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ABSTRACT Random forests are machine learning methods characterised by high performance and
robustness to overfitting. However, since multiple learners are combined, they are not as interpretable as
a single decision tree. In this work we propose a novel method that is Building Explanations through a
LocalLy AccuraTe Rule EXtractor (Bellatrex), which is able to explain the forest prediction for a given test
instance with only a few diverse rules. Starting from the decision trees generated by a random forest, our
method: 1) pre-selects a subset of the rules used to make the prediction; 2) creates a vector representation of
such rules; 3) projects them to a low-dimensional space; 4) clusters such representations to pick a rule from
each cluster to explain the instance prediction.We test the effectiveness of Bellatrex on 89 real-world datasets
and we demonstrate the validity of our method for binary classification, regression, multi-label classification
and time-to-event tasks. To the best of our knowledge, it is the first time that an interpretability toolbox can
handle all these tasks within the same framework. We also show that Bellatrex is able to approximate the
performance of the corresponding ensemble model in all considered tasks, and it does so while selecting at
most three rules from the whole forest. Finally, a comparison with similar methods in literature also shows
that our proposed approach substantially outperforms other explainable toolboxes in terms of predictive
performance.

INDEX TERMS Explainable AI, interpretable ML, multi-label classification, multi-target regression,
random forest, random survival forest.

I. INTRODUCTION
Machine Learning (ML) models are nowadays employed
in various domains with excellent performance, and the
raise of complex but highly performing models (so called
‘‘black box’’ models) has characterised the past decades.
However, in fields where the stakes for a single decision
are high (healthcare, banking, etc.) [1], [2], [3] there is
still scepticism in adopting such methods. The motivation
for this lies behind the fact that professionals may be held
accountable for a costly mistake, and that in such cases they
want to fully understand and trust the outcomes of a ML
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model. An important element that leads to trust inMLmodels
is to achieve more explainability [4].

In recent years, the ML community has therefore been
developing tools that help ML practitioners and end-users
to understand the predictions of black box models, leading
to a booming of the field of Explainable AI (X-AI). As a
result, X-AI methods nowadays make up a vast literature [5]
and can be categorised in several ways. A common criterion
distinguishes between the scope of the output explanations:
global explanations [6], [7], whose aim is to identify trends
in the data and explain the model as a whole, or local
explanations [8], [9], whose aim is to understand why a
certain prediction is made for a given instance. Another
common differentiation is based on whether the method is
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tailored to determined type of model and makes use of
the model’s internal architecture, or whether it does not.
In the first case, we talk about a model-specific approach, as
opposed to a model-agnostic (e.g. LIME [8] and SHAP [9])
approach, which can be applied to any type of model.

In this study, we propose Bellatrex: a local, model-
specific method that condenses the predictions made by a
random forest (RF) [10] into a few rules. By doing so,
our method uses information directly extracted from the
original RF. Furthermore, the procedure is optimised to
follow closely the RF predictions for every instance, and
maintains the original RF high performance. Additionally,
Bellatrex provides different insights by selecting rules that
are dissimilar from each other. Furthermore, given its
local approach, the extracted rules are different for each
instance.

The choice to specifically explain RF predictions is driven
by the fact that RF has a great predictive performance and
is easier to train than other highly performing methods,
such as deep neural networks [11]. Moreover, RF has been
extended to a wide range of learning tasks, including binary
classification, multi-label classification, regression and time-
to-event prediction [12]. We should highlight that our method
is designed in such a way that it is independent of the learning
task at hand, and consequently, it is capable of handling all
these scenarios.

Bellatrex is built on top of a trained RF and consists of four
main steps. First, for a given input instance, a subset of rules
is selected based on how close their prediction is with respect
to the original ensemble. Second, a vector representation
is built by extracting information from the rule structure.
Third, dimensionality reduction of such representations is
performed and lastly, clustering on the projected vector
representations is applied and a single prototype rule per
cluster is eventually extracted. These final rules are then
presented to the end user as an explanation for the forest
prediction. By keeping the number of prototype rules low,
we provide a few diverse explanations, which can be
inspected by the user.

Preliminary results of this workwere presented in an earlier
workshop paper [13] and were restricted to binary and time-
to-event predictions. Here, we extend this work to regression
(both single- and multi-target) and multi-label classification,
and improve the vector representation step. Furthermore,
we also provide a thorough experimental evaluation of our
method against competitor methods from the literature in pre-
dictive performance, explanation complexity and explanation
diversity, followed by an ablation study which validates the
steps in our method. Overall, our contributions to the field of
X-AI can be summarised as follows:

• We propose a local approach for explaining RF predic-
tions, with a method that extracts a fewmeaningful deci-
sion paths from a trained RF. Importantly, the extracted
rules are tailored to the instance to be explained, which
represents, to the best of our knowledge, a novelty in the
field of explaining RF predictions.

• We evaluate our local explainer in five different
scenarios: binary classification, single- and multi-target
regression, multi-label classification and time-to-event
prediction, where the latter three are seldom explored
in existing explainability methods. The inclusion of
the time-to-event analysis in particular, highlights a
novelty of our work since, to the best of our knowledge,
no existing model-specific interpretability method is
compatible with an adaptation of RF to time-to-event
predictions.

• We also compare, for each for each of the aforemen-
tioned scenarios, the complexity of the explanations
generated by Bellatrex against methods with a similar
output format. By doing so, we can quantitatively
compare the degree of interpretability of variousmodels;
it is the first time that such an analysis is performed in
depth.

• We make our method available to the ML community
by providing a Python implementation throughGitHub,1

compatible with the scikit-learn and scikit-survival
Python libraries.

The remainder of the manuscript is organised as follows:
Section II positions our work within the framework of post-
hoc, RF-specific explainers, and underlines the differences
with the existing literature; Section III provides the back-
ground information for the method section (Section IV),
where our model is introduced. Section V is dedicated to the
experimental set-up, whereas Section VI reports the obtained
results as well as the outcome of the ablation study. Two
examples of explanations generated by Bellatrex are shown
in Section VII; finally, we draw our conclusions and share
future directions of this work in Section VIII.

II. RELATED WORK
As previously mentioned, Bellatrex falls in the category of
local, model-specific methods, and explains the outcomes
of a trained random (survival) forest model in a post-hoc
fashion. Such family of RF-specific methods has produced
a rich literature as shown in [14] and [15]. In this section,
we discuss other model-specific approaches that use RFs as
the underlying black-box model.

The earliest example of such is [16]. This work proposed
a procedure for analysing a RF in binary classification tasks,
and concepts such as tree-metric, a distance metric defined
on the space of tree learners, are also introduced. Trees are
then represented in a two-dimensional space by using Multi
Dimensional Scaling on the tree-distance matrix. The authors
then perform a qualitative study and mention the possibility
of clustering the resulting tree representations.

A more recent work by [17] followed the path traced
by [16] and suggested a range of tree similaritymetrics and by
performing clustering on such tree representations. Further-
more, the authors implicitly propose a vector representation
of trees based on the covariates used to build them, which

1link: https://github.com/Klest94/Bellatrex (upon acceptance)
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corresponds to an adaptation of the approach from [18]. Given
such representation, the authors clustered and extracted a few
trees out of a random forest and illustrate the validity of their
framework ‘‘C443’’ on simulated and real world datasets.
The resulting method has some features in common with
Bellatrex, such as the idea of representing tree- (or rule-)
distances for clustering purposes. However, the focus in C443
lays more on giving an overview of the possible approaches
rather than optimising the performance of a surrogate model.
Furthermore, the C443 method aims at global explanations
(e.g. by looking at trends and sources of heterogeneity), rather
than focusing at an instance-base level.

Other relevant approaches include [19]: an algorithm that
computes how a covariate within a value range influences
the final prediction of a model, while [20] proposes an
optimisation-based approach exploits the bijective relation-
ship between a tree leaf and a subspace of the input space.
Similarly, recent work [21], [22] lead to the creation of
‘‘LionForest’’, where rules are generated in a local approach
fashion, and path reduction approaches are run in order to
provide shorter rules with more ‘‘conclusive’’ (i.e., stable)
explanations.

A toolbox named ‘‘SIRUS’’ is introduced in [23], where
a set of rules is extracted from an RF and shown as an
explanation. More specifically, rules are first generated by
large RF and a pre-selection step picks the most commonly
occurring ones. After that, a ‘‘post-treatment’’ step narrows
down the selection by eliminating rules associated to a
linear combination of other rules of higher frequency. The
procedure stops when the desired number of final rules is
reached and is then shown to the end user. These final rules
serve as an explanation of the original RF and their average
prediction can be used as a the prediction of the obtained
surrogate model. The resulting explanation is global and
consists of a limited number of rules that are stable under
different subsets of data, and whose outcome can be averaged
to get a prediction.

More recently, ‘‘RuleCOSI+’’ [24] has been proposed
as another global, rule-extraction method that greedily
combines and simplifies the corresponding base trees. More
specifically, the algorithm builds a decision list by iteratively
creating new rules by merging or pruning the ones generated
by the tree ensemble. At the end of each iteration step, the
generated rule is added to the existing list under the condition
that it is beneficial to the generalisation performance. When
no extra rules can be added, an empty rule (playing the part of
an ‘‘else’’ instance) is appended, and the final model consists
of the set of rules found, structured as members of a decision
list. That is, for a given instance to be explained, the rules are
evaluated in order of appearance until one of them is found
to hold and is used as the models’ prediction. If no rules
are fired, the final, empty ‘‘else’’ rule is used to make the
prediction.

Finally, a global approach is represented by ‘‘Hierarchical
Shrinkage’’ [25] (HS) algorithm. The idea is to increase
performance and robustness of tree learners by shrinking the

predictions of any leaf node towards the predictions of its
ancestors. The shrinking operation is performed repeatedly
and is controlled by a regularisation parameter. The resulting
tree has a size that can be controlled and offers a global
explanation to the model.

It is worth mentioning that the aforementioned RF-
specific, post-hoc explainability methods follow a global
approach and therefore show the same explanation regardless
of the input instance. Bellatrex, on the other side, follows
a local approach that adapts its explanations to the instance
of interest. This leads to an increased flexibility of the
output explanation and allows Bellatrex to closely follow the
predictions of the underlying RF.

III. BACKGROUND
Random forest [10] (RF) is a computationally efficient ML
method that delivers excellent predictive performance, and
since its appearance, RFs have been extremely successful
in performing classification and regression tasks. Moreover,
RF has been extended to a variety of other learning
tasks, including multi-label classification [26] and multi-
target regression. Most of the extensions that have been
proposed over the years are associated with the node splitting
mechanism aswell as the prototype function (i.e., the function
that provides predictions in the leaves).

Another adaptation involves survival analysis, a recently
explored topic in the ML community [27]. The goal in
this setting is to predict the time until an event occurs
(hence, this task is also known as time-to-event prediction)
when the exact time of the event is not always observed,
resulting in partial information (censoring). Decision Trees
and RFs (as well as other machine learning methods) have
been adapted to survival data, they are called (Decision)
Survival Trees (SDT) [28] and Random Survival Forests
(RSF) [12], respectively. The main splitting criterion being
used is the logrank score [29], a criterion that guarantees good
generalisation for censored time-to-event data [12].

IV. PROPOSED METHOD
Let T be a random forest and let x be an instance for which
we want to find an explanation. Bellatrex uses these inputs to
generate an explanation, and an overview of the procedure is
illustrated in Fig. 1.

We first extract τ trees Ti ∈ T that generate the
most similar predictions Ti(x) compared to the ensemble
model prediction ŷ = T (x) (Fig. 1, top-left). Next,
we represent each of the selected trees Ti as a vector. Only
a few studies [16], [17] have addressed the challenge of
representing decision trees as a numerical vector, and they
only focus on global representations. Given the local nature
of Bellatrex, we propose a novel, path-based approach, where
the vector representation for Ti also depends on the instance
of interest x. More specifically, we follow x as it traverses
the tree and record the input covariates used to perform each
split. Next, we assign for each split at node k a contribution to
the vector representation that is proportional to the number of
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FIGURE 1. Schematic representation of Bellatrex. Given a trained RF and an instance x to be explained (starting top left, going
clockwise), rule pre-selection is performed, followed by the vectorisation step. Such vectors are projected and clustered, the final
selected rules are shown to the end-user.

instances n(k) traversing the node during the training phase
of the tree learner. In formulas, with the root node indexed as
0, our local, path-based representation becomes:

Ti, x 7→ v = [v1, v2, . . . , vp], where

vj =

∑
k∈path(x)

n(k)
n(0)

· 1{split on covariate j} (1)

It is worth noting that the resulting node contribution weights
n(k)/n(0) are positive and upper bounded by 1, which is
the weight assigned to the root node split; furthermore, the
assigned weights decrease as the depth increases. By doing
so, rules that differ (only) in the root node splitting covariate
will be further apart in Euclidean distance compared to the
ones whose decision paths differ (only) in the deeper nodes,
which is in agreement with common intuition. From this
moment onward, wewill refer to Ti both to the i-th tree learner
of the RF as well as the corresponding rulepath representation
for an instance x.
Next, we project such vector representations to a low-

dimensional space using Principal Component Analysis
(PCA) (top-right of Fig. 1). The idea is to remove noise,
to improve computational efficiency for later steps, and to
enable a better visualisation of the subsequent clustering. The
representations are real-valued vectors of length d at this
stage, where d is the number of output dimensions from the
PCA step.

Subsequently, in order to obtain a diverse set of expla-
nations, we perform clustering on the vector representations
using a standard clusteringmethod, such as K-Means++ [30]
(see an example in Fig. 2). By doing so, we group the vectors
into K clusters, we identify the vector closest to each cluster

FIGURE 2. Left: Example of the clustering step performed on a test
instance x of the blood dataset (Section VI-A for details). The centroids
are shown in grey, and the final representative rules are plotted with a
star shape. Right: colours according to individual predictions for x.

centre and pick the corresponding rule Tτk as a representative
for explaining the outcome of themodel (Fig. 1 bottom-right).
The rules extracted with this procedure correspond to what
we call final rules, and the nature of the partitioning step
guarantees the distance among the vector representations of
the selected final rules is maximal.

It is worth noting that similar results can be obtained with
other partitioning algorithms such as K-median [31], as long
as the aim of the algorithm is to maximise between-cluster
distance and minimise within-cluster distance. The optimal
number of clusters K is identified during the hyperparameter
tuning procedure, introduced at the end of this Section.

Finally, given the K clusters, the corresponding final rules
Tτk , and the instance x, we build (bottom-left Fig. 1) a
surrogate model prediction ỹ as follows:

ỹ =

K∑
k=1

wkTτk (x) (2)
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where wk represents the weight given to the cluster k .
We define wk as the proportion of the τ rules (selected in the
first step) that are part of the cluster. It follows that

∑
wk = 1,

and that the surrogate model predicts a weighted average of
the selected rules.

Our method requires three hyperparameters: the number
of trees τ to keep in the pre-selection phase, the number of
output components d for PCA, and the number of clusters
K . The optimal values can be tuned for each test instance
separately, by calculating the fidelity of the surrogate model
to the original ensemble. This measure is an indicator of
how closely the ensemble prediction is being imitated by our
surrogate model, and has been listed as a desirable property
for interpreting black-box models [32]. Given an instance
x, the prediction ŷ made by the R(S)F, and the surrogate
prediction ỹ from Bellatrex, we define and compute fidelity
F(x) as:

F(x) = 1 − ∥ŷ− ỹ∥2. (3)

Depending on the predictive scenario, ŷ and ỹ are either
scalars for predicted probabilities (binary classification),
estimated scalar values (regression), vectors of predicted
class probabilities (multi-label classification) or real valued-
vectors (multi-target regression), or scalar predicted risk
scores (survival analysis). Note that F(x) = 1 for a
given instance x indicates perfect fidelity of Bellatrex to the
R(S)F model. As a result, the hyper-parameter combination
(K , d, τ ) that maximises F can be chosen.

An important advantage of our method is that it does not
require an external validation set to tune these hyperparam-
eters; Bellatrex looks instead at the predicted labels from
the underlying RF model which at this stage serves as an
oracle, in a procedure similar to the one described in [33].
The hyperparameters that, for a given test instance, yield the
prediction closest to the underlying RF prediction are the ones
selected. By doing so, we increase the fidelity of the surrogate
model to the underlying black box, andwe concurrently allow
an efficient use of data, with a greater fraction used to train the
underlying model instead of being left aside for the purpose
of hyperparameter tuning.

Alternatively, the parameter values can be determined by
the user. In the latter case, end-users can choose, for example,
the number of clusters and explore the trade-off between
having a simple (single) explanation against obtaining
multiple (different) explanations for a given example.

A. COMPUTATIONAL COMPLEXITY
We now analyse the computational complexity of Bellatrex.
Given the number of data instances n, the number of
covariates p, and the number of learnersm, the computational
complexity of Bellatrex can be estimated by looking at the
complexity of its four main steps:

• the sorting algorithm for rule pre-selection, with com-
plexity O(m logm);

• the vectorisation process of the pre-selected rules:
O(m log n);

• the dimensionality reduction step with PCA, where
O(n2max nmin) [34], where nmax = max(m, p) and nmin =

min(m, p).
• the partitioning algorithm, namely K-Means++, with
O(d m), where d is the number of output dimensions
from PCA. Follows a nearest neighbour search, per-
formed with KDTree [35], with O(d m log(m)).

We conclude that the computational complexity of Bellatrex
is mainly driven by the dimensionality reduction step.

Translating the above analysis into practice, we observe
that querying Bellatrex for an explanation is quite fast and
takes a couple of seconds to run on a laptop. Moreover,
we notice that the computational complexity of Bellatrex is
virtually independent of the number of samples n in the data,
whereas it is sensitive to the number of covariates p for high
dimensional data.

V. EXPERIMENTS
We evaluate our method across multiple datasets; unless
otherwise specified, the datasets are selected from publicly
available repositories such as UCI2 and MULAN,3 or
downloaded from sklearn’s library Overall, we include
as many as 89 datasets spanning five different prediction
scenarios, more specifically:

• 24 datasets for binary classification;
• 14 datasets for survival analysis (time-to-event predic-
tion);

• 19 datasets for regression;
• 13 datasets for multi-label classification;
• 19 datasets for multi-target regression.
A number of pre-processing steps were performed before

running the experiments in Section V-C. More specifi-
cally, categorical variables were one-hot encoded, instances
and covariates with more than 30% missing values were
dropped, and the remaining missing values were imputed
with MICE [36]. Finally, for single target and multi-target
regression tasks, we normalised the target labels to the [0, 1]
interval for a better comparison of prediction errors. The
resulting post-processed datasets and related properties (size,
dimensionality, label distribution) are also shared in the
repository.

A. COMPETING METHODS
The proposed algorithm is compared against several com-
peting methods. More specifically we include: four tree-
based models of various degree of interpretability, two linear
models that are interpretable off the shelf, and four methods
from literature that provide post-hoc explanations to RF
predictions.

1) TREE-BASED METHODS
The first family of models that we compare against includes
tree-based learners such as DT and RF. These methods rep-
resent the two extremes of the performance-interpretability

2https://archive.ics.uci.edu/ml/datasets.php
3http://mulan.sourceforge.net/datasets-mlc.html
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trade-off. In addition, we propose two approaches, namely
‘‘Small RF’’ and ‘‘OOB Trees’’, which position themseves
somewhere in between. The Small RF method consists
of training a Random (Survival) Forest with K base tree
learners, where K is chosen for each test instance to be
equal to the one used by Bellatrex. The OOB Trees method
consists of averaging the prediction of K selected trees
from a full R(S)F, where the K trees with smallest out-of-
bag (OOB) error are selected. The value K is again set to
the same value as the number of final rules extracted by
Bellatrex.

2) LINEAR, ANTE-HOC EXPLAINABLE METHODS
Next, we perform a performance comparison with competing
methods that are ante-hoc explainable, that is, models that
are interpretable by design.We include regularised regression
models (LR) with elastic net penalty for binary classifica-
tion, multi-label classification, regression, and multi-target
regression tasks. Additionally, we consider a regularised Cox
proportional hazard (Cox-PH) [37] model for time-to-event
data.

3) POST-HOC COMPETITORS
Finally, we compare our method against recent work in
literature. For this purpose we select from the related work
Section II the methods that have a publicly available source
code. The selection narrows down to C443 [17], SIRUS [23],
RuleCOSI+ [24] and HS [25]. It is worth mentioning
that only SIRUS and HS fully support regression tasks,
and that only the latter is adapted to multi-target regres-
sion and multi-label classification. Moreover, none of the
selected competing methods is adapted to a survival analysis
scenario.

To begin with, to set up a comparison between C443
(available for binary classification tasks only, within the
homonym package in R) and Bellatrex, we train the
underlying RF black-box model with the same number of
learners and stopping criterion as in Section V-C. Next,
we run C443, collect the output trees, and average their
prediction (weighted proportionally to cluster size) for a close
comparison. As for the number of clusters we run C443 with
K = 3, which is the upper bound for the number of rules
extracted by Bellatrex.

To run the comparison with SIRUS, we keep the param-
eters suggested by the authors. More specifically, the
underlying RF model is trained with 5000 trees and the
number of final rules to be extracted is set to 10. For
RuleCOSI+, we run the proposed method after increasing
the maximum rule length to 5 and the rule confidence to
be at least 0.9, we do so to achieve better performance.
We therefore report RuleCOSI+ results for this particular
choice of hyperparameters. Finally, we consider Hierarchical
Shrinkage [25] (HS)method in its default configuration. Such
configuration sets the maximum number of leaves of the
underlying decision tree learner to 20.

B. EVALUATION METRICS
We consider several metrics to validate our method, as well
as to compare it, whenever possible, against similar methods
in literature. More specifically, we firstly look at predictive
performance, which is also a desirable property for model
interpretability [32], [38]; next, we look at the complexity of
the explanations generated by our method. Finally, we check
against redundancy of the explanations by looking at the
dissimilarity of the generated rulesets.

1) PERFORMANCE
The predictive performance of the models is computed
through commonly used measures in each of the five
tasks. More specifically, we evaluate the AUROC for binary
classification, the weighted average AUROC in multi-
label classification (averaged over each label with weight
proportional to the number of positive instances of the label),
mean absolute error (MAE) for single target and multi-target
regression tasks (in the latter case averaged over the targets),
and concordance index (C-index) for the survival analysis
data.

2) COMPLEXITY
Next to predictive performance, we investigate the com-
plexity of the generated explanations, a concept that is
inversely related to model interpretability. The notion of
interpretability is itself difficult to measure objectively as
no general definition of interpretability exists [38], [39],
and many metrics have been proposed [40]. However, when
it comes to specifically interpreting tree-based models, it
is common to report the total number of rule-splits shown
by the model explainer as a measure of interpretability
[20], [24], [41], where a lower number of rule-splits (com-
plexity) corresponds to a higher interpretability. Formally,
consider an explanation made of rulesR = {r1, . . . , rm}, and
let {len(r1), . . . , len(rm)} be their respective length (that is,
number of split tests), then the complexity of the explanation
is defined as:

C =

∑
ri∈R

len(ri) (4)

In practice, which set of rules R constitute an explanation
is not always well defined and can depend on the user
needs. In the context of our study, since we are focusing
on local explanations, we include in R only the rules that
are effectively used for the final instance prediction. More
specifically:

• In the case where one or more decision trees are shown
to the end-user as an explanation, we estimate C by
counting only the rule(s) rt1 , . . . , rtn that lead to a leaf
node, and we define R = {rt1 , . . . rtn}. This is the case
of HS, DT, C443, OOB Trees, and Small RF.

• In case, such as in RULECOSI+, the end-user is
presented an ordered decision list with m − 1 disjoint
rules and a final rule rm that serves as an ‘‘else’’ clause,
then one of the two scenarios holds:
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– the activated rule is rn ̸= rm. In this case,
we consider that the activated rule is a sufficient
explanation, hence we setR = {rn};

– the activated rule is rm, which is not a sufficient
explanation since it has no antecedent and its
prediction is used because none of the previous
rules is activated. The explanation for the end-user
is complete only if all rules are shown, therefore we
setR = {r1, . . . rm}.

• In case the explanation consists of a collection of
decision rules {r1, . . . , rm} such as in Bellatrex and
SIRUS, we haveR = {r1, . . . , rm}.

The above definition suggests that the complexity of
an explanation increases as the rules get longer or as the
cardinality of R increases, which is in agreement with
human intuition. Regarding this, we notice that, let d be the
maximum depth of a tree and K the number of extracted
rules by Bellatrex for a given instance, we have C ≤ Kd .
This means that the complexity of the final explanation can
be tuned by either adjusting the maximum depth of the
underlying RF, or by tuning the maximum value of K in
the rule extraction step of Bellatrex. Such two-fold tuning
can also be performed with C443, but cannot be as effective
with other methods such as SIRUS where rules are already
extremely short and d ≈ 1, or DT and HS, where K = 1.

3) DISSIMILARITY
Finally, we consider the dissimilarity of the extracted rules.
For this purpose, we need to define a distance on the
tree-representation space, and for this purpose we use a
generalised version of the Jaccard similarity index [17].
Namely, given the vector representations vi and vj of two
rules, we compute their similarity S as:

S(vi, vj) =

∑p
k=1min(vik , vjk )∑p
k=1max(vik , vjk )

. (5)

Given an instance x and the vector representation of the asso-
ciated final rules vi1 , . . . , viK , we obtain the rule dissimilarity
D for x by computing the average pairwise dissimilarity 1−S
between the K final rule vector representations:

D =
1

K (K − 1)

l,j∈{i1,...iK }∑
l ̸=j

1 − S(vl , vj) (6)

Finally,D is computed for every test instance, and the average
is reported in the results (Section VI). When K = 1,
dissimilarity in (6) is not defined, therefore such instances
do not contribute to the computation of the average.

C. EXPERIMENTAL SET-UP
In all experiments, we trained the underlying RF with
100 base learners. As stopping criterion, we required that
split-nodes included at least 5 instances, or at least 10 for the
time-to-event scenario, no rule post-pruning was performed.

We report cross validated average predictive performance,
complexity, and dissimilarity along 5 folds. The test sample

TABLE 1. Possible choices for the hyperparameters in Bellatrex. For every
instance x to be explained, the combination with the highest achieved
fidelity F is chosen.

size for datasets exceeding 500 instances is limited to 100 for
computational reasons.4 In the multi-label classification
scenario, we drop labels that do not occur in the training or
testing folds, since AUROC would otherwise not be defined.

With regards to hyperparameter tuning of the steps of
our method, values are tested in a grid search fashion and
are shown in Table 1. As explained earlier, these values are
optimised for each test instance individually according to
fidelity (3). The rationale behind this grid is that the possible
values for τ and d cover a wide range while using at most
3 different values and limit computation time. Furthermore,
the values for K are chosen so that at most 3 final rules are
selected, keeping the model fairly explainable.

VI. RESULTS
In this Section, we report the average predictive performance,
complexity, and dissimilarity of the explanations generated
by our method across the different datasets. On the predictive
performance side, we compare Bellatrex against all the
competing methods introduced in Section V-A. Next, the
complexity (as in (4)) of Bellatrex output explanations
is compared against rule extracting algorithms where the
total number of splits can be counted. Finally, the average
dissimilarity (6) of Bellatrex rulesets is compared against
methods that extract a similar number of rules from a RF.

The dataset-specific results for the binary classification
data are presented in this section, whereas, to avoid excessive
repetition, only the scenario-wide average results are reported
for the remaining cases. Dataset-specific results for the
remaining scenarios are shared in theAppendix. Additionally,
we test the statistical significance of the observed differences
(in performance, in dissimilarity and in complexity) among
Bellatrex and the other competing methods. We do so
by conducting a post-hoc Friedman-Nemenyi test, setting
the significance level to 0.05, as recommended in [42].
Results are visualised with critical difference diagrams,
which connect methods that are not statistically significantly
different by horizontal line segments. In this manuscript we
share the results of the Friedman-Nemenyi for the binary
classification, whereas for the remaining scenarios we refer
to the Appendix. Finally, we present an ablation study; that is,
we verify whether the main steps of the proposed procedure
are of added value to the method.

4Note that the algorithmic procedure of rule extraction, including
hyperparameter tuning, is performed for every test instance separately.
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TABLE 2. Average predictive performance (AUROC) across binary classification datasets. Our proposed methods is shown under the name ‘‘Bellatrex’’ in
its two approaches. The highest achieved performances except for the ‘‘black box’’ RF are shown in bold.

A. PREDICTIVE PERFORMANCE
We compute the average test-set performance for every
considered dataset over 5-fold cross validation. We report the
average across datasets for each of the five prediction tasks,
and we include the dataset-specific performance results for
the binary classification case in Table 2.

1) PREDICTION PERFORMANCE IN BINARY CLASSIFICATION
We observe that Bellatrex considerably outperforms all
competing methods and its performance is often on par, and
sometimes better, than the original RF. In most of the cases,
Bellatrex performs better than the other competing methods.
Some exceptions to this trend are provided by the LR learner
which, despite achieving non-remarkable performance on
average, appears to be the best model in some datasets (e.g.
‘‘blood’’ and ‘‘Colonoscopy Schiller’’). This phenomenon
might be explained by the intrinsically different (linear)
nature of LR predictions as opposed to the other tree-based
models. In the middle range of the performance spectrum,
we encounter competing methods from literature such as
HS, with C443 and SIRUS scoring a couple of ‘‘wins’’ and
performing better than LR on average. On the lower end,
we have the remaining methods: RuleCOSI+, Small RF,
OOB Trees and DT. The trends from this qualitative analysis
are confirmed by the Friedman-Nemenyi test (α = 0.05) and
the resulting diagram is shown in Fig. 3.
We observe that the difference in performance between

RF and Bellatrex is small and is not statistically significant,
meaning that we reduce the size of the output explanation
without significant loss in predictive performance. It is

FIGURE 3. Friedman-Nemenyi test, results regarding performance on
binary classification data.

also remarkable that Bellatrex is ranked on top of all the
competitor methods and is also statistically significantly
different to RuleCOSI+, Small RF, OOB Trees, as well
as the single DT. This is to be expected as the competing
methods offer a global approach for explanations, whereas
Bellatrex follows a local approach that provides a more
flexible modelling.

2) PREDICTION PERFORMANCE IN TTE,
REGRESSION, MLC, MTR
Similar trends are highlighted when running Bellatrex on
time-to event (TTE), regression, multi-label classification
(MLC), and multi-target regression (MTR) data, with the
average results being shown in Table 3. The competitiveness
of Bellatrex against all competing methods is confirmed as
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TABLE 3. Average performance across remaining datasets. In bold, the
best achieved performance, excluding the black-box R(S)F.

Bellatrex outperforms all considered competitors. Further-
more, Bellatrex is outperforming the original black-box in
regression and MTR tasks, and shows a lower performance
for MLC tasks.

Methods like HS are based on a single DT and offer an
overly simplified prediction process, while methods such as
LR fail to capture non-linearity and label correlations. Finally,
SIRUS has been implemented for binary and regression tasks,
but has not been tested for the latter.

B. COMPLEXITY
Next, we consider the complexity of explanations and com-
pare Bellatrex against other competing methods. It is worth
reminding that our definition of complexity in (4) counts the
number of split-rules performed across (possibly multiple)
extracted rules. This allows to compare the interpretability of
Bellatrex not only against tree-based methods such as DTs,
Small RF and OOB Trees, but also against methods from
literature that output rule-based explanation in a different
format. More specifically, we can compare Bellatrex against
SIRUS, HS, RuleCOSI+, and C443. We do not report the
complexity C from RF since its complexity is much higher
than the other reported methods.

1) EXPLANATION COMPLEXITY IN BINARY CLASSIFICATION
Specifically for binary classification tasks, we compare
Bellatrex against all aforementioned methods. To determine
which rules are considered as part of an explanation,
we refer to our guidelines in Section V-B. We report
average complexity C in Table 4, and we also include the
average number of rules extracted by Bellatrex. Additionally,
a dataset-specific comparison is available in the Appendix,
in Table 17.
The results show that Bellatrex needs 8.62 splits on average

to generate an explanation. This finding, combined with
the fact that 1.7 rules are extracted on average suggests
that the final rules are usually fairly short and can be
considered more interpretable than a single rule of similar
total complexity. Furthermore, we also notice that the datasets

TABLE 4. Average complexity of the explanations across binary
classification datasets.

for which Bellatrex extracts the least amount of rules (such as
‘‘divorce’’, ‘‘breast cancer original’’ and ‘‘risk factors’’) are
also the ones whose binary label is easy to predict (AUROC≥

0.90) for Bellatrex (cfr. Table 2). This suggests that Bellatrex
is able to output non-redundant explanations: if a single rule
is enough to make an accurate prediction, our method does
not need to extract any more rules.

When comparing Bellatrex with RuleCOSI+, C443, DT,
and HS, we observe that the latter two generate shorter
explanations. This is to be expected since these methods use
a single rule to perform predictions for a given instance.
It is worth noting however, that this comes at the expense
of losing performance: we are witnessing another instance
of interpretability-performance trade-off as highlighted in
Fig. 4. The aforementioned trade-off is also present when
comparing the results of SIRUS against HS and RuleCOSI+:
SIRUS outputs rules with higher total complexity, and at the
same time shows a slightly higher performance. It is worth
noting that SIRUS extracts 10 rules by default, and since
its average number of rule-splits is 11.83, it means that the
vast majority of the extracted rules has length 1, consistent
with what is reported in the original paper [23]. As for
C443, the achieved performance is similar to HS, whereas
its total complexity is comparable to SIRUS and higher than
Bellatrex. The latter results is to be expected given that C443
always extracts 3 trees and therefore 3 rules are contributing
to the computation of C, as opposed to the average 1.7 rules
in Bellatrex.

Finally, OOB Trees and Small RF achieve similar com-
plexity compared to Bellatrex, which is to be expected given
that the same number of rules is extracted from a similarly
constructed underlying RF.

2) EXPLANATION COMPLEXITY IN TTE, REGRESSION,
MLC, MTR
Continuing on the comparison of the (proxy for) inter-
pretability, we compare the complexity of explanations C
on the remaining four scenarios when a competing method
implementation is available. This translates to comparing
Bellatrex against HS for regression, MLC, and MTR tasks,
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FIGURE 4. Visualisation of the performance-interpretability trade-off,
where interpretability is approximated as 1/C. The Pareto optimum
frontier is shown in red.

TABLE 5. Average number of rule-splits used as explanation, comparison
across datasets. In bold, the shortest average explanation per scenario.

and against SIRUS for regression tasks. OOB Trees and
Small RF, and (S)DT are also considered, and an overview
is given in Table 5, whereas detailed results can be
found in Tables 18-21.
The complexity of the rules extracted by Bellatrex and

OOB Trees and Small RF is similar across all scenarios,
in line with what is observed with the binary classification
datasets. We also observe that Bellatrex generates on average
longer explanations on MLC tasks, likely due to the fact that
such datasets are more difficult to learn and need larger trees
to fit. For this case, we suggest the end user to select one
(or a few) label(s) of interest in the training phase, and run
Bellatrex on the reduced label set to get shorter explanations.

Finally, it is worth mentioning that the increase in average
rule length observed in multi-label datasets is common to
Bellatrex, DT, OOB Trees and Small RF, whereas it does not
affect HS, whose rules are significantly shorter.

C. DISSIMILARITY
Finally, we compare (when possible) the average dissimilar-
ity D of the final rules extracted by Bellatrex against the
ones generated by Small RF, the ones picked according to
the OOB Trees method, and the ones extracted by the C443
method. Thesemethods are indeed the only ones that extract a
comparable number of independent learners; HS on the other
hand builds a single decision tree whereas SIRUS extracts
10 rules by default. Finally, RULECOSI+ does not generate

TABLE 6. Average dissimilarity comparison across datasets. In bold:
highest dissimilarity per scenario.

independent rules by design: exactly one of them is activated,
under the condition that the previous ones have not been used.
The results across the five predicting scenarios are shown
in Table 6, with the dataset-specific details available in the
Appendix.

We observe that C443 and Bellatrex achieve the highest
dissimilarity and consistently achieve higher dissimilarity
compared to Small RF and OOB Trees. This means that the
Bellatrex algorithm is successful at picking dissimilar enough
rulesets, and that these are not redundant. We can verify how
this dissimilarity in rules translates in practice in Section VII.

The Friedman-Nemenyi test (Fig. 16) indicates that C443
and Bellatrex generate significantly more dissimilar rules
compared to OOB Trees and to Small RF, whose rule
dissimilarity is driven by the intrinsic randomness of the
RF algorithm. Also, the difference in dissimilarity between
rulesets in C443 and rulesets in Bellatrex is not statistically
significant.

D. ABLATION STUDY
As described above, Bellatrex consists of four main steps:
1) pre-selection of the most relevant decision rules within the
random forest, 2) mapping of the selected rules to a vector
representation, 3) projection of the vector representations to
a low-dimensional space and 4) the clustering step followed
by the final rule extraction. The vector representation and
the clustering steps are fundamental for our approach and
cannot possibly be removed, therefore we focus on evaluating
the added value of the rule pre-selection mechanism and of
the dimensionality reduction step. To do so, we measure the
predictive performance of Bellatrex in the following four
configurations:

• Weapply our proposedmethod in full, including all steps
described above;

• We apply dimensionality reduction but no rule
pre-selection (i.e., no step 1);

• We apply rule pre-selection but no dimensionality
reduction (no step 3);

• We apply neither dimensionality reduction (PCA) nor
rule pre-selection (i.e. both steps 1 and 3 are removed);

We present the results related to binary classification
datasets in Table 7, while the results related to the other tasks
are provided in the Appendix (Tables 27 -30). As shown,
the best average performance is achieved when all steps of
the proposed approach are included, affirming the added
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TABLE 7. Ablation study results on the binary datasets. In bold, the best
achieved performance.

value of each of them. Furthermore, we observe the most
substantial decrease in average performance whenwe remove
both steps 1 and 3, whereas the intermediate scenarios (one
step removed) fall somewhere in between.

VII. ILLUSTRATION OF BELLATREX
In this Section, we show how Bellatrex works in practice,
and to do so we pick two examples from the ‘‘boston
housing’’ [43] regression dataset. This dataset contains
506 neighbourhoods, each described by 14 covariates. The
target variable is the median house value, normalised to the
[0, 1] interval.

Our first example consists of a test instance with a
relatively low house value of 0.206, for which Bellatrex
predicts a value of 0.244 (same value predicted by RF). More
specifically, Bellatrex reaches the prediction by discarding
20 rules in the pre-selection step and projecting the vector
representation of the remaining rules in 2 dimensions; such
representations are grouped in a single cluster and the rule
closest to the centre is selected as the final representative.
Further insights are shown in Fig. 5, where the rule
representations are shown.

The left plot of the Figure shows that a single cluster is
selected, and that the rules on the right side of the plot are
treated as outliers. On the right-side plot, the same rules
are coloured according to their prediction, and these are
shown to vary between 0.20 and 0.29. The final representative
rule is situated in the central position and is associated to
a prediction close to the average value of 0.24. Inspection
of such rule is shown in Example 1, where we show how
the prediction, starting from an initial estimated equal to the

FIGURE 5. Bellatrex performed on a test instance of the boston housing
dataset. On the left, the centre of the cluster is in grey; on the right, rules
are coloured according to their predicted value. On both sides, the final
extracted rule is shown in a star shape.

FIGURE 6. Bellatrex performed on a second test instance of the boston
housing data. On the left, the centres of the cluster are in grey; on the
right, rules are coloured according to their predicted value. On both sides,
the final extracted rules are shown in a star shape.

TABLE 8. Overview of the 24 datasets used in the binary classification
scenario.

average (bootstrapped) value of the root node, moves until its
final value indicated by the corresponding leaf.

The extracted rule is aligned with human intuition: the root
node-split shows that a smaller average number of rooms
(n. rooms) per dwelling is associated to a lower house
value, with the prediction dropping from an initial estimate of
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TABLE 9. Overview of the 14 datasets used in the time-to-event scenario.

TABLE 10. Overview of the 19 datasets used in the regression scenario.

TABLE 11. Overview of the 13 datasets used in the multi-label
classification scenario.

0.390 to 0.317. Similarly, the splits involving lower status
show that houses situated in a poorer neighbourhood (that is,
with high values of lower status), are associated to lower
prices. According to this rule, the median house price of the

TABLE 12. Overview of 19 datasets used in the multi-target regression
scenario.

TABLE 13. Average predictive performance (C-index) across
time-to-event datasets. In bold, the best achieved performance, excluding
the black-box RSF.

Example 1. Example of output Bellatrex explanation.

town increases with a low crime rate, and decreases with
high proportion of houses being built before 1940 (high value
for the age variable).

Our second example involves a test instance of high
value y = 0.660, whose Bellatrex prediction is 0.625 (and
underlying RF prediction is 0.633), and two rules are selected
as the final prediction, as shown in Fig. 6.
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TABLE 14. Average performance (MAE) across regression datasets. In bold, the best achieved performance, excluding RF.

Example 2. Example of output Bellatrex explanation.

TABLE 15. Average performance (AUROC) across multi-label datasets.
In bold, the best achieved performance, excluding RF.

The plot shows that two final rules are extracted have
predictions close to the average despite the fact that
they are following different decision splits, as shown
in Example 2

TABLE 16. Average performance (weighted MAE) across multi-target
datasets. In bold, the best achieved performance, excluding the
black-box RF.

FIGURE 7. Nemenyi-test for time-to-event data.

The first rule follows human intuition when assigning
higher house value for higher n. rooms and for lower
crim. rate. Additionally, it also reflects the racial bias
of the 1970 US Census when assigning higher value to
ethnically homogeneous neighbourhoods (high values of
black covariate) [44]. The second rule shows a similar
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TABLE 17. Average complexity of explanations in binary classification data, with the shortest explanations in bold.

FIGURE 8. Nemenyi-test for regression tasks.

FIGURE 9. Nemenyi-test for multi-label classification data.

perspective by using a different set of tests: the trend
highlighted by n. rooms is consistent with previous findings,
whereas conditions including lower status,pupils ratio, and
age appear for the first time in this example. Consistently
with human intuition lower values of pupils-to-teacher ratio
(pupils ratio) are associated with higher house value,
whereas the age value for this instance has a small
negative effect on house pricing. Finally, consistently with

FIGURE 10. Nemenyi-test for multi-target regression data.

TABLE 18. Average complexity of explanations in time-to event data,
with the shortest explanations in bold.

the previous example, a lower value for lower status is
associated to higher median house value.
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TABLE 19. Average complexity of explanations in regression datasets,
with the shortest explanations in bold.

TABLE 20. Average complexity of explanations in multi-label data, with
the shortest explanations in bold.

FIGURE 11. Binary classification datasets.

VIII. CONCLUSION AND FUTURE WORK
We proposed a novel method (Bellatrex) that interprets RF
predictions by extracting, for each given instance, a surrogate
model consisting of the most representative rules. Although

TABLE 21. Average complexity of explanations in multi-target data, with
the shortest explanations in bold.

FIGURE 12. Time-to-event datasets.

FIGURE 13. Regression datasets.

FIGURE 14. Multi-label classification datasets.

we have focused on RF’s, our proposed approach is able to
accommodate other tree-ensemble models such as Extremely
Randomized Trees [45] or such as Bagging trees [46].
Furthermore, Bellatrex is compatible with other variations
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FIGURE 15. Multi-target regression datasets.

TABLE 22. Average rule dissimilarity for binary classification datasets.

of random forests such as Random Survival Forest and
Random Forest Regression and has been evaluated across
89 datasets belonging to five different predictive tasks:
binary classification, time-to-event prediction, multi-label
classification, regression, and multi-target regression. To our
knowledge, no related work is as versatile as Bellatrex
in providing explanations in so many different scenarios,
or at least, no such experimental results have been reported.
Bellatrex achieves high levels of predictive performance
by extracting a small number of rules, which we limited
to three in our experiments. Its performance is often on
par with that of random forests, and even outperforms
this benchmark in two out of five scenarios. We can
therefore conclude that our method achieves its intended
goal of explaining the prediction of a random forest with
a few rules, without giving up on predictive performance.
Furthermore, when compared against ante-hoc explainable
methods such as LR and Cox-PH, Bellatrex comes on top.
Finally, the comparison with state-of-the-art methods outline
that Bellatrex outperforms, often significantly, all considered

TABLE 23. Average rule dissimilarity for time-to event data.

TABLE 24. Average rule dissimilarity for regression datasets.

methods that extract rulesets from a trained RF, such as
C443 [17], and SIRUS [23], or that manipulate tree learners
such as HS [25].

The analysis of the explanation complexity shows that
Bellatrex extracts on average 2 rules with a total combined
complexity (i.e. test-splits used) that is normally below 25.
Such numbers suggest that our extracted rules are fairly
interpretable, even more so since two rules of length ℓ

are more interpretable than a single rule of length 2ℓ. The
systematic comparison of output complexity (and therefore
interpretability) against other methods represents another
novelty of this work. Our results confirm the existence of a
performance-interpretability trade-off within tree based and
rule extraction methods, with approaches such as HS and
RuleCOSI+ generating shorter explanations but performing
significantly worse. We also systematically studied the
dissimilarity of the paths extracted by Bellatrex, where
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TABLE 25. Average rule dissimilarity for multi-label data.

TABLE 26. Average rule dissimilarity for multi-target data.

we showed that Bellatrex has (often significantly) greater
dissimilarity compared to picking the same number of
random trees from the ensemble, or picking the same number
of best performing trees. This observed dissimilarity is
remarkable, as Bellatrex proves to be able to extract diverse
rules despite their optimal number K being optimised for
increasing fidelity to the original RF instead. Furthermore,
the high average dissimilarity suggests that the final extracted
rules are not redundant, and that they give diverse possible
explanations to the end user.

The limitations of our method are similar to those of other
approaches that rely on tree ensembles. Firstly, the inter-
pretability of the rules extracted by Bellatrex is challenged
when such rules are too long. Another possible limitation lies
in the computational complexity of the method: although a
single prediction can be explained in a short time, running
the procedure on a full dataset becomes computationally

FIGURE 16. Binary data.

FIGURE 17. Time-to-event data.

FIGURE 18. Regression tasks.

FIGURE 19. Multi-label classification data.

expensive. Directions of future work include the adapta-
tion of Bellatrex to gradient boosting ensemble methods
[47], [48], as well as extending Bellatrex to an even
broader set of tasks, such as multi-event survival analy-
sis [49], online learning [50], or network inference [51].
Additionally, it is our intention to explore new vector
representations, as well as post-pruning procedures that can
reduce the size of the rules without impacting on predictive
performance.

APPENDIX
In the Appendix we include additional information regarding
the employed datasets. Furthermore, we expand the informa-
tion included in Tables 3-6, by reporting the dataset-specific
results in terms of predictive performance, rule dissimilarity,
complexity of the expalantions, and the outcome of the
ablation study.
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FIGURE 20. Multi-target regression data.

TABLE 27. Ablation study results on the time-to-event datasets. In bold,
the best achieved performance.

TABLE 28. Ablation study results on the multi-label classification
datasets. In bold, the best achieved performance.

A. DATASET OVERVIEW
The following subsection includes some general properties of
the dataset employed in our experiments. More specifically,
we share dataset size, dimensionality of the instances, and
label distribution. The number of labels is shared in the multi-
output cases.

B. PERFORMANCE
Here, we report the dataset-specific performance for time-
to-event, multi-label classification, single target regression,
and multi-target regression data. Additionally, we provide the
outcomes of the statistical testing procedure of the scenarios.

TABLE 29. Ablation study results on the regression datasets. In bold, the
best achieved performance.

TABLE 30. Ablation study results on the multi-target regression datasets.
In bold, the best achieved performance.

Note that the detailed results on binary classification data are
reported in the main body, Section VI-A.

C. COMPLEXITY
Here, we report the dataset-specific results mentioned in Sec-
tionVI-B, and regarding to complexity of the explanations (as
defined in (4)). Additionally, we report the outcomes of the
statistical testing procedure, for binary classification, time-to-
event, multi-label classification, single target regression, and
multi-target regression data.

D. DISSIMILARITY
Here, we report the dataset-specific results for dissimilarity
(as defined in (6)), as well as the outcomes of the statistical
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testing procedure for all five considered scenarios. We show
in bold the rulesets with the highest average dissimilarity.

E. ABLATION STUDIES
Here, we report the dataset-specific results for the ablation
study, as well as the outcomes of the statistical testing
procedure, for time-to-event, multi-label classification, single
target regression, and multi-target regression data. Detailed
results on binary classification datasets are reported in the
main body, Section VI-D.
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