

time diagnosis has already been discussed (yet not applied
for MCs). Evidence shows that 15%-35% of patients who
already had a first breast tumor removal, undergo a sec-
ond re-excision procedure because of positive patholog-
ical boundaries [49]. Imaging of intraoperative surgical
specimens for breast tumor boundary assessment in real
time, has already been evaluated [50, 51] and proven to
provide diagnostic images with near histological levels
of detail. As already argued, significant positive impacts
could be obtained by using micro-CT in this diagnostic
system.
If in the near future, prior to the final histopathological

examinations, biopsy samples would be routinely scanned
with a high resolution 3D scanner, the resultedMC images
collected, could impart high value information. The cre-
ation of publicly available databases with high resolution
3D MCs images (currently none existing), is essential to
further extend the knowledge on MCs diagnostic power.
To implement all the scenarios discussed in clinical

practise, a sensitivity much closer to 100% (such that
malignant samples will not be missed) should be pursued
while maintaining a high balance between accuracy and
specificity. Given the fact that convolutional neural net-
works (CNNs) have already proven to outperform breast
cancer systems focused only on hand-crafted radiomic
features [18], we strongly believe that in our future work
we will be able to improve upon current state of the art by
using deep CNN architectures, if sufficient data would be
available.

However, 3D high resolution breast imaging in-vivo
is not expected to become available in the near future.
Despite the considerable advances over the last years (i.e:
higher image resolution, more efficient reconstruction
algorithms etc), the main limitation of micro-CT remains
the high amount of radiation dose that it would transmit
to the patient. Even though a trade-off between the radi-
ation dose and the desired image quality can be made,
still it is at unacceptable levels as it may induce cancer
to the patient [52, 53]. The exponentially growing num-
ber of studies focusing on micro-CT scanners, underpins
the increased importance of this imaging modality and
the ongoing optimization efforts to provide in-vivo high
resolution scanning [11, 51, 52].
With our findings we want to convey several messages:

(1) using micro-CT imaging to evaluate 3D MCs struc-
tures at a micrometer scale can potentially help clinicians
in the early detection, diagnosis, treatment and man-
agement of breast cancer, (2) the potential of radiomic
features (to reveal important image characteristics) and
of machine learning algorithms (to classify images) can
considerably reduce costs for the healthcare system and
avoid unnecessary physical interventions and their psy-
chological consequences, (3) with our proposed system,
we intend to help other studies to pave the way towards
more effective CAD systems, especially to those making
claims based only on mammographic MCs analysis, (4)
further improvements on the current limitations ofmicro-
CT will have an enormous impact not only on early diag-
nosis but also on personalized treatment evaluations, (5)
our results support the idea that more thorough analysis
of high resolution 3D MCs structures will reveal signifi-
cant currently-hidden information about MCs diagnostic
value.
In our future work, we aim to pursue higher sensitivity

while maintaining a good balance between all the classi-
fication metrics reported. Towards this goal, we intend to
evaluate deep learning algorithms, semi-supervised clas-
sification methods and to artificially enlarge our dataset
using augmentation techniques. As a long-term goal, we
envisage to perform in depth studies to: find correlations
between high resolution 3D MCs structures and the dif-
ferent tumor types; test the association between MCs
features and clinicopathological/mammogram character-
istics; evaluate if adding such features will increase the
CAD model performance.

Study limitations
Our study has several limitations. (a) Our main limitation
is the fact that there is a ground truth for samples but
not for individual MCs. Benign MCs, potentially present
in a malign sample are labeled malignant in our training
data, while their feature valuesmay indicate typical benign
properties. As a consequence, our training process might
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be influenced. To tackle this limitation, ideally we would
need to isolate benignMCs in the specimen that have both
benign and malignant ones. However, to the best of our
knowledge, it is nearly impossible to achieve this due to
tissue distortion issues.
(b) We have included in our study only MCs from

patients with suspicious findings on their mammograms.
We firmly believe that significantly better results can be
achieved by including in the training set also MCs present
in typical benign samples.
In real practise, it might be very difficult to find healthy

females that accept to undergo a biopsy with the sole pur-
pose of studying their MCs findings. As a consequence,
we believe that we will always be dealing with the most
suspicious cases to diagnose in our trial system.
(c) Despite the fact that we are conducting research on

the highest number of 3D high resolution MCs images
ever reported, we can not assume that we have: enough
samples and a perfectly balanced dataset (43 benign sam-
ples:1981 MCs vs 51 malignant samples:1523 MCs). Fur-
thermore, for a few samples, we are making predictions
based on a very low number (1-5) ofMCs extracted.While
data augmentation and application of different augmenta-
tion ratios may be considered as a potential solution, we
hope that the current results obtained will provide further
financial support/s to pursue studies on a larger sample
size.
(d) Samples included in the study were collected up to

10 years ago. Far less lab results were routinely collected at
the time, compared to nowadays. This made it impossible
to correlate our findings to certain tumour markers.
(e) The biopsy samples were scanned in 2013 with a

micro-CT scanner offering a resolution of 9μm. Nowa-
days, the resolution of a micro-CT scanner can reach up
to 1 μm [54].

Conclusion
Our study is the largest one evaluating the feasibility of
developing a CAD system that provides breast cancer
diagnosis based solely onMC features extracted from high
resolution 3D images.
After several preprocessing techniques applied,

we achieved state of the art results in diagnosing
benign/malignant MCs instances and entire samples by
studying MCs characteristics at a level of details beyond
what is currently possible by using other conventional
breast screening modalities.
Except from proving a strong association between

image features of MCs and breast malignancies, we fur-
ther expand the boundaries of already-known knowledge
by concluding that when studying high resolution 3D
MCs structures, texture features extracted in transform
domains have higher predictive power to distinguish MCs
present in malignant lesions than pure shape features.
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