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Abstract. Publishing transport data on the Web for consumption by others poses several challenges for data publishers. In
addition to planned schedules, access to live schedule updates (e.g. delays or cancellations) and historical data is fundamental to
enable reliable applications and to support machine learning use cases. However publishing such dynamic data further increases
the computational burden for data publishers, resulting in often unavailable historical data and live schedule updates for most
public transport networks. In this paper we apply and extend the current Linked Connections approach for static data to also
support cost-efficient live and historical public transport data publishing on the Web. Our contributions include (i) a reference
specification and system architecture to support cost-efficient publishing of dynamic public transport schedules and historical
data; (ii) empirical evaluations on route planning query performance based on data fragmentation size, publishing costs and a
comparison with a traditional route planning engine such as OpenTripPlanner; (iii) an analysis of potential correlations of query
performance with particular public transport network characteristics such as size, average degree, density, clustering coefficient
and average connection duration. Results confirm that fragmentation size influences route planning query performance and
converges on an optimal fragment size per network. Size (stops), density and connection duration also show correlation with route
planning query performance. Our approach proves to be more cost-efficient and in some cases outperforms OpenTripPlanner
when supporting the earliest arrival time route planning use case. Moreover, the cost of publishing live and historical schedules
remains in the same order of magnitude for server-side resources compared to publishing planned schedules only. Yet, further
optimizations are needed for larger networks (>1000 stops) to be useful in practice. Additional dataset fragmentation strategies
(e.g. geospatial) may be studied for designing more scalable and performant Web APIs that adapt to particular use cases, not only
limited to the public transport domain.

Keywords: Linked Data, Semantic Web, Linked Data Fragments, Linked Connections, public transport, route planning, data
fragmentation

1. Introduction

Since it first broke onto the global stage more than 10 years ago, enabling unrestricted access to the raw data
about a certain topic has been one of the guiding principles of open data.1 This way, data can be freely used by
anyone to address particular challenges and provide novel services [18]. Public transportation (PT) stands among
the most successful domains to embrace the principles set by the open data community [16], displaying important
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social and economic impact [34]. Millions of people2 around the world rely every day on open data-powered route
planning applications (e.g., Google Maps, CityMapper, etc).

By definition, open data is free to be accessed and reused, but it is not free to publish open data [2]. Data publishers
often impose access limitations over their public APIs to cope with associated maintenance and scalability costs,
which ultimately translates in lower data reuse and service innovation. For instance in the PT domain, a third party
may be discouraged from developing new services supported on the public APIs of a PT provider due to existing
request limitations.

For the PT domain, open data have been traditionally shared through either data dumps or more complex Web
APIs, both with their own merits and disadvantages in terms of cost. On the one hand, raw data dumps constitute a
low cost data publishing strategy for data publishers, but they impose high data management costs on reusers, who
need to fetch, integrate and maintain up to date each dataset over which they want to offer a service. Additionally,
data dumps become outdated at the moment of their creation, as they are not able to reflect any new changes on
the data. On the other hand, more expressive Web APIs (usually origin–destination HTTP query interfaces) provide
a low cost alternative for data reusers but might limit data accessibility by imposing request limitations due to high
maintenance and scalability costs [1]. Moreover, they are often designed to serve specific purposes that cannot be
adjusted by client applications. Data reusers are constrained to the query capabilities and the use case(s) supported
by the API. For example, an API that calculates only the fastest routes in a PT network, may not be useful when
trying to find routes that are wheelchair-friendly, or for different purposes than route planning.

These computational cost trade-offs between clients and servers (e.g, in terms of computational power, band-
width, recency, etc) are captured by the Linked Data Fragments conceptual framework [56] and were considered for
defining the Linked Connections (LC) specification [17]. LC puts forward one possible in between approach com-
pared to data dumps and purpose-specific APIs, designed to model and publish PT planned schedules. By organizing
departure-arrival pairs (Connections) into chronologically ordered and semantically enriched data documents (frag-
ments), client applications can autonomously traverse them to for example, evaluate route planning queries [15]. In
this way data publishers need only to maintain a cacheable [17] and low-cost data interface, while reusers get full
flexibility over up-to-date data without the cost of maintaining the dataset.

Next to planned schedules, access to live schedule updates (e.g. delays or cancellations) and historical data is
fundamental for building reliable user-oriented applications and supporting other use cases based on PT data, such
as smart city digital twin dashboards [36] or machine learning-based applications [33]. These are possible only if
access to live and historical data is available. However, publishing these types of data further increases the compu-
tational burden of data publishers, resulting in often unavailable historical data and live schedule updates for most
PT networks.

In this paper we apply and extend the Linked Connections approach to support cost-efficient live and historical
public transport data publishing on the Web. We measure the impact in terms of server-side processing costs of
publishing live and historical schedules compared to publishing just the planned schedules. We also study how
API design aspects and PT network intrinsic characteristics may influence the performance of query evaluation
for the most basic route planning problem, namely the Earliest Arrival Time (EAT) problem. This is motivated by
the fact that other, more complex types of route planning problems are normally addressed as extensions of EAT.
Therefore, optimizing performance of EAT queries would consequently improve performance over related route
planning scenarios. Additionally, we perform a comparison of the processing costs and performance (in terms of
response time) of our LC-based approach vs the traditional and widely used route planning engine OpenTripPlanner.3

Concretely, our main contributions include: (i) a reference specification and system architecture that foresees
efficient publishing of live schedule updates and allows to perform historical queries with access to precise granular
data through HTTP time-based content negotiation; (ii) empirical studies of publishing costs and route planning
query performance over 22 different PT networks from around the world, considering different data fragmentation
sizes and comparing to a traditional, non-semantic solution; and (iii) a cross-correlation of the performance results
with each network’s particular size, average degree, density, clustering coefficient and average connection duration

2In 2017 Google announced having over 1 billion active users every month for Google Maps. https://www.theverge.com/2017/5/17/15654454/
android-reaches-2-billion-monthly-active-users.

3https://www.opentripplanner.org/
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aiming on understanding how network characteristics may influence route planning query performance in practical
implementations.

Results confirm that fragmentation size influences route planning query performance and converges on an optimal
fragment size per network. Route planning query evaluation performance is shown to be highly correlated to network
size (in terms of stops and connections) and to a lesser extent, to its density and average connection duration.
Additionally, we show how knowledge of potential queries can drive a better design of data interfaces. Our approach
also demonstrates superior scalability and in some cases better query performance (response time) for supporting
efficient EAT route planning query solving over smaller PT networks (<1000 stops). Yet, for larger networks further
optimizations are needed to be useful in practice. Publishing live and historical schedules with our approach does not
cause significant increase of server-side resources when compared to publishing planned schedules only. However
response time of historical data fragments are significantly larger than current data fragments.

Insights on the factors that influence the performance of route planning query evaluation on LC-based applications
provide a valuable asset for designing usable solutions that are fit for practical real world scenarios. For example,
they can drive further geospatial fragmentation on top of PT networks, with the purpose of obtaining sub-networks
that render higher performance for route calculations than performing the querying process over the networks as a
whole. Clients could then interpret the semantically annotated hypermedia controls of such sub-networks to discover
and download the right fragments of data to solve individual queries. This work stands as a contribution for the PT

domain by demonstrating the feasibility of a cost-efficient approach for data sharing, and opening the door for new
and innovative services and applications. It also shows how Semantic Web technologies can be applied not only
to describe domain specific data, but also the interfaces that enable applications to consume it. The principles of
meaningful data fragmentation and semantic annotation of interface hypermedia controls, applied on this work to a
PT domain use case, could be reused on other domains and use cases. Thus building foundations for more generic,
domain-independent and autonomous data applications.

The remainder of this paper is organized as follows. Section 2 presents an overview of related work around PT

data modeling and sharing, route planning and live and historical data handling on the Web. Section 3 describes the
proposed LC reference architecture. Section 4 describes the 22 different PT data sources considered for this work.
Section 5 presents the details of the performed empirical studies on server-side cost-efficiency and route planning
performance. Section 6 shows the obtained results. In Section 7 we discuss the results and the potential correlations
of query performance with PT network intrinsic characteristics. Finally on Section 8 we present our conclusions and
vision for future work.

2. Related work

The field of open data has been devoted to evolving the technologies that enable to share and reuse datasets,
resulting in an ecosystem of data models, standards and tools. The Linked Data principles [8] are an example of
this. Semantic Web and Linked Data technologies provide a common environment where data is given a well-defined
meaning, allowing machines to interpret heterogeneous datasets by using common data models and reasoning [7,32].

Next to the Linked Data principles for aligning datasets, we also consider the computational cost of sharing data.
Different trade-offs can be observed between publishing a data dump, or providing a querying API, as described
by the Linked Data Fragments conceptual framework [55]. Regarding data models and APIs for the PT domain,
progress has been made as part of Mobility-as-a-Service (MaaS) ecosystems, aiming to provide integrated services
for unified travel experiences in terms of transportation modes and payment [39].

In this section we present an overview of the main data sharing innovation efforts carried out in the PT domain,
with route planning as its most prominent use case and an overview of such planning algorithms. Finally, we present
related work regarding APIs to publish live and historical data on the Web.
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Fig. 1. The GTFS data model and its primary relations.

2.1. Public transport data models

TriMet (Portland, Oregon) became the first PT operator to integrate its schedules into Google Maps in 2005. This
collaboration fostered the creation of the General Transit Feed Specification4 (GTFS), which at the time of writing,
is regarded as the de facto standard for sharing PT data. GTFS defines the headers of 17 types of CSV files and a set
of rules that describe how they relate to each other (see Fig. 1). The most important files within GTFS can be listed
as follows:

– stops.txt: Individual locations where vehicles pick up or drop off passengers.
– routes.txt: A route is a group of trips that are displayed to riders as a single service.
– trips.txt: An instantiation of a route. A trip is a sequence of two or more stops that occurs at specific time.
– calendar.txt: Dates for service IDs using a weekly schedule. Specify when service starts and ends, as well as

days of the week where service is available.
– stop_times.txt: Times that a vehicle arrives at and departs from individual stops for each trip.

The European Committee for Standardization created the Transmodel5 standard and its implementation NeTEx,6

to provide a description of conceptual models that facilitate exchanging PT network infrastructure topology and
timetable data, among others. NeTEx was selected by the European Union, for the provision of an EU-wide multi-
modal travel information service, where every member state will publish their PT-related datasets through a National
Access Point (NAP). The official list of NAPs can be found online,7 however to this date only a few member states
shared their data in NeTEx format, which could be attributed to the difficulty for PT operators to express their net-
works information in a new format and data model. Recent work by Scrocca et al. [46] relies on semantic web
technologies to ease the transition of EU operators towards NeTEx.

4https://developers.google.com/transit/gtfs
5http://www.transmodel-cen.eu/
6http://netex-cen.eu/
7https://ec.europa.eu/transport/sites/transport/files/its-national-access-points.pdf

https://developers.google.com/transit/gtfs
http://www.transmodel-cen.eu/
http://netex-cen.eu/
https://ec.europa.eu/transport/sites/transport/files/its-national-access-points.pdf
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Efforts to semantically describe the different concepts, properties and relations defined by the aforementioned
data models, were made for the case of GTFS with the Linked GTFS vocabulary8 and for Transmodel with the
Transmodel Ontology [11]. A comprehensive survey on semantic data models and vocabularies for the transport
domain was performed by Katsumi et al. [37]. This survey does not focus only on PT but also includes other
related aspects such parking and road traffic. The existence of so many different PT data models, sheds light on the
lack of interoperability of the PT domain, but it also shows the efforts being made both from industry and public
authorities to converge on well defined standards. Given it is mainly focused on modeling the concepts around PT

planned schedules and that most PT data is available as such, we reuse Linked GTFS terminology in our approach to
semantically describe PT important concepts such as stops, trips and routes. However, we take a different approach
to model the granular behavior of individual trips. We pair together departure and arrival events into connections,
in contrast to Linked GTFS that describes these events individually as a gtfs:StopTime. The reason for this is to
facilitate the interpretation of these events to clients when evaluating route planning queries. Further details of our
modeling approach are shown in Section 3.

2.2. Public transport Web interfaces

Public transport data are often found on the Web as data dumps or through APIs. Static data dumps contain
extensive planned schedules, which scale proportionally to the size and complexity of the transport network [27].
Most currently available dumps on the Web follow the GTFS model.9

Public transport APIs on the other hand, can be found online spanning a wide spectrum in terms of openness,
features and data structures. From the paid Google Directions10 and CityMapper11 APIs, going over the freemium
Navitia.io12 API, to the completely free and open source routing engine OpenTripPlanner.13 PT data interfaces in
the wild are mostly available for route planning use cases, each with their own set of features and ad-hoc data
structures. Some undergoing efforts from MaaS communities are trying to define standard API interfaces (e.g. MaaS
Global14 or TOMP15 APIs) to harmonize data access when building MaaS applications. However, despite their
heterogeneity in terms of data structures and semantics, a common pattern on their architecture design can be seen
across all available APIs: the servers of API providers are responsible for handling all the computational processing
burden when evaluating queries, leading in practice to feature and access-restricted APIs. We propose an alternative
approach where servers only are responsible of publishing self-descriptive and departure time-sorted fragments of
planned schedules, through a uniform interface and data model. This approach delegates the processing of queries
to the client, in a more computational load-balanced architectural setup, that ultimately lowers the costs for data
publishers and brings more flexibility over the data to client applications.

2.3. Formal representation of public transport networks

Beyond the standards and interfaces used to describe and share PT data, is also important to consider the dif-
ferent formal representations that have been proposed to analyze and understand PT networks. Traditionally, PT

networks have been defined through formalisms from graph theory and complex network science [9], with different
levels of abstraction that include among others, undirected graphs [30,54], weighted and directed graphs [13,50],
time-expanded graphs [28], and time-varying graphs [29]. Across formalisms, vertexes normally represent physical
stations in the network, and edges may represent different things depending on what is intended by the topology

8http://vocab.gtfs.org/gtfs.ttl
9GTFS dumps from around the world: https://transitfeeds.com/, https://www.transit.land/.
10https://developers.google.com/maps/documentation/directions/overview
11https://citymapper.com/enterprise
12https://www.navitia.io/
13https://github.com/opentripplanner/OpenTripPlanner
14https://github.com/maasglobal/maas-tsp-api
15https://github.com/TOMP-WG/TOMP-API

http://vocab.gtfs.org/gtfs.ttl
https://transitfeeds.com/
https://www.transit.land/
https://developers.google.com/maps/documentation/directions/overview
https://citymapper.com/enterprise
https://www.navitia.io/
https://github.com/opentripplanner/OpenTripPlanner
https://github.com/maasglobal/maas-tsp-api
https://github.com/TOMP-WG/TOMP-API
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analysis [38]. When starting from timetable (i.e., planned schedule) data, edges are usually defined to represent con-
nections among stops. In other words, an edge is present when there is at least one vehicle that stops consecutively
in two stations, when following a predetermined route [22,47,48,57].

Different metrics have been proposed to analyze and obtain insights of PT networks. General graph theory-based
metrics such as average degree [26], graph density [54], clustering coefficient [50], and also PT domain-specific
metrics such as average connection duration [28] or directness of service [23] have been used to derive conclusions
on the behavior of PT networks. For example, higher degree networks are typically associated with higher levels of
network reliability [54], and higher clustering coefficients reflect higher accessibility among stations [40]. Hong et
al. [35] present a compilation of studies that apply complex network metrics over different PT networks. However,
even though graph metrics have been correlated to process performance in different application domains, for ex-
ample to assess data quality change on dynamic knowledge graphs [31], to the best of our knowledge there are no
studies that investigate potential relations of network graph characteristics and route planning query performance.
We perform an evaluation in this direction and analyze how specific PT network graphs characteristics may influence
route planning performance.

2.4. Route planning algorithms

From a traveler’s perspective, route planning is the most popular use case over PT data and thus has been exten-
sively studied throughout the years. Bast et al. [3] and Pajor [42] present a comparative analysis of multiple route
planning algorithms over PT networks, road networks and combination thereof. Most PT algorithms are defined as
extensions of Dijkstra’s algorithm [25] using graph-based formalizations such as time-dependent [10] and time-
expanded [43] graphs to model networks. Other alternative approaches such as RAPTOR [19], CSA [24], Transfer
Patterns [4] and Trip-based routing [58] exploit the basic elements of PT networks to calculate routes directly on the
planned schedules.

A PT route planning query can be further specified into more concrete problems depending on the concrete use
case. The literature defines different types of route planning query problems, usually defined in terms of Pareto-
optimizations, that require specific algorithm implementations with varying levels of complexity [20,24]. The sim-
plest and most common one is the Earliest Arrival Time problem, where given an origin, destination and a departure
time τ , an algorithm should render a journey departing no earlier than τ and arriving as soon as possible. Other
common problems include the Profile problem variants, to calculate the set of possible journeys within a time range
or the Multi-Criteria problem for considering additional optimization criteria over the resulting Pareto set (e.g.,
maximum number of transfers or transport modes).

Each algorithm requires specific data structures and indexes in order to find possible routes over PT schedules. The
time-based sorted structure of our publishing approach fits the requirements for executing route planning algorithms
based on the Connection Scan Algorithm (CSA). In our evaluation, we take an implementation of CSA to a client-side
application and use it to evaluate Earliest Arrival Time queries.

2.5. Live and historical data on the Web

Live data is critical for supporting practical use cases that are useful in real scenarios. It is particularly important
for PT route planning given that in practice, schedules change due to unforeseen delays and cancellations, which
could render calculated routes unfeasible. GTFS-realtime16 and SIRI,17 are among the main reference standards for
live schedule updates and vehicle positions. Both define protocols to exchange live updates for planned schedules,
modeled using GTFS and Transmodel standards respectively. Most currently available PT live data on the Web use
the GTFS-realtime standard [1].

In the same way, historical data is fundamental for some use cases in the PT domain. Machine learning-based
algorithms require training data that closely reflect reality to make predictions on a certain scenario [33]. PT op-
erators require to perform statistical analyses based on accurate data of past events to asses the performance of

16https://developers.google.com/transit/gtfs-realtime
17http://www.transmodel-cen.eu/standards/siri/

https://developers.google.com/transit/gtfs-realtime
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their networks [5]. Such data may already exist within operators information systems, but unfortunately is not com-
monly made public for third party reuse. The unavailability of public historical data may be motivated by operators
strategic business choices or simply by the inherent costs of maintaining a dedicated public API for this purpose.
Either way limiting the development of novel use cases. An example of public historical information can be found
by accessing the Belgian trains delays and disruptions site18 through the wayback machine service of the Internet
Archive initiative. However besides not being machine readable data, this does not constitute a reliable source as
snapshots are not consistently archived.

In an effort to standardize the way historical information is accessed on the Web the IETF published the RFC
7089,19 also known as the Memento framework [51]. Memento defines a protocol over HTTP to perform time-based
content negotiation of Web resources among clients and servers. The latest version of a resource is defined as the
original resource URI-R. Previous versions of URI-R are defined as Mementos URI-Mi with i = 1, . . . , n and can be
accessed by negotiating with a Time Gate URI-G.

The idea of accessing and querying historical versions of data through time-based content negotiation, has been
already explored by Taelman et al. for the case of time-annotated knowledge graphs [53]. In our approach we apply
this principle to provide access to the history of changes of PT network schedules, which are also represented as
knowledge graphs in the form of RDF. In this way we bring together both (versions of) planned and live update data,
which can be queried in a cost efficient way. Design and implementation details are presented in the next section.

3. The Linked Connections framework

In previous work we introduced Linked Connections (LC)20 as a light-weight linked open data interface for
publishing PT planned schedules. It allows applications to evaluate route planning queries on the client [15,17]. LC

models PT planned schedules through departure-arrival pairs called Connections, which are ordered by departure
time, fragmented into semantically enriched data documents and published on the Web over HTTP (see Fig. 2).
Despite being designed mainly to optimize the implementation of route planning use cases, other use cases requiring
different types of querying, could still be supported by the LC approach, even though other alternatives may be more
efficient for specific cases. A LC interface publishes the unmodified raw data of transport schedules which for
example, could allow an operator interested in finding the busiest stations during peak hours in the last month,
to implement an application that traverses the LC collection to find an answer to this query, without having to
implement dedicated interfaces on the server-side.

Our previous work on LC mainly focused on demonstrating the feasibility of this approach and its benefits in
terms of cost-efficiency for publishing PT planned schedules on the Web. We showed that LC achieves a better cost-
efficiency by consuming considerably less computational resources on the server-side, when compared to traditional
route planning origin-destination query interfaces. The price of this decreased server load is paid by an increased

Fig. 2. Depiction of chronologically ordered linked data documents containing LC (represented by the blue blocks). Each document contains
links (hydra:next labeled links) to the previous and next document in the collection, that can be traversed by clients to found routes across the PT

network. The green blocks represent the departure and arrival connections of an hypothetical route planning query and the thinner links comprise
the route solution that will be computed by scanning the collection.

18https://web.archive.org/web/20200429224623/https://www.belgiantrain.be/en/travel-info/current/ongoing-disturbances-and-works
19https://tools.ietf.org/html/rfc7089
20https://linkedconnections.org/

https://web.archive.org/web/20200429224623/https://www.belgiantrain.be/en/travel-info/current/ongoing-disturbances-and-works
https://tools.ietf.org/html/rfc7089
https://linkedconnections.org/
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implementation complexity of client-side applications and a higher bandwidth requirement, which is three orders of
magnitude bigger. This increased cost for application developers could be mitigated by setting the LC consumer as
part of their server infrastructure, which in turn could expose traditional origin-destination APIs [17]. In our previous
work however, we did not study how live PT data could be managed and accessed efficiently, nor how historical data
could be archived and queried. We started exploring an approach to handle live and historical data and proved
its feasibility through a preliminary demonstrator [45]. Yet, a general overview of a LC-based system and a more
detailed description of how its individual components could be implemented were still missing. To summarize, in
previous work we:

– Introduced LC as publishing alternative for PT planned schedules [15,17].
– Presented preliminary demonstrators for publishing and consuming live and historical schedules [12,45].
– Studied different Web interfaces for efficient publishing of live schedule updates [44].

In this paper we build on these previous works and provide the following contributions:

– A generalized architecture to publish planned, live and historical PT schedules.
– An study of the factors that influence route planning query performance over a LC interface.
– A comparative study of the cost-efficiency and performance of our approach, against the traditional non-

semantic solution OpenTripPlanner and an assesment of the added costs of publishing live and historical
schedules.

Next, in this section we (i) describe the semantic specification of LC data, showing the requirements that shape
the LC model; (ii) define a reference modular architecture for implementing LC-based solutions and (iii) describe in
detail how we manage and provide efficient access to live and historical PT data.

3.1. Linked Connections specification

We created a specification that describes the different requirements to implement a LC data publishing interface
and a set of considerations for client applications implementing route planning solutions.

LC uses Connections as the fundamental building block of PT data. A connection describes a departure-arrival
event between given two stops, that occurs at a certain point in time and without intermediary halts. In other words,
a connection must contain the definition of at least a departure stop, an arrival stop, departure time and an arrival
time. Additionally, a connection is related to a specific trip. This is important for client applications to interpret sets
of connections as part of independent trips during route plan calculations.

We define connections as RDF graphs, following the Linked Data principles. LC data interfaces should therefore
publish data, in at least one of the RDF compliant serializations (e.g., turtle, JSON-LD, N-Triples, etc). Connections
are described by means of the linked connections ontology and also with terms from the Linked GTFS vocabulary.
The main concepts to semantically model and represent connections are the lc:Connection RDF class, together
with the predicates that reference departing and arrival stops and times. Table 1 describes these terms and Listing 1
shows an example of a LC using the JSON-LD serialization.

A LC data interface publishes PT network schedules as a chronologically ordered paged collection of connections
over HTTP. This particular design is motivated to support the execution of CSA-based algorithm implementations on
the client side. The reason for choosing CSA as the main supported route planning algorithm is related to the relative
simplicity of publishing CSA’s required data structure, namely a chronologically ordered collection of lc:Con-
nections, compared to more complex structures and set of indexes required by other state of the art route planning
algorithms. The semantic definitions provided by Linked Connections could still be reused to publish the same data,
organized in different structures, to enable clients performing other algorithms. For example, by exposing the or-
dered set of lc:Connection’s per gtfs:Trip, a client could independently implement the RAPTOR algorithm.

Each LC document should be served with the appropriate headers to enable both server and client-side caching.
High cacheability of data is one of the biggest advantages of the LC approach, in terms of cost-efficiency and
scalability for data publishing interfaces. Document responses require also to enable CORS (Cross-Origin Resource
Sharing), given that data will be accessed by clients from multiple origins. Furthermore, LC defines semantically
annotated hypermedia controls as part of every document’s metadata. The purpose is to allow clients to discover
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Table 1

Main terms used to model and semantically define LC. The prefixes lc and gtfs stand for http://semweb.mmlab.be/ns/linkedconnections# and
http://vocab.gtfs.org/gtfs.ttl# respectively

Term Description

lc:Connection Describes a departure at a certain stop and an arrival at a different stop.

lc:CancelledConnection Represents a previously scheduled departure and arrival that won’t take place anymore.

lc:arrivalTime The time of arrival at a certain stop. When a delay is announced, it will show that actual time of arrival.

lc:arrivalStop A vehicle will stop here on arrival.

lc:departureTime The time of departure at a certain stop. When a delay is announced, it will show that actual time of departure.

lc:departureStop A vehicle will depart here.

lc:arrivalDelay The time (in seconds) in which the lc:arrivalTime differs from the scheduled arrival time.

lc:departureDelay The time (in seconds) in which the lc:departureTime differs from the scheduled departure time.

gtfs:trip Indicates the specific trip to which a connection belongs to.

gtfs:pickupType Indicates if passengers may board the vehicle at the departure stop.

gtfs:dropOffType Indicates if passengers may get off the vehicle at the arrival stop.

gtfs:headsign Contains the text that appears on a sign that identifies the trip’s destination to passengers.

Listing 1. LC formatted in JSON-LD. The properties departureDelay and arrivalDelay indicate that live data is available for this Connection

and automatically navigate the PT schedules. The hypermedia controls are defined using the Hydra vocabulary,21

including the following terms:

– hydra:next: Indicates the URI of the next LC document in the collection.
– hydra:previous: Indicates the URI previous LC document in the collection.

21https://www.hydra-cg.com/spec/latest/core/

http://semweb.mmlab.be/ns/linkedconnections#
http://vocab.gtfs.org/gtfs.ttl#
http://semweb.mmlab.be/ns/linkedconnections#Connection
http://semweb.mmlab.be/ns/linkedconnections#CancelledConnection
http://semweb.mmlab.be/ns/linkedconnections#arrivalTime
http://semweb.mmlab.be/ns/linkedconnections#arrivalStop
http://semweb.mmlab.be/ns/linkedconnections#departureTime
http://semweb.mmlab.be/ns/linkedconnections#departureStop
http://semweb.mmlab.be/ns/linkedconnections#arrivalDelay
http://semweb.mmlab.be/ns/linkedconnections#departureDelay
http://vocab.gtfs.org/gtfs.ttl
http://vocab.gtfs.org/gtfs.ttl
http://vocab.gtfs.org/gtfs.ttl
http://vocab.gtfs.org/gtfs.ttl
https://www.hydra-cg.com/spec/latest/core/
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Listing 2. Hydra search form defining a URI template for accessing LC documents with connections departing no earlier than the requested time.
It explicitly defines how clients can request specific documents and the variables they are allowed to use. In this case the only variable is the
departureTime

Fig. 3. Reference architecture for LC-based systems.

– hydra:search: Defines a URI template indicating how clients can query for a document in the collection,
containing connections starting from a specific time (see Listing 2).

3.2. Linked Connections reference architecture

A LC system’s main purpose is to publish PT schedules as a chronologically ordered collection of vehicle de-
partures over HTTP, while taking into account live updates to the original schedules and keeping historical data
available for later querying. To this end we define a reference architecture (see Fig. 3) with three main modules
that generate, store and serve LC. We also provide a complete and open-source reference implementation of this
architecture as a Node.js application.22

22https://github.com/linkedconnections/linked-connections-server

https://github.com/linkedconnections/linked-connections-server
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LC Generator This module is responsible for creating LC. It takes GTFS (planned schedules) and GTFS-realtime
(live updates) data sources as input, given that most PT data is available in these formats. We provide implementa-
tions for both modules through the gtfs2lc23 and gtfsrt2lc24 Node.js libraries. However, thanks to the modular nature
of the architecture, it is possible to replace these modules with any other interfaces capable of creating LC from dif-
ferent data sources (e.g., Transmodel, APIs, etc). One of the most important aspects that need to be considered when
creating LC is the provision of a stable identification (URI) strategy that remains valid across versions of the data
sources. We make possible to define such strategy using URI templates as defined by the RFC 6570 specification.25

Data Storage The output of LC Generator is received by this module, which proceeds to fragment and store
the data according to a given fragment size. Static LC (i.e. data coming from a planned schedules) are stored as
individual files that correspond to the documents of the time-ordered LC collection. Additionally, files containing
the set of stops and routes of the PT network are kept to be served as static documents too, since they are usually
needed by route planning applications. Live updates are also stored as files following a log-like approach, where
delays, ahead of time and cancellation reports for every single connection are written down. Files in both cases are
named using the first departure datetime they contain to facilitate later connection lookups.

Web Server This module defines the interfaces through which LC and other related PT data may be accessed by
client applications. The HTTP interfaces supported by the LC Web server are as follows:

– /connections: This interface provides access to the LC documents. It receives a departure time query
parameter, as seen in Listing 2, used to obtain the document with connections departing on a specific time. If
not provided it will resolve to the current time document.

– /stops: This interface returns the complete set of stops defined for the PT network as a static document.
Stops are described with terms from the Linked GTFS vocabulary.

– /routes: This interface returns the complete set of routes available in the PT network as a static document.
It includes information like route number/name, color or type of vehicle (e.g. metro, tram, bus, etc) which are
also described with the Linked GTFS vocabulary. Route data are useful for displaying route plan results in user
applications.

– /catalog: This interface provides a catalog definition given using the DCAT vocabulary. It describes the
different data sources published on the server, including their access URLs, supported media type formats, last
issued date, license information, among other metadata. Its main purpose is to increase discoverability of the
data.

The Web Server module also contains submodules responsible for resolving LC documents requests in an efficient
way. Particularly the architecture defines three specific submodules for supporting requests that include live data,
historical data and also static data. The live data manager submodule takes care of serving LC documents that
include the latest connection updates. A detailed reference implementation of this submodule is presented later
in Section 3.3. In the same way, the historical data manager handles serving previous versions of LC documents
through HTTP time-based content negotiation using the Memento protocol. A reference implementation is detailed
in Section 3.4. Lastly, the static data manager handles requests for static resources, namely stops, routes and the
server’s DCAT metadata.

3.3. Serving live Linked Connections

Managing and serving live schedules updates, without sacrificing the cost-efficiency of the data publishing in-
terface, constitutes one of our main contributions in this paper. In previous work we studied pushing (server-sent
events) and polling (HTTP) interfaces to exchange live PT data with client applications and keep route planning
results updated in a cost-efficient way. We found that a polling approach consumes less resources on the data pub-
lishing side and clients only experience a slightly higher bandwidth consumption, compared to a pushing approach

23https://github.com/linkedconnections/gtfs2lc
24https://github.com/linkedconnections/gtfsrt2lc
25https://tools.ietf.org/html/rfc6570

https://github.com/linkedconnections/gtfs2lc
https://github.com/linkedconnections/gtfsrt2lc
https://tools.ietf.org/html/rfc6570
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Fig. 4. Depiction of the LC AVL tree reacting to a schedule update. In this example, c2’s departure time is dtk + 2 at ti . A moment later at ti + 1,
c2’s departure time is reported to be increased by a delay δ, making c2’s departure time to be later in time than c3’s departure time. This schedule
update triggers a reorganization of the AVL tree to maintain the chronological ordering of the collection.

[44]. However, our implementation for serving live LC was done in a naive way. We merged scheduled LC documents
with their latest updates on request time, with significant negative impact on response times.

We introduce a more elaborated approach to reduce response times of LC document requests without compro-
mising cost-efficiency. The set of departure time-sorted Linked Connections C = [c0, c1, . . . , cn] where dtk is the
departure time of ck and dtk � dtk+1, is modeled as an AVL tree [49] (see Fig. 4). AVL trees are self-balancing
binary search trees, where at any time, the height difference between two child subtrees of any node is not bigger
than 1. Insert and delete operations are performed in logarithmic time and the strict balancing ensures consistent
response times on data lookups. We implemented an AVL tree in our LC architecture represented by the live data
manager submodule in Fig. 3. The tree creates a time window view over the LC collection, spanning from the current
time until a configurable time in the future. This time window is periodically adjusted by shifting forward in time,
based on the assumption that most route planning queries will request future routes and also to avoid unnecessary
memory consumption by keeping old connections. In practice, the tree is built by loading in memory scheduled LC

documents, starting from the one that contains connections departing on the current time and periodically rebuilding
the tree to shift forward the time window. However, data outside the time window can still be provided by merging
scheduled documents and their updates on request time. The AVL tree data structure is updated accordingly (i.e.
adding, removing and reorganizing connections) upon reception of schedule update reports. This allows for fast LC

document responses containing the latest schedules updates. Figure 4 shows an example of an AVL tree of LC and
how the tree is adjusted when a connection is reported to have departure delay.

The AVL tree is initially generated by scanning over the scheduled LC, kept by the Data Storage module on server
boot time. Once created, the live update logs are constantly monitored and trigger tree reorganizations when new
reports are received.

3.4. Serving historical Linked Connections

Another important contribution of this paper, is providing the ability for serving historical LC data. We allow
querying not only for past planned schedules but also for historical live data reports. This means it is possible to
obtain the actual vehicle departures as they were reported at different points in time. For example, we could request
for the departures of yesterday at 08:00 h as they were expected to be yesterday at 07:00 h and also later at 07:50 h,
seeing possibly that a connection that was on time at 07:00 h was later reported to be delayed at 07:50 h. In this way
is possible to reproduce the stream of events of a PT network at a granularity given by the frequency of live update
reports. Access to this data could support analytical studies to better understand the behavior of PT networks and
also other use cases that rely on historical information of trips to provide recommendations to travelers [12].

We make this possible through the HTTP Memento protocol. Given the document-based nature of LC, it is possible
to request past versions of a specific document, as it was at a certain point in time. Memento defines different
patterns to perform time-based content negotiation. We implemented pattern 1.1 where URI-R = URI-G and 302-
style negotiation is performed. This means that the original resource acts as its own time gate and clients receive
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Listing 3. Hydra URI template for accessing LC documents containing connections with departure times equal or bigger than the requested time

a 302 HTTP response containing a Location header with the URI of the Memento. An example GET request is
shown in Listing 3, asking for connections departing from 08:00 h as they were reported at 07:35 h. The specific
version time is given through the Accept-Datetime header, as defined by the Memento protocol.

Performing these kind of queries is possible thanks to the way LC are stored in the Data Storage module, as
separate sets for both scheduled and live update data. When a Memento request is received, the system gets first
the LC fragment containing the originally scheduled connections. This first step may seem trivial but is necessary
to consider that there may be multiple versions of overlapping planned schedules. Therefore, the system needs to
select the version issued closest to the specified Accept-Datetime date, before integrating live reports. Then the
system goes over the live update logs for this specific LC document, retrieving and merging all the updates received
up until the Accept-Datetime date. As mentioned in Section 3.3 this could be considered as a naive approach
which may increase response times of individual LC fragments. However we part from the assumption that historical
data queries are not as performance-critical as live data queries for route planning purposes, and can still be resolved
within reasonable time following this approach.

3.5. Linked Connections client

The chronological ordered collection of connections defined by a LC system, is a fitting data structure to perform
the Connection Scan Algorithm (CSA), proposed by Dibbelt et al. [24]. Given a departure stop, arrival stop and
departure time, CSA will go over the collection of connections, progressively building a minimum spanning tree of
reachable destinations. The algorithm performs this process until it reaches the desired arrival stop, rendering in this
way, the earliest arrival journey possible (if any). This provides a solution for the Earliest Arrival Time problem. In
the case of LC, a client performing the CSA algorithm can scan through the collection of connections by downloading
LC documents and following the defined hypermedia controls to traverse it. We provide an implementation of CSA

on the Planner.js JavaScript library,26 which can be used both on server (Node.js) and client-side applications.

4. Datasets and metrics

For testing our proposed approach we conducted a set of evaluations (see details in Section 5) considering data
from 22 real-world PT networks. Aiming on getting generalizable results, we selected a representative set of het-
erogeneous PT networks in terms of modes of transport and geographical coverage (urban, regional, national and
international). In this section we describe these PT networks, our modeling approach to represent them and a set of
measured graph topological characteristics.

We rely on the definitions of network topology introduced by Kurant and Thiran [38]. In particular, we use graph
topologies in space-of-stops, to reflect the traffic flow of the PT transport networks. Considering that these type
topologies are inherently time-dependent, we opted to model them as Time-Varying Graphs (TVG). The main pur-
pose was to capture more accurately their dynamic behavior and evolution [29]. Traditional aggregated static graphs
may be a severe oversimplification that fails to represent the number and particularly the frequency of relations
that take place in a dynamic system [41]. As an example of how much a PT network topology (in space-of-stops)
may change over time, Fig. 5 shows 4 snapshots of the Belgian train PT network graph, taken at different points in

26https://planner.js.org/

https://planner.js.org/
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Fig. 5. Network graph snapshots of the Belgian train PT operator NMBS, taken over the busiest day of their timetable. It can be observed how
the topological structure of the network varies throughout the day, in particular showing a higher amount of connections between stops during
peak hours.

time throughout an operation day. In the rest of this paper, PT network topologies are always considered to be in
space-of-stops.

TVGs are typically defined by an ordered-set of T snapshot graphs G1,G2, . . . ,GT , where each Gt represents a
state of the network at a certain point in time. Gt = (V ,Et ) where V is the constant set of vertexes (stops) and Et

represents the temporal configuration of edges (connections) that take place on the network at t . We take T at the
maximum resolution allowed by the timetable data of 1 minute, to capture better the state of the networks during
the observed time interval. Edges may be persistent across graph snapshots, according to the travel duration of the
connections they represent.

Based on related work about analytical frameworks to study PT networks [13,29,30,50,54], but mainly aiming
to reflect their dynamic behavior and topological changes over time, we decided to observe the following graph
properties of each network:

– Size: Size is a basic graph property, in this case interpreted as the total number of stops |V | present on the
network.

– Average Degree: Degree k is measured on a vertex as the sum of its incoming and outgoing edges, interpreted
in this case as departing and arriving connections. For every graph snapshot Gt, we take the average degree of



J.A. Rojas et al. / Public Transport on the Web 673

all vertexes. The TVG average Degree is then calculated as the average graph Degree over graph snapshots:

K = 1

|T | ∗ |V |
∑

t∈T

∑

v∈V

k

The average degree of a network shows how connected is each vertex in the network [35].
– Density: Graph Density D is an indicator aimed at measuring how close is the network structure to a complete

graph. It is defined as the ratio of existing edges and the total number of possible edges in the network. We
calculated the total Density of the TVG as the average Density of the individual graph snapshots:

D = 1

|T |
∑

t∈T

|Et |
|V | ∗ (|V | − 1)

An increased density is usually an indication of reduced time travelling in PT networks [54].
– Clustering Coefficient: Clustering Coefficient C is a measurement of how well connected are the neighbors of

a given vertex. Is defined as the ratio of existing edges and total possible edges among neighbors of a vertex,
which is averaged for all the vertexes in the network. We measured the total C of the TVG as the average for
all the snapshot graphs Gt:

C = 1

|T | ∗ |V |
∑

t∈T

∑

v∈V

2|e|
|n| ∗ (|n| − 1)

where e is the number of edges present among neighbors of vertex v and n is the total number of neighbors of
v. A highly clustered network is usually a reflection of a better connected and accessible network [40].

– Average Connection Duration: This metric is a particular measure of time-dependent networks, which indicates
in this case, how long are the trips that occur on the network [28]. From a LC system perspective is interesting
to see how longer or shorter trips in PT network may influence route planning performance, considering the
time-based nature of LC data interfaces. We calculate Average Connection Duration over the LC collection as
the average difference of arrival and departure times for every connection ACD = cat − cdt .

We measured the aforementioned metrics on each of the 22 considered PT networks. Table 2 presents a condensed
view of the measured metric values. We observe high heterogeneity in the different measured metrics. For the total
number of stops (|V |), we have the Kobe-Subway network as the smallest with 27 stops, and the Wallonia-TEC
network as the biggest with a total of 31,131 stops. In the case of total number of trips, Sydney-Trainlink has the
least number with 103 and Flanders-De Lijn has the highest number with 33,959. Sydney-Trainlink has also the
lowest number of connections with 891 and Chicago-CTA has the highest with almost 1.13 million connections.

We can see that more stops does not necessarily means more connections. Sydney-Trainlink (least connections)
has 13 times more stops than Kobe-Subway (least stops). In the same way, Chicago-CTA (most connections) has
less than half the stops of Wallonia-TEC (most stops). Having the least connections is a reflection of also having the
least trips in the case of Sydney-Trainlink. However, Flanders-De Lijn (most trips) has 5.6 times more trips but 30%
less connections than Chicago-CTA (most connections). Such difference is explained by Chicago-CTA’s trips being
larger in terms of visited stops, which translates into higher number of connections.

The smallest fragment size, which is given in number of connections, has Auckland-Waiheke as the network with
the smallest fragment possible: 5 connections per fragment. Flanders-De Lijn has the biggest among all networks
with a minimum possible fragment of 1.8k connections. This metric reflects how many simultaneous connections
take place at the busiest moment of the schedule.

Looking at the average degree K , Auckland-Waiheke shows again the lowest value with 0.15 and london-tube
presents the highest with 1056.55, showing a significant difference compared to the rest of the networks. This
indicates that throughout the day, most of London-Tube’s stops are constantly active, which is evident by the high
number of connections compared to the low total number of stops showed by this network. For density D, we
observe that values range from 0.00006 for chicago-cta to 0.93 for London-Tube. We also see that networks with
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Table 2

Set of evaluated PT networks and their metric values. The networks are organized from the smallest to the biggest with respect to the number
of active stops during their busiest day (i.e. the day with the highest number of connections). Number of trips and connections correspond to
the total amount that took place during the busiest day of the schedule. K is the average degree, D is the density (shown as a factor of 1000 to
facilitate readability), C is the clustering coefficient, ACD is the average connection duration (in minutes)

PT network |V | Trips Connections Smallest fragment K D ∗ 1000 C ACD

Kobe-Subway 27 617 6,086 16 6.59 84.55 0 2.57

Netherlands-Waterbus 44 515 936 7 1.17 9.14 0 11.08

San Francisco-BART 50 754 7,755 15 9.28 63.14 0.19 4.53

Thailand-Greenbus 112 137 1,024 16 3.20 9.62 0.97 83.81

Auckland-Waiheke 125 243 6,020 5 0.15 0.41 0 1.60

Sydney-Trainlink 361 103 891 7 0.19 0.17 0.01 51.24

London-Tube 379 15,356 321,952 376 1,056.55 931.70 6.77 2.51

Germany-DB 433 677 7,680 21 4.47 3.45 6.58 33.05

Belgium-NMBS 606 4,556 57,950 94 35.36 19.48 0.54 5.66

Spain-RENFE 714 997 6,159 27 3.48 1.62 2.69 32.97

Amsterdam-GVB 1,356 11,367 180,695 71 0.68 0.24 0.001 2.11

EU-Flixbus 1,744 8,726 51,636 386 162.01 30.98 27.14 133.05

New Zealand-Bus 2,259 4,678 153,690 59 0.50 0.07 0.03 2.01

Brussels-STIB 2,316 19,557 350,038 189 2.47 0.35 0.13 1.76

Nairobi-SACCO 2,787 264 5,855 259 6.71 0.80 1.26 4.69

New York-MTABC 3,590 11,028 343,582 130 1.19 0.11 0.59 4.19

France-SNCF 4,646 10,541 79,796 180 20.19 1.44 2.57 16.52

Madrid-CRTM 5,192 27,538 706,642 247 3.93 0.25 2.61 5.49

Helsinki-HSL 8,155 25,887 689,834 877 130.76 5.34 3.78 1.62

Chicago-CTA 11,042 20,058 1,128,828 164 2.20 0.06 0.33 1.37

Flanders-De Lijn 29,905 33,959 826,572 1861 117.11 1.30 1.62 1.56

Wallonia-TEC 31,131 21,062 623,808 1207 36.02 0.38 3.99 1.55

Listing 4. Example of a cluster in EU-Flixbus. Given the long duration of the two connections departing from France to Brussels South, when the
connection between the two french stops takes place, the other two connections are still happening, therefore a cluster (triangle) can be formed
in the graph

high K and relatively lower number of stops show the highest values of D, as is the case of Kobe-Subway, San
Francisco-BART and London-Tube.

For clustering coefficient C, we can see that three of the networks, namely Auckland-Waiheke, Netherlands-
Waterbus and Kobe-Subway have C = 0. We see that these networks have in common a relatively small number
of stops, a low number of simultaneous connections (given by the smallest possible fragment size) and relatively
low ACD. In contrast to EU-Flixbus that has the highest C = 27.14 and also the highest ACD. This pattern can be
explained by the fact that having low number of stops and ACD, lowers the probability to find a stop vk that at any
given time, has connections with two neighbor stops vk+1 and vk+2, at the same time that vk+1 is also connected to
vk+2. In the case of EU-Flixbus we could infer that is easier to find simultaneous busses travelling among neighbor
stops, given the higher ACD of this network. An example of this scenario in EU-Flixbus is show in Listing 4.



J.A. Rojas et al. / Public Transport on the Web 675

Lastly, we see that the values for average connection duration range from 1.37 minutes of Chicago-CTA to 133.05
minutes of EU-Flixbus. This is expected, since urban networks normally have shorter connection durations com-
pared to nation-wide or international networks such as Thailand-Greenbus and EU-Flixbus.

5. Evaluation

To support efficient PT data publishing and real-world practical use cases such as route planning, it is fundamental
to achieve high performance for query processing. Performance in this case refers to the query response time (i.e.
the time elapsed since a client sends a query request until it obtains a response). Therefore, we need to understand
the factors that influence performance and the API design aspects that could be adjusted to optimize them. One
of the aspects that can be controlled on LC systems, is the LC data fragment (document) size, in terms of the
maximum number of connections they can contain. In previous work [17], we established arbitrary time window
ranges (e.g. 10 minutes) per document, aiming to have LC documents of reasonable size to be transmitted to clients
over HTTP. However in practice, this resulted in a wide range of LC document sizes, which in turn translated to
unpredictable query evaluation performance. This is due to PT networks normally exhibiting significantly higher
amount of connections during peak hours, which also increase proportionally to the number of trips that take place
on the network. For this reason we opted for establishing a (configurable) fixed size for LC documents, given by a
maximum number of connections allowed per document. This results in more stable document response times over
HTTP and thus more predictable route planning performance. Determining the size of LC documents takes us to our
first research question and hypothesis:

– RQ1: Is there an optimal data fragment size for maximizing route planning query performance of a PT network
modeled and published as Linked Connections?

– H1: There is an optimal LC data fragment size for PT networks that renders the highest route planning evalua-
tion performance.

This hypothesis comes from considering that bigger fragments will increase response times and processing effort
for individual requests, and smaller fragments will require more HTTP request-response cycles, both cases resulting
in poorer overall query evaluation performance. Therefore, finding the optimal LC document size (max number of
connections per document) of individual PT networks is an important design aspect for LC systems, but it does
not provide a complete picture of the principles that guide better query performance. Finding a generalized solu-
tion that maximizes query performance when publishing LC, requires determining the patterns present when high
performance is achieved. For this we observe the properties of the PT networks themselves, aiming on finding the
conditions that determine better route planning performance. This takes us to our second research question and
hypothesis:

– RQ2: Is there any correlation between route planning query performance over LC-based data interfaces and the
topological properties of PT networks graphs in space-of-stops?

– H2: A LC interface gives a better performance for route planning queries, when publishing PT networks with
certain topological values of size, K , D, C and ACD.

The main goal of LC is to achieve a reasonable trade-off between PT data publishers and consumers in terms
of data integration and query processing efforts, that is targeted (but not limited) to route planning use cases. Our
approach aims on improving the cost-efficiency of computational resources for PT data publishers by keeping simple
server interfaces providing highly cacheable data responses. This design moves the responsibility of query execution
to the clients, but it also provides them with a higher querying flexibility, i.e., clients are able to independently
customize the query process and adjust it to their particular needs. In previous work [17], we observed that a LC

interface does provide a better use of computational resources on the server-side and similar response times for
route planning query solving, at the cost of an increased bandwidth use (3 orders of magnitude higher). However,
that evaluation was done against a traditional server-side setup, which was only an adaptation of our client-side
algorithm (CSA) implementation published through an origin-destination API. Moreover, the comparison was made
considering only one transport network, which does not allow to draw generalized conclusions. For these reasons, in
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this work we compare the cost-efficiency of LC, against the established and widely used PT route planning solution
OpenTripPlanner. We consider 22 real and heterogenous PT networks and also evaluate the added costs of our
extensions to the LC approach for publishing live and historical PT data. This takes us to our third and final research
question and hypothesis:

– RQ3: What are the relative cost-efficiency and performance of LC-based data interfaces compared to the tradi-
tional PT route planning engine OpenTripPlanner?

– H3: LC interfaces achieve better cost-efficiency regarding server-side resources and offer an average route
planning query performance in the same order of magnitude as the one offered by OpenTripPlanner.

To tackle these research questions, we performed empirical evaluations using the 22 real-world PT networks
described in Section 4, where we (i) fragmented their corresponding LC collections and measured the performance
of route planning queries with different fragments sizes; (ii) contrasted the measured network graph properties (size,
average degree, density, clustering coefficient and average connection duration) of each PT network against their
best measured route planning performance; and (iii) compared the (live and historical) route planning performance
against OpenTripPlanner, while measuring server-side CPU and RAM use for an increasing amount of concurrent
clients. Next we describe in detail the experimental protocols followed for each evaluation.

5.1. Preliminaries

We ran the experiments on one machine acting as server and one or more machines acting as clients. All machines
had identical characteristics: 2x Quad core Intel E5520 (2.2 GHz) CPU with 16 threads and 12GB of RAM.

One important variable to consider, is the latency of the network. Given that we measure query response times,
which largely depend on the amount of required HTTP request-response cycles, network latencies may have a sig-
nificant impact in particular for smaller fragmentation sizes, for which large number of requests are usually needed.
However, latency in real scenarios is highly heterogeneous and depends on multiple factors (e.g., geographical loca-
tion, network traffic and bandwidth) [6], making it difficult to predict reference values for it. Therefore, we perform
our evaluations in a local network to eliminate the influence of variable latencies on the results. We deem out of
scope for this paper, investigating how latencies may impact measured optimal fragment sizes. Our results may be
considered as a reference point that could be adjusted when expected latencies are known in advance. For repro-
ducibility and transparency, we made available the original data sources, query sets, tools and obtained results of
these evaluations.27

Two main tasks were completed before running the experiments, namely generating multiple fragmentation sets
with varying size and producing a route planning query set for each considered PT network. We describe next how
were these tasks completed.

5.1.1. Fragmenting Linked Connections
The steps taken to produce the fragmentation sets are as follows:

Generate Linked Connections We converted the PT networks to LC from GTFS data sources found on the Web as
open data.28 For this we used the gtfs2lc Node.js library.

Busiest day We looked for the busiest day of every PT network, by counting the number of connections present on
each day. The busiest day acts as a representative subset of the planned schedules, given that for any other day, route
planning algorithms will need to process less data to answer queries. We also made the assumption that in practical
scenarios, most PT route planning queries will be normally evaluated within the span of one day. This assumption is
derived from observing that most of the PT networks cease operation through the night, with a few exceptions. For
example EU-Flixbus has several trips that go over midnight. In such cases, we included the data of all trips going
over midnight for the busiest day of every network.

27https://github.com/julianrojas87/lc-evaluation-swj
28https://www.transit.land/feeds

https://github.com/julianrojas87/lc-evaluation-swj
https://www.transit.land/feeds
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Smallest fragment possible Fragmentation of LC collections is driven by a configurable maximum number of
connections allowed per document. However, a fragmentation cannot be arbitrarily small, because PT networks in LC

systems have a lower bound of connections per document. This lower bound is determined by the maximum number
of simultaneous connections in the smallest time interval possible in the schedules. In other words, connections
sharing the same exact departure time, cannot be fragmented across different LC documents as this would break
the indexing mechanisms that LC systems rely on. All of the 22 evaluated PT networks provide departure times
with a resolution of one minute, therefore, we could determine the smallest possible fragment, by looking for the
busiest minute, i.e., the maximum number of simultaneous connections in one minute. This lower bound gave us the
minimum fragmentation size for every PT network. For example, it would not be possible to apply a fragmentation
of 10 connections per document, for a PT network whose lower bound is 350 connections, without breaking the
time-based index.

Fragmentation sets Knowing the lower bound, we proceeded to fragment the LC collections starting from their
lower bound and progressively increasing the number of connections per fragment. We used fixed sizes of 10, 50,
100, 300, 500, 1,000, 3,000, 5,000, 10,000, 20,000 and 30,000 connections per fragment; since smaller PT networks
have a low total number of connections, we stopped fragmenting the collections when the fragment size reached the
size of the entire collection. We used these fragmentation sets of each PT network to measure and compare route
planning query performance.

5.1.2. Route planning queries
Performance of route planning query evaluation not only depends on how the data is structured and published

but also on the type of queries that need to be processed. The literature defines different classes of problems for
the route planning use case that involve a varying number of variables. To minimize the number of variables that
may influence our performance measures, we selected the simplest type of problem, namely the Earliest Arrival
Time (EAT) problem. We focused our evaluations on this particular problem only, considering that in the literature,
more complex route planning scenarios are often addressed as extensions of the EAT problem. Therefore optimizing
our approach to handle EAT queries would consequently improve also the performance of more complex route
planning query processing over LC interfaces. The goal in the EAT case, is to find the journey with the shortest travel
duration between origin and destination, given a minimum departure time. Processing of these queries focuses
only on optimizing the arrival time, disregarding other common variables such as maximum number of transfers or
transportation modes.

In our test case, transfers are possible but constrained only to a maximum walking time of 10 minutes at an
average speed of 3 km/h (500 meters). Transfers are computed on the fly using the Haversine formula29 and are
modeled as additional connections. We assumed a restricted walking scenario based on a realistic heuristic to avoid
the complexity of unrestricted walking calculations having an influence in the results. EAT queries can be processed
easily over LC interfaces via the CSA algorithm. The algorithm can perform a single scan over the LC collection
until it finds a complete journey (if any), which is guaranteed to be the earliest arrival thanks to the chronological
ordering of the LC collection.

Query selection for each PT network in our evaluation was performed at random, for origin-destination stop pairs
at any time of the day. We randomly generated 100 (solvable) queries for each network. We counted the number
of connections that CSA had to process to evaluate each individual query and called this the number of Scanned
Connections needed by the Query (SCQ). The counting was done within CSA’s execution loop to avoid fragment
sizes having an influence on the count. E(SCQ) then denotes the expected value or average, of the number of
connections for the query set and its standard deviation is denoted by σ . Both metrics not only provide insights
on the query set, but also on the network itself. For example, lower values of E(SCQ) could mean the presence of
shorter EAT route queries, i.e., CSA needs to scan only a few connections to evaluate the queries. It could be also
an indication of fewer simultaneous trips in the network, which allows CSA to find a route without having to scan
many connections from other irrelevant trips that happen elsewhere on the network at the same time.

29Our implementation uses the haversine JavaScript library https://github.com/njj/haversine.

https://github.com/njj/haversine
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Table 3

Average number of connections (E(SCQ)) scanned to process the randomized query set of each PT network and its standard deviation (σ ). The
barchart is a representation of the density distribution of SCQ. On the X axis we have 10th, 20th, 30th, etc percentiles with respect to the highest
SCQ of the query set. For example, if the highest SCQ of the query set is 1000 connections the 10th percentile is 100 connections, the 20th
percentile is 200 connections, etc. On the Y axis we show the percentage of queries in the set that belong to each percentile

Table 3 shows a summary of E(SCQ), σ and a visualization of the SCQ distribution in the form of a bar chart for
each query set. The values of E(SCQ) show that the lowest value belongs to Netherlands-Waterbus with an average
of 120 connections per query, and the highest to Flanders-De Lijn with an average of 322,000 connections per query.
These values are aligned with Netherlands-Waterbus being one of the smallest and Flanders-De Lijn being one of
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the biggest networks in terms of both stops and connections (see Table 2). σ and the distribution reflect the random
nature of the query sets. We see the tendency of having more balanced query sets when σ is closer to E(SCQ)/2.

5.2. Experiment 1: Optimal LC fragmentation size

In this first experiment we deployed an instance of the LC Server30 in one of our test machines. We configured
it to publish the planned schedules of every PT network, using the predefined fragmentation sizes. We enabled only
one network with one fragmentation at a time. For the client we deployed in a different test machine, one instance
of Planner.js31 and configure it to replay (3 times) each respective query set against the LC Server instance. We
registered the average query response time of Planner.js for every PT network, using each predefined fragmentation
size.

5.3. Experiment 2: Correlation of graph metrics and query performance

To analyze the potential correlations between the intrinsic graph characteristic of each PT network and their
route planning query performance, we first measured the defined set of graph metrics (Section 4) for each of the
considered PT networks. The calculation of the metrics was performed over the TVG derived from the connections
belonging to the busiest day of each network (see the results in Table 2). We relied on the graphology32 JavaScript
library and in our own implementation33 to calculate the metrics. For the route planning query performance, we
took the best average query response time of each PT network, measured during Experiment 1 (see Section 5.2).

The correlation analysis was made by calculating the Pearson Correlation Coefficient (r), Covariance (cov) and
Coefficient of Determination (R2) of every considered graph metric vs the average query response time of the best
fragmentation of each PT network. We also visualized a linear regression model including the 95% confidence
interval for each pair of variables. We used NumPy34 and Seaborn35 Python libraries for the statistical calculations.

5.4. Experiment 3: Cost-efficiency of the LC approach

For measuring the relative cost-efficiency of our approach, we performed two main evaluations: (i) LC Server vs
OpenTripPlanner with planned schedules; and (ii) LC Server with live and historical schedules vs LC Server with
planned schedules only. We were not able to directly compare our approach with OpenTripPlanner handling live
and historical data because OpenTripPlanner does not support route planning querying based on historical data (e.g.,
calculate a route from A to B considering the schedule reports of 30 minutes ago is not supported). In the case of
live data, we had access to the GTFS-realtime stream containing live schedule updates from the Belgium-NMBS PT

network, but OpenTripPlanner failed to integrate this data source with errors regarding the integrity of the data. Next
we describe these two experimental setups.

5.4.1. LC vs OpenTripPlanner
For this evaluation we deployed instances of the LC Server and OpenTripPlanner on independent and identical

test machines acting as servers. We restricted both instances to run in a single CPU core. Our goal is to observe how
fast CPU usage increases when the number of clients scales. Therefore the results do not reflect the full capacity of
the test machines. In a production environment, the applications would be horizontally scaled to completely use the
machine’s hardware capacity and possibly set behind a load balancer to improve the overall performance. We also
used a server-side HTTP caching system (NGINX) acting as a reverse proxy for the LC Server deployment.

30We used the swj-evaluation branch: https://github.com/linkedconnections/linked-connections-server/tree/swj-evaluation.
31We used the swj-eval branch: https://github.com/openplannerteam/planner.js/tree/swj-eval.
32https://github.com/graphology/graphology
33https://github.com/julianrojas87/lc-evaluation-swj/blob/main/fragmentations-test/lc-analytics/scripts/graphMetrics.js
34https://github.com/numpy/numpy
35https://seaborn.pydata.org/index.html

https://github.com/linkedconnections/linked-connections-server/tree/swj-evaluation
https://github.com/openplannerteam/planner.js/tree/swj-eval
https://github.com/graphology/graphology
https://github.com/julianrojas87/lc-evaluation-swj/blob/main/fragmentations-test/lc-analytics/scripts/graphMetrics.js
https://github.com/numpy/numpy
https://seaborn.pydata.org/index.html
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The deployments were tested with 16 out of the 22 PT networks. We were not able to instantiate OpenTripPlan-
ner for some of the country and continent-wide transit networks, namely Spain-RENFE, France-SNCF, Germany-
Deutsche Bahn and EU-Flixbus given that the memory requirements exceeded the hardware capabilities (12GB)
of the test machines. For OpenTripPlanner is mandatory to provide the OpenStreetMap road network of the geo-
graphical area over which PT routes will be calculated, which exceeds 12GB on large geographical areas, even after
filtering for road data only. Additionally, OpenTripPlanner failed to load the road network of New Zealand, which
prevented us to evaluate Auckland-Waiheke and New Zealand-Bus networks.

On the client side, we used the HTTP benchmarking tool autocannon36 to generate an increasing amount of con-
current clients over OpenTripPlanner’s route planning REST API. In the same way, we run an instance of Planner.js
next to an increasing amount of autocannon clients (each running on independent threads in one or more test ma-
chines) over the LC Server. We created loads of 1, 2, 5, 10, 20 and 50 concurrent clients replaying the respective
query sets 3 times, while recording CPU and RAM use on the server and the query response times on the clients.

5.4.2. Live and historical data with LC

In this evaluation, we deployed an instance of the LC Server publishing the planned, live and historical schedules
of the Belgium-NMBS network. We recorded the real schedule updates emmited on 19-07-202137 and the GTFS-
realtime updates,38 which are replayed within our experimental setup. We performed 3 different tests, with an
increasing amount of Planner.js + autocannon instances (1, 2, 5, 10, 20 and 50), replaying 3 times the query set for
this network as follows: (i) Planner.js executed the query processing based on the last known state of the schedule,
while the LC Server kept on processing updates (every 30 seconds) from the GTFS-realtime stream; (ii) Planner.js
executed the query processing based on historical connections from 1 hour before the query’s departure time, while
the LC Server kept on processing new schedule updates; and (iii) Planner.js executed the query processing based on
the planned schedule only as a baseline reference. In every test we measured CPU and RAM use on the server-side
and registered the query response times of Planner.js.

6. Results

In this section we present the measurements obtained during our evaluations. We first present the results of route
planning query performance using different fragmentation sizes. Afterwards, we contrast each of the considered
metrics against the query performance results and present the calculated statistical correlation measures. Lastly, we
show the measured results on cost-efficiency in terms of server-side resources use and query response time for our
solution and OpenTripPlanner. We also show the additional costs measured for our solution, when publishing live
and historical PT data.

6.1. Experiment 1: Optimal LC fragmentation size

Figure 6 presents an overview of the results obtained from the route planning performance evaluation, over
different sets of LC data fragmentation.

The top left plot in Fig. 6, shows the results for the three smallest networks in terms of total connections (<1,100).
Fragmentation was only possible until 500 connections/fragment for Netherlands-Waterbus and Sydney-Trainlink,
and until 1,000 connections/fragment for Thailand-Greenbus. Bigger fragmentation for these networks would mean
that the entire collection of connections would fit in only one fragment. Netherlands-Waterbus shows its best per-
formance (27 ms) with a fragmentation of 100 connections/fragment. Sydney-Trainlink’s best performance (45.81
ms) was achieved with 500 connections/fragment, while Thailand-Greenbus (36.27 ms) was achieved at 1000 con-
nections/fragment. Netherlands-Waterbus shows faster query responses compared to both Sydney-Trainlink and
Thailand-Greenbus, which may be explained by the higher number of connections per query (E(SCQ)) that these

36https://github.com/mcollina/autocannon
37https://cloud.ilabt.imec.be/index.php/s/mp283ioeigpf8qq
38https://cloud.ilabt.imec.be/index.php/s/2TjYTXGGoi8Le2B

https://github.com/mcollina/autocannon
https://cloud.ilabt.imec.be/index.php/s/mp283ioeigpf8qq
https://cloud.ilabt.imec.be/index.php/s/2TjYTXGGoi8Le2B
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Fig. 6. Average response time of route planning queries (ms) vs fragment sizes (connections) for each PT network. PT networks with similar total
number of connections (see Table 2) are grouped together to facilitate visualizing the results. We labeled the lowest point of each curve where
best performance is achieved. Axes use logarithmic scales.

networks require to be processed (Table 3). For Netherlands-Waterbus we see that 100 connections/fragment ap-
pears to be its optimal fragment size, with smaller and bigger fragments rendering worse performance. In the cases
of Sydney-Trainlink and Thailand-Greenbus, the biggest possible fragment for this evaluation (which considers only
the network’s busiest day) renders the best performance. Bigger fragmentation would be possible when considering
the full schedule spanning over multiple days. However, assuming that most queries would be solved within the
span of a single day, we could expect that bigger fragments would render worse performance for these networks.

The top right plot in Fig. 6, brings together 6 different networks with total amounts of connections ranging
between 5,000 and 8,000. Optimal fragmentation values are different for each network, except for Auckland-Waiheke
and San Francisco-BART both with 100 connections/fragment. Despite having the same optimal point and similar
amout of connections, they show a significant difference in terms of response time, with 283.67 and 49.84 ms
respectively. Referring to Table 2, we can see that both networks differ significantly for K and D: San Francisco-
BART(K = 9.28 and D ∗ 1000 = 63.14) and Auckland-Waiheke (K = 0.15 and D ∗ 1000 = 0.41). Where San
Francisco-BART has much higher values. San Francisco-BART has also 3 times more trips but less than half of the
stops than Auckland-Waiheke. In general we observe the trend of degraded performance as fragmentation moves
away from the found optimal point, but with varying degrees of degradation. For example in the case of Nairobi-
SACCO where almost no degradation is perceived and for Spain-RENFE with its best performance (154.23 ms) at
the biggest fragmentation possible.

In the bottom left plot of Fig. 6, we have a set of 8 PT networks with total amounts of connections ranging be-
tween 51,000 and 350,000. Most networks show an optimal fragmentation of 500 and 1,000 connections/fragment,
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Fig. 7. Measured average response time in milliseconds for the fragmentation that rendered the best performance for each PT network. X-axis
uses a logarithmic scale.

with the exceptions of Brussels-STIB and EU-Flixbus with 300 and 3,000 connections/fragment respectively. New
Zealand-Bus shows significanlty worse performance than the rest of the networks, followed by New York-MTABC
and Brussels-STIB. Comparing them to the more performant Belgium-NMBS and London-Tube we can see that the
less performant networks have higher amount of stops and a lower values for K and D.

Lastly, on the bottom right plot in Fig. 6 we see the results for the remaining 5 networks. These are the biggest
networks in the set with total number of connections ranging from 689,000 to 1.2 million. In this case we see a gener-
ally degraded performance for all networks. Only Madrid-CRTM and Chicago-CTA show an optimal fragmentation
point on 1000 and 300 connections/fragment respectively. The rest of the networks show their best performance
with their smallest fragmentation possible which only degrades further with bigger fragments.

In Fig. 7 we present the average query response times, measured using the optimal fragmentation found for
each network (as seen on Fig. 6). An annotation can be seen next to every network’s bar indicating the average
time (in ms) needed to answer the queries of the query sets. At first glance we can see that bigger networks in
terms of total number conenctions and stops are less performant. However, London-Tube and New Zealand-Bus
stand as execptions on both sides of the spectrum for this trend. London-Tube is a relatively big network (321,000
connections) with subsecond performance and New Zealand-Bus is a medium size network (153,000 connections)
with much worse performance (16.3 s) compared to networks of similar size.

6.2. Experiment 2: Correlation of graph metrics and query performance

Results on how the different graph network metrics relate with route planning query performance can be seen
on Fig. 8. Correlation measures (Pearson Coefficient,39 Covariance40 and Coefficient of Determination41) of each
metric are also shown in Table 4.

The correlation measures (Table 4) related to number of stops (|V |), show a strong and direct correlation with
query response time, which is also evident in Fig. 8 (upper left). This means that networks with higher amounts of

39Commonly represented as r: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.
40Commonly represented as cov: https://en.wikipedia.org/wiki/Covariance.
41Commonly represented as R2: https://en.wikipedia.org/wiki/Coefficient_of_determination.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Coefficient_of_determination
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Fig. 8. PT network metrics compared with route plannning query performance. Each sub-graph compares one of the metrics to the best query
evaluation performance measured for each network (see Fig. 7.) Axes are set in logarithmic scale.

Table 4

Correlation measurments for each graph metric vs route planning query performance. The measured correlations the Pearson Coefficient (r),
Covariance (cov) and the Coefficient of Determination (R2)

r cov R2

|V | 0.9225 9.2e7 85.29

connections 0.8055 30.5e8 64.88

K −0.0528 −13.5e4 0.27

D −0.1499 −33.6e4 2.24

C −0.0569 −3.7e3 0.32

ACD −0.2811 −10.4e4 7.90
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stops, render higher query response times. A similar strong and direct correlation can be observed for number of
connections (upper right in Fig. 8). More connections also means worse performance with a few outlier exceptions.
London-Tube (n9) and to a lesser extent Belgium-NMBS (n8), show better performance than other networks with
similar or even less amount of connections. The opposite behavior is seen on both Nairobi-SACCO (n10) and New
Zealand-Bus (n18) with significant worse performance compared with their peers.

Weak and inverse correlations can be observed for both D (center right) and ACD (lower right). Networks with
lower values of D ∗ 1000 (<1) show worse query performance, with the exceptions of Sydney-Trainlink (n2) and
Auckland-Waiheke (n7). In the case of ACD, networks with the worst performance (> 10 s) always show relatively
low ACD (<3 min). The opposite can also be seen, where most networks with high ACD (> 10 min) show subsecond
performance with the exceptions of EU-Flixbus (n11) and France-SNCF (n12) with close performance values of 2.2
s each.

Lastly, no correlation can be seen for the cases of K and C, both with Pearson coefficients close to zero and
showing high disperssion for query performance.

6.3. Experiment 3: Cost-efficiency of the LC approach

Next we present the results of our two experimental setups for measuring the cost-efficiency of our solution.

6.3.1. LC vs OpenTripPlanner
In Fig. 9 we present the server-side CPU and RAM use for both OpenTripPlanner and the LC Server, while

supporting route planning query solving for an increasing amount of concurrent clients. We can see that CPU use
for OpenTripPlanner increases proportionally to the number of clients and is also related to the size of the networks
(in terms of stops), with bigger networks consuming more processing capacity. The LC Server presents a stable CPU
consumption as the number of clients increases, with all networks requiring around 20% of the processor capacity.

In the case of RAM consumption, both OpenTripPlanner and the LC Server remain constant for all networks
regardless of the amount of concurrent clients. For all networks, the LC Server does not exceed 10% of RAM use,
while OpenTripPlanner reaches up to 70%. In general, the LC Server consumes less CPU and RAM resources and
shows a better scalability than OpenTripPlanner.

Figure 10 presents the obtained results on average query response time for both OpenTripPlanner and the LC

Server. The average query response time increases proportionally to the number of concurrent clients for OpenTrip-
Planner, which reflects the behaviour observed in Fig. 9 regarding CPU use. Response times over the LC Server are
also aligned to its CPU use and remain relatively stable when the number of clients increases. In terms of abso-
lute numbers, the LC Server completely outperforms OpenTripPlanner for the smallest PT networks of the set (first
row) and San Francisco-BART (second row). In contrast, OpenTripPlanner significantly outperforms the LC Server
for the biggest networks (last row), although response times become similar with 20 and 50 concurrent clients.
In the case of middle size PT networks, OpenTripPlanner shows better perfomance for low amount of concurrent
clients (<10). However, the LC Server shows similar or in some cases better performance for higher amount of
concurrent clients (�10), as is the case of Belgium-NMBS, Amsterdam-GVB, London-Tube, Brussels-STIB and New
York-MTABC.

6.3.2. Live and historical data with LC

Figure 11 presents the CPU (left) and RAM (center) use, and the average response time of route planning queries
(right) of the LC Server when publishing planned schedules only, live schedules updates and historical schedules. In
terms of CPU consumptions we see similar behavior for all configurations ranging between 5–38% and having the
live updates setup as the most demanding one. RAM consumption remains stable as the number of clients increases
and has the historical setup as the most demanding with 4%. In terms of query response times, both planned only
and live updates configuration perform similarly. Query response times over historical data on the other hand, show
a significant performance degradation, being 50 times slower.
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Fig. 9. CPU (left column) and RAM (right column) usage under an increasing amount of concurrent clients of OpenTripPlanner and the LC Server
for 16 different PT networks. Each row groups 4 networks of similar amount of stops, with smaller networks at the top and bigger networks at
the bottom. Dotted lines represent measurements for OpenTripPlanner and continous lines represent measurements for the LC Server.

7. Discussion

We addressed the problem of publishing live and historical PT data in a cost-efficient way. For this, we defined
a reference architecture and implementation that extends the LC approach for publishing planned schedules. Our
approach handles PT schedule requests that include live updates efficiently, and is capable of providing the historical
stream of events that ocurred on a PT network. This constitutes an important innovation and contribution that may
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Fig. 10. Average route planning query response times for OpenTripPlanner (left column) and the LC Server (right colum) with an increasing
amount of concurrent clients. Each row groups 4 networks of similar amount of stops, with smaller networks at the top and bigger networks at
the bottom.

be used to support for example machine learning-based applications, able to accurately predict the future state of a
network.

We also studied how our approach could be used to support route planning use cases and how data fragmentation
impacts the performance of query evaluation. We measured different topological characteristics (in space-of-stops)
of the 22 real PT networks considered in this paper and anlayzed their correlation with route planning query response
time, aiming on understanding the factors that drive better or worse performance. Additionally, we compared the cost
and performance or our approach with the traditional and widely popular solution OpenTripPlanner. Furthermore,
me measured the introduced costs of our solution when publishing live updates and historical schedules compared
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Fig. 11. On the left plot is the CPU usage of the LC Server publishing planned only, live updates and historical PT schedules under an increasing
amount of concurrent clients. The center plot shows the RAM use for each publishing configuration. The left plot shows the average route
planning query response times for each publishing setup of the LC Server.

to only publishing planned schedules. Next we elaborate on these results obtained during each of our experimental
setups.

7.1. Optimal LC fragmentaion size

Our evaluation showed that for each PT network the best performance is achieved with a certain fragmentation
size. This constitutes an important finding for data publishers that may be considered when designing PT data APIs.
Results also showed that for most networks, either increasing or decreasing the fragmentation size, degrades perfor-
mance of route planning query evaluation. Smaller fragmentation than the optimal point, degraded performance due
to the higher number of HTTP request-response cycles needed with smaller fragments. Larger fragment sizes require
clients to perform fewer cycles but need to process increased number of irrelevant connections for each query. Ex-
ceptions occured on some of the smallest networks having their optimal fragmentation at the biggest possible size,
and for some of the biggest networks having their optimal fragmentation at the smallest possible size. One particular
case can be observed for Spain-RENFE, a medium size network (in terms of stops) whose optimal fragment size
was found on its biggest fragmentation possible (5000 connections/fragment). Such behavior of Spain-RENFE may
be explained by a high value of E(SCQ) (4100) with respect to the total number of connections (6159). This means
that with a fragment size of 5000 connections/fragmentation most queries would be solved with only one fragment
request and smaller fragmentation would always require more HTTP requests.

Another important finding of this evaluation is the fact that for several networks, this approach results impractical
for real scenarios. Response times on the order of seconds and even tens of seconds per query are unacceptable
for user-oriented applications. However is important to mention that for this particular evaluation we did not use
any form of caching (server nor client-side), which is one of the fundamental features of publishing pattern-based
fragmented datasets. Our goal was to study the impact that data fragmentation has on query performance. Different
fragmentation setups influence the effort that server-side data interfaces make to respond to data fragment requests,
as well as the effort made by client-side route planners for evaluating queries. We wanted to quantify these efforts
and both server and client-side caches would have hidden the effect of any fragmentation. A server-side cache frees
the data interface of having to retrieve, parse and format data fragments more than once across queries, while a
client-side cache makes unecessary to request data fragments fetched on previous queries. Therefore, the results
of this evauation may be considered as worst-case scenario values and it could be expected that in practice query
response times will be improved.

7.2. Correlation of graph metrics and query performance

When looking at the topological properties of every PT network and the calculated correlation indicators (Table 4),
we observe the existence of a strong and direct correlation between the size of the network, both in terms of stops
and connections and the query response time. This is not a surprising result since is expected that in the presence of
more connections, route planning algorithms would need to process more data during query evaluations. Yet, it is
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interesting to look into individual cases that differ significantly (for better or worse) in query evaluation performace,
compared to networks of similar characteristics. Examples of this atypical behavior in the case of total number of
connections are London-Tube or Belgium-NMBS for better performance and Nairobi-SACCO or New Zealand-Bus
for worse performance.

Weak and inverse correlations are observed for the cases of density (D) and average connection duration (ACD)
with respect to query response times. Most networks with high values of ACD show lower response times compared
with networks with lower ACD. An explanation for this behavior could be given from the fact that lower connection
duration is usually a reflection of more closely located stops, as it is for urban networks. This causes an extra
processing load during the algorithm execution, that needs to calculate more walking transfer connections for each
nearby stop and include them as the potential alternatives for route solutions. London-Tube stands as an exception
to this pattern. The reason for this is that this network groups multiple passanger boarding platforms as single stops,
which facilitates transfer calculations for the algorithm and also serves as an explanation of the high values measured
on all metrics for this network.

Lastly, we observe no correlation for the cases of average degree (K) and clustering coefficient (C), both with
Pearson’s coefficients close to zero, which suggests that these properties do not influence route planning perfor-
mance.

7.3. Cost-efficiency of the LC approach

We considered OpenTripPlanner as a traditional route planning reference solution, to compare against our pro-
posed approach. However, as remarked in Section 5.4, we were not able to compare against OpenTripPlanner con-
sidering live and historical data. Thus, we performed the comparison with OpenTripPlanner with planned schedules
only and for live and historical data, we measured the added costs of our proposed extensions to the LC approach.

7.3.1. LC vs OpenTripPlanner
A first sign of the better cost-efficiency of LC was evident when the RAM requirements of OpenTripPlanner

exceeded the capabilities of our test servers (12GB) for offering route planning services over country and continent-
wide networks. This is required by OpenTripPlanner to pre-calculate the walking transfers graph that will be used
for solving route planning queries. In our approach, Planner.js calculates walking transfers on the fly, either based on
Haversine distance or also relying on OpenStreetMap road network data [14], which prevents us having to preload
full road networks in memory.

Our evaluation results further confirmed the LC approach as a more scalable and cost-efficient alternative for pub-
lishing PT schedules. The LC Server uses significanlty less CPU and RAM resources on the server-side and remains
stable when the number of clients increases. In contrast OpenTripPlanner’s CPU use increases proportionally to the
amount of clients. OpenTripPlanner’s RAM use remains stable, regardless of the number of clients, but is higher for
every network when compared to the LC server. For data publishers wanting to support route planning services, this
means that more expensive servers will be needed with OpenTripPlanner than with the LC Server.

Claiming superior cost-efficiency of our approach for route planning use cases, requires us to look not only to
the server’s resource consumption but also into the query solving performance. Lower resource consumption on the
server-side does not add value if query performance is significantly compromised. However, our evaluation results
showed that for some of the considered networks (Netherlands-Waterbus, Sydney-Trainlink, Thailand-Greenbus,
Kobe-Subway and San Francisco-BART), the LC server also renders better query performance with any amount of
concurrent clients. Other networks such as Belgium-NMBS, Nairobi-SACCO, Amsterdam-GVB and London-Tube
initially render better performance on OpenTripPlanner with few clients, but eventually show similar or better
performace on the LC Server when the number of clients increases. This is an important achievement for the LC

approach that confirms its applicability in real world scenarios, having more than half the networks (9 out of 16)
that we were able to compare, showing similar or better performance than OpenTripPlanner.

On the other hand and as already observed in the results of our first experiment (Section 6.1), for the rest of the
networks (Brussels-STIB, New York-MTABC, Madrid-CRTM, Wallonia-TEC, Flanders-De Lijn, Helsinki-HSL and
Chicago-CTA) the LC Server does not provide a level of performance that is acceptable for practical scenarios. For
the same networks, OpenTripPlanner gives significanlty better performace under low load only, but with horizontal
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scaling it can provide a (costly) production-ready solution. The common denominator observed among the PT net-
works for which the LC Server provides superior performance, is a relatively low amount of stops (<1000). This
means it would be possible for example, to create geospatially meaningful sub-networks that could provide similar
performance as the one obtained for the smaller networks in this evalaution.

Another important aspect to consider in our approach, is the trade-off of server’s computational cost vs client’s
computational cost, implementation complexity and bandwidth (measured in previous work [17]) requirements. A
LC client needs to perform data fetching, hypermedia controls interpretation and route planning algorithm execution
tasks, to calculate a route alternative. In contrast, a traditional route planning client only needs to send and process a
single API request, which already returns a fully formed route (if any). Implementation complexity of an LC client,
may be handled by relying on software modularization. For instance, our client application Planner.js can also be
used as a library by other applications, both on client- and server-side (in Node.js environments). However, band-
width and computational resource requirements may be execisve for practical use, for example in mobile application
environments. This limitation could be mitigated by running a LC client as part of the server infrastructure of a PT

data provider. The LC client may in turn, be wrapped within a traditional origin-destination API, that can be con-
sumend by mobile/browser client applications. In this way it is possible to take advantage of the best characteristics
of both, fully server and client side processing architectures.

7.3.2. Live and historical data with LC

When it comes to live data publishing, our approach is fundamentally different to traditional data interfaces,
regarding where data integration of planned and live schedule updates takes place. Traditionally, data publishers ex-
pose a stream/feed API of live data updates using SIRI or GTFS-realtime data models. Besides the request limitations
that these APIs normally impose to avoid server overloads, this also transfers all the computational burden of data
integration and reconciliation to data reuser applications. Reuser applications need to perform frequent requests to
such APIs to keep their internal databases up to date, and thus reflect the new schedule changes. In contrast, our
approach performs such integration in an cost-efficient way on the server-side API, as reflected on the results ob-
tained in our evaluation (Section 6.3.2). Publishing live schedule updates doubles the CPU use on the server-side
compared to just publishing planned schedules. RAM use also increases going from 0.5 to 2%. These increases can
be explained by the frequent fetching and processing of schedule updates that takes place on the server. Yet, even
under a load of 50 concurrent clients, the CPU use does not go over 40%.

More importantly, query performance remains unaltered, only showing a not negligible increase (from 800 ms to
1500 ms) with 50 concurrent clients. This is due to the in-memory AVL tree data structure, introduced by our ap-
proach, that allows for fast and efficient data responses. This added to the planned schedule fragmentation approach
of LC, constitutes a cost-efficient approach for publishing of dynamic PT schedules directly from the source, while
freeing data reuser applications from expensive data reconciliation tasks.

When looking into PT historical data we can see that is not available for most PT networks as open data on the
Web. Older versions of planned schedules are sometimes available for some PT networks, but historical records of
data updates are usually not published as open data through traditional APIs. Our approach enables access to the
historical records of previous versions of planned schedules and also to the update stream flow as it occured. More
importantly, it also defines a query interface for this data, built using a standard time-based content negotiation
protocol over HTTP, which provides access to historical data with high granularity.

Considering the added costs of publishing historical data through our approach, we can see that there is no
considerable increase on server-side resource consumption (CPU and RAM), compared to just publishing planned
schedules. However, we see a significant performance degradation (50 times slower) for route planning query per-
formance. This is due to the data reconciliation processes that take place in the LC server, to merge static and live
update records, which can be time consuming depending on the amount of records available. Also due to the ad-
ditional HTTP 302 redirections that occur following the implemented pattern of the Memento protocol. Additional
optimizations are possible, e.g., implementing more efficient indexes for (time) range queries within the LC Server
and using a redirection-less Memento pattern.

Despite the performance limitations for requesting historical schedules with high granularity, we highlight that
our approach puts forward a low-cost alternative to publish queryable PT historical data as open data. To the best
of our knowledge, our approach is the first open source alternative to offer access to historical records, as we see
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that established and traditional solutions, such as OpenTripPlanner do not provide any means to access these type
of data.

8. Conclusions and Future Work

Our work stands as a contribution for the PT domain as a cost-efficient data publishing alternative that includes
live schedule updates and access to granular historical data. We propose a different approach on how live data is
published, compared to traditional APIs, that facilitates data reuse for client applications without sacrificing cost-
efficiency on the server-side. At the same time we enable data publishers to also share historical data, which still
remain largely unavailable.

The use of semantic Web technologies establishes a framework for data interoperability on the PT domain. Ide-
ally, every PT operator would publish and maintain stable identifiers for their resources such as stops, routes and
connections. This way, semantic interoperability starts at the source, where all derived datasets can reuse the same
identifiers. This approach not only semantically models the fundamental entities and concepts of PT schedules and
its updates, but also the interfaces that give access to the data. It relies on the Web infrastructure to model entire
datasets as collections of HTTP resources, while including metadata that semantically describes the access patterns
to traverse the collection and find more relevant data. This constitutes an important contribution for the PT domain
and also sets an example that may be applied on different domains or use cases.

Being a Linked Data-based approach, a LC interface not only enables client applications to perform route
planning-related calculations, but could also allow them to apply (on their own premises) other types of query-
ing approaches (e.g., SPARQL) to support novel use cases. A client application able to interpret the hypermedia
controls of LC data fragments could traverse the LC collection to solve a federated SPARQL query (for example
with Comunica [52]) to find departing vehicles from stops having images (wdt:P1842) available in Wikidata (e.g.
Gent-Sint-Pieters43). We hope an approach such as Linked Connections inspires PT organizations to publish their
raw base data as a back-bone for creating new and innovative applications.

Considering the importance of query evaluation performance for supporting practical use cases, we evaluated our
approach looking into understanding the factors that drive high performance and how API design can be adjusted
to achieve it. With regards to our first research question RQ1, we conclude to accept its associated hypothesis H1,
which constitutes an important result that highlights the importance of adapting API data structures to improve the
performance of use case-specific query evauation. Regarding research question RQ2, we also conclude to accept
its associated hypothesis H2. Results showed that size in terms of stops and connections is highly correlated to
query evaluation performace. We could also see that density and average connection duration can also provide an
indication of the expected performance. Additionally, we observed that an external factor as the number of scanned
connections of expected queries could also guide API design as e.g., the size of data fragmentation.

An important finding of this work is the confirmation that our approach provides an acceptable performance to be
used in practical scenarios for relativelly small PT networks (<1000 stops). It was also evident that larger networks
still remain unfeasible to be published and used in practical scenarios using this approach. This was determined
by looking at the measured response times in comparison to a state of the art solution such as OpenTripPlanner,
during our evaluations related to research question RQ3 and its associated hypothesis H3. Results confirmed the
superior cost-efficiency and scalability of our approach in all cases, despite the lower query performance of larger
networks. More importantly, for smaller networks our approach gave as good as and even better query performace
than OpenTripPlanner. Based on these results we may conclude to accept H3 for PT networks with less than 1000
stops.

These results may provide a reference guideline for data publishers to help balance the financial costs associated
to open data publishing, wether they are required to do so by legal mandate or motivated by a business interest.
The scalability evaluation results provide clear indicators of the amount of computational resources that would be
needed to support a route planning service for a certain PT network, architecture and querying load. These could be

42http://www.wikidata.org/prop/direct/P18
43https://www.wikidata.org/wiki/Q800814

http://www.wikidata.org/prop/direct/P18
https://www.wikidata.org/wiki/Q800814
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then used to estimate practical financial costs on a certain cloud provider based on up to date pricing models and
according to the capabilities and resources available to the data publisher. Yet, further studies can be made on cost
estimation of (Linked Data) APIs based on data source characteristics and expected queries.

Further research is needed to optimize use case driven query performance without compromising on cost-
efficiency for both data publishers and reusers. On-going and future research is investigating alternative and ad-
ditional fragmentation possibilities beyond time-based, such as geospatially [21]. The results shown in this paper
are instrumental in that regard, as they also provide indications about network characteristics where higher perfor-
mance can be expected and thus, how larger networks could be further fragmented so that individual sub-networks
render acceptable query evaluation performance.
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