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Abstract

The characterization of the full set of elastic parameters for an orthotropic

material is a complex non-linear inversion problem that requires sophisticated

optimization algorithms and forward models with thousands of iterations.

The intricacy of this type of inversion procedure limits the possibility of using

these algorithms for large-scale automation and real-time structural health

monitoring. At this point, the introduction of machine learning-based inver-

sion strategies might become helpful to overcome the existing limitations of

conventional inversion algorithms. In the present study, a multilayer percep-

tron algorithm is used to identify elastic stiffness parameters of orthotropic
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plates using guided wavefield data. A large and diverse training dataset is

created by using a semi-analytical finite element model, and the effect of

both the training dataset size and the signal-to-noise ratio on the inference

outcome are examined. The performance of the multilayer perceptron-based

inversion method is first validated on a numerical dataset, and the method

is then further applied on experimental data obtained from a multilayered

glass-fiber reinforced polyamide 6 composite plate. Finally, the multilayer

perceptron-based inference results are compared with the outcome of a tra-

ditional inversion algorithm, showing a difference of less than 0.5%.

Keywords: Non-destructive testing, Material characterization, Lamb waves,

semi-analytical finite element (SAFE), multilayer perceptron, Orthotropy

1. Introduction

An accurate characterization of material properties is crucial to properly

detect, localize, and/or assess damage features in non-destructive testing and

structural health monitoring [1]. In literature, researchers have already pro-

posed an extensive set of diagnostic characterization techniques in the last

few decades by using natural frequencies [2, 3, 4, 5], bulk wave phase ve-

locities [6, 7], Lamb wave group velocities [8], and Lamb wave dispersion

curves [9, 10]. However, these traditional methods employ complex heuristic

optimization algorithms, which require thousands of iterations of a forward

model to properly identify the stiffness parameters that lead to the best

match of the experimental data. These algorithms generally minimize the

difference between the measured and the simulated frequency (or time) do-

main response by adjusting the stiffness parameters using a global heuristic
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optimization (genetic algorithm, particle swarm, simulated annealing, etc.).

The number of stiffness parameters that can be obtained strongly depends

on both the material properties, such as plate thickness and stacking ori-

entation, and the measurement parameters, like the frequency, propagation

direction and mode shapes [10]. Moreover, the inversion procedure needs

to be repeated for each newly tested material. Therefore, adopting any of

these methods for large-scale automation in industry and real-time structural

health monitoring is unfeasible.

In recent years, the interest in machine learning and inductive inference

has grown exponentially, with applications in a wide range of scientific re-

search areas, covering physics, geology, genetics, medicine, language, etc. In

particular, in the field of material characterization, guided ultrasonic waves

have been coupled with an uncertainty analysis based on fuzzy arithmetic to

identify the material constants of quasi-isotropic fiber-reinforced composites

[11]. Bobylev et. al. examined transfer learning algorithms to accurately

assess the dynamic behavior of rotor systems with quasi-real-time measure-

ments by estimating single stiffness parameters [12]. Liu et. al. studied the

fatigue behavior of wind turbine blades by means of deep learning models

using time series stiffness data and estimated the degradation of the struc-

ture by assessing a single stiffness parameter with high accuracy [13]. Wei

et. al. created a model for isotropic material characterization with an ac-

curacy of about 90% and milliseconds processing time per sample by using

convolutional neural network and transfer learning [14]. Obviously, the iden-

tification of stiffness parameters for lower material symmetry groups such as

transversely isotropic, orthotopic, or monoclinic materials requires more so-
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phisticated models. One of the first studies in this field has been performed

by Rautela et. al. who explored the possibility of using 1D-convolutional

neural networks (CNNs) and recurrent neural networks (RNNs) to identify

the elastic properties of transversely isotropic materials [15]. The developed

supervised learning algorithms used information on guided wave modes as

inputs and considered the elastic properties of the medium as targets. In

that particular investigation, the spectral finite element method was im-

plemented as a forward model to create the training data, and relatively

large boundaries were used both for the material’s density and stiffness pa-

rameters to obtain a dataset, consisting of more than 104 combinations of

different lamina properties. One of the most important conclusions of this

study is that the uniqueness of the solution strongly depends on the num-

ber of Lamb wave modes that can be discerned in the considered frequency

range. In a later study, the effect of noise on the quality of the inversion has

been examined by the authors as well [16]. Their results show that a low

signal-to-noise ratio significantly increases the error rates for the 1D-CNN,

whereas more advanced long short-term memory (LSTM) networks show a

better performance for high noise conditions. On the downside, the required

computational time per epoch for LSTM networks is almost 30 times higher

compared to a 1D-CNN [16].

In another recent study [17], a dual-branch version of CNN was imple-

mented to identify the stacking orientation along with the elastic parameters

of transversely isotropic composites using a polar group velocity representa-

tion of the A0 and S0 modes, calculated via the stiffness matrix method, as

input. The study showed that a CNN approach could successfully invert the
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material stiffness properties of transversely isotropic composites. In addition,

error rates of different machine learning algorithms and their performance,

such as support vector machines, random forests, artificial neural networks,

etc. have been compared.

Even though classical CNNs have proven to be powerful classification

methods for images, video and audio, there are certain limitations. The

major limitation can be readily explained by revisiting the example of the

polar group velocity images. Whereas the polar group velocity images are

used to extract the features to train the network, the polar group veloci-

ties themselves strongly depend on the stacking orientation and the in-plane

measurement angle. A misalignment of the material, or an unknown material

orientation, might lead to polar images with important deviation angles [7].

To account for this, the CNN needs to be learned with a training dataset

that includes rotated images. However, this procedure increases the size of

the training data which significantly increases the required computational

time and power. Alternatively, group equivariant convolutional networks

have been proposed and found to perform successfully for a larger group of

symmetries, including rotations [18]. A second limitation is that forward

models fundamentally calculate discrete wavenumbers, phase, or group ve-

locities. During the conversion of these parameters to images, errors can be

introduced as the exact values need to be interpolated to fit the image pixel

sizes when the wavenumbers are calculated as solutions of the eigenvalue

problem. To circumvent this, a set of forced steady-state equations can be

solved directly. However, problems regarding the size of the training data and

the need to include rotated images in the training dataset will significantly
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increase the required computational time and power.

In the present study, an alternative approach is implemented by using a

multilayer perceptron (MLP) method. In the proposed procedure, the semi-

analytical finite element (SAFE) model is selected as the forward model to

calculate complex wavenumber dispersion curves, due to its accuracy and

robustness. Assuming the density and layer orientation for the material to

be fixed, the real wavenumbers in different in-plane propagation directions

and for a range of frequencies are calculated, and used to create massive

training and test datasets for different material property combinations. As

such, the MLP approach allows to identify all 9 homogenized elastic stiffness

parameters for various materials. The accuracy of this approach is examined

with respect to the training dataset size and the noise level. The numerical

datasets as well as the code created in Python programming language on

Jupyter notebook, used to validate the approach, can be freely downloaded

from [19].

The paper is structured as follows. First, in Section 2, the most important

aspects of the forward model (SAFE), the experimental wavefield acquisition,

and the machine learning model are summarized. Next, Section 3 covers

the results of a numerical and an experimental inversion study. Finally,

conclusions are given in Section 4.

2. Stiffness Identification Procedure

2.1. Forward model: SAFE

To efficiently calculate the dispersive behavior of Lamb waves for use in

the training datasets of the MLP procedure, the approximate method called
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the semi-analytical finite element method (SAFE) is adopted in this study

[20]. This forward model is implemented, along with a selection of other

prediction models, in a standalone MATLAB toolbox called ‘The Dispersion

Box’, which can be downloaded freely from GitHub [21]. The accuracy, as

well as the computational efficiency of this method, is extensively discussed

in literature [22].

In short, the SAFE method is based on the fact that the homogeneous

wave equation in a plate-like medium with orthotropic symmetry can be

rewritten as [20]:

u(e)(x, y, z, t) =


∑n

j=1 Nj(y, z)Uxj∑n
j=1Nj(y, z)Uyj∑n
j=1Nj(y, z)Uzj

 ei(kx−ωt) = N(y, z)q(e)ei(kx−ωt) (1)

where u(e)(x, y, z, t) displacements per element (e), which are expressed in

terms of shape functions, Nj(y, z), and the unknown nodal displacement

components, (Uxj, Uyj, Uzj). Further, k is the complex wavenumber, ω is

the angular frequency, and n is the number of nodes per element. By using

Eq. (1), the strain components ε can be represented as function of the nodal

displacements:

ε =
[
Lx

∂

∂x
+Ly

∂

∂y
+Lz

∂

∂z

]
N(y, z)q(e)ei(kx−ωt) = (B1+ikB2)q

(e)ei(kx−ωt) (2)

where q(e) is the unknown nodal displacement for each element, B1 = LyN,y+

LzN,z, B2 = LxN . N,y and N,z are the derivatives of the shape function

matrix with respect to the y and z directions, respectively. The term L

expresses the strain parameters in matrix form, for which the full details can
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be found in literature [20]. Finally, the stiffness (k
(e)
1 , k

(e)
2 and k

(e)
3 ) and mass

(m(e)) matrices for each element can be calculated as follows:

k
(e)
1 =

∫
Ωe

[BT
1 C̃eB1]dΩe, k

(e)
2 =

∫
Ωe

[BT
1 C̃eB2 −BT

2 C̃eB1]dΩe

k
(e)
3 =

∫
Ωe

[BT
2 C̃eB2]dΩe, m(e) =

∫
Ωe

[NTρeN ]dΩe, (3)

where ρe is the density for each element C̃e is the complex valued stiffness ma-

trix (C = C ′+ jC ′′) which is represented as a combination of the elastic (C ′)

and the viscous (C ′′) parameters. To model the dynamic through-thickness

behavior of the entire medium, the mass and stiffness matrices for each ele-

ment need to be assembled in four global matrices which read as follows:

K1 =

nel⋃
e=1

k
(e)
1 , K2 =

nel⋃
e=1

k
(e)
2 , K3 =

nel⋃
e=1

k
(e)
3 , M =

nel⋃
e=1

m(e) (4)

where nel is the total number of cross-sectional elements. Using the global

matrices and imposing energy equilibrium, the homogeneous wave equation

can be rewritten as:

[K1 + ikK2 + k2K3 − ω2M ]MU = 0 (5)

The solution of the generalized eigenvalue problem in Eq. 5 yields the

(homogenized) complex wavenumber values, k = kr + jki, which are charac-

teristic for the plate material (visco-elasticity) and geometry (thickness and

stacking). More precisely, the dispersive variation of the real wavenumber

(kr) values with respect to ‘frequency × thickness’ (fd) in a fixed in-plane

orientation provides the dispersion curves which fundamentally relate to the

elastic part of the stiffness tensor (see for example Fig. 1(a) for the case of

a 5 mm thick beech wood plate, 0◦ in-plane direction). On the other hand,
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by solving the equation for a fixed fd value for different in-plane propagation

directions (ϕ), polar dispersion curves can be obtained, see Fig. 1(b).
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Figure 1: Wavenumber curves for Lamb waves computed in a vacuumed environ-

ment for a 5 mm thick beech wood plate (a) Real Wavenumbers in the frequency

range of 10-300 kHz along the ϕ = 0 direction, and (b) The polar dispersion

velocity curve for a fixed frequency f = 200 kHz.

2.2. Experimental measurement and Post Processing

For the experimental validation of the ML based inversion method, dis-

cussed later in section 3.2, an actual wavefield measurement on a 600 × 600

× 5.5 mm Glass Polyamide 6 (G/PA6) UD laminate with stacking sequence

[0/90]5s was conducted to test the performance of the proposed MLP method.

The plate is excited by a single piezoelectric actuator (type EPZ -20MS64W)

positioned at the center of the plate and driven by a voltage amplifier (Falco

Systems, type WMA-300). A 16 ms long broadband chirp voltage signal

with frequencies between 5 kHz to 300 kHz is used as an excitation signal.

The full-field 3D vibrational surface response is recorded by means of an
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infrared 3D SLDV (Polytec PSV-500-3D-Xtra) operating on a star-like grid

to measure the responses along different in-plane directions, here chosen to

cover one quadrant with a measurement at 0, 45 and 90◦ (See Fig. 2). The

three laser heads are set up in an angled configuration to measure both the

out-of-plane and in-plane vibrational response with high sensitivity. The

sampling rate used to record the vibrational response is 625 kS/s, and the

grid step along an in-plane direction is fixed at Dr ≈ 1 mm. An average

over 20 measurements is performed for each point to improve the signal-to-

noise ratio. Moreover, the measurement quality is additionally improved by

covering the entire surface of the plate with retro-reflective tape. The total

amount of time to execute the various experimental line scans along three in-

plane directions per sample is about 1 hour. It might be possible to further

reduce the measurement time in the future by implementing recent devel-

opments in compressed sensing (spatially under sampled measurements), in

super-resolution reconstruction using deep learning and in multi-point LDV

using on-chip photonics technology [35, 37]. For instance, by using the latter

technology, it is possible to measure several points simultaneously, which will

reduce the required measurement time significantly. More details about the

measurement procedure can be found in literature [10].
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Figure 2: a) Schematic of the experimental procedure, b) Experimental setup, c)

The recorded wave propagation on a UD G/PA6 layered plate at t =1.2 ms along

a discrete set of angles, and d) The out-of-plane response to a broadband sweep

excitation (50-300 kHz in 16 ms) recorded on a 5.5 mm thick UD G/PA6 plate

when ϕ=45 at a distance of 15 cm from the actuator.

In terms of post-processing analysis, the measured data in the space-

time domain is first converted to wavenumber-frequency domain using a 2D

fast Fourier transform. Then, the real wavenumbers are extracted from the

magnitude of the wavenumber-frequency map by means of the matrix pen-
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cil decomposition method (MPDM). The details as well as the advantages

of this extraction procedure for material characterization have already been

presented earlier in literature [10]. The implementation of MPDM as part of

the post-processing step allows to automatically extract the real wavenum-

bers (kr), which comprise the necessary information to identify elastic stiff-

ness parameters. Alternatively, it would also be possible to identify the

real wavenumber values manually from the dispersion curves. However, this

might lead to relatively high errors and has the drawback that it excludes

the use of this characterization method for real-time applications.

2.3. Inverse Model: Machine Learning Model

In the present study, a multilayer perceptron (MLP) was used as the

inverse model. A MLP is a fully connected feedforward artificial neural net-

work that produces a set of outputs given a set of inputs. A MLP consists

of 3 types of layers: an input layer, hidden layers, and an output layer. In

a MLP, data moves forward from the input layer to the output layer. Com-

bined with non-linear activation functions between layers, a MLP can learn

complex non-linear relationships between the input and output data [36]. For

the research theme at hand, the wavenumbers are used as inputs to predict

the elastic stiffness parameters as outputs.

MLPs with one hidden layer have been shown to be universal approxi-

mators: In one hidden layer, a MLP can approximate any function, given

enough hidden units. However, it is often more efficient to train a network

with more than one layer [23]. In the current study, the use of 2 hidden layers

turned out to be sufficient to obtain good results. Keras (version: 2.7.0), a

Python library for deep learning, was used to implement the MLP [24].

12



In addition, hyperband optimization was used to determine the number of

hidden units per layer [25]. The search space for the optimal number of units

was restricted to values between 100 and 5000 units for both layers. Tuning

was conducted on 90% of the training data and the other 10% was used

for validating the tuned performance. Note that the number of datapoints

differs per experiment and therefore the data-set size used in each experiment

is specified in the corresponding results section. After finding the optimal set

of parameters, the MLP was retrained with this parameter set, now using all

training data. Further validation was then conducted using an independent

test set.

The performance of the algorithm was assessed by calculating the mean

absolute deviation (MAE), the mean absolute percentage deviation (MAPE),

and the coefficient of determination (r-squared - R2). The MAPE measure

was used as the cost function and to establish the optimal parameter set

during parameter tuning due to its scale-independent nature.

Finally, layer weight regularization was applied to prevent over-fitting.

For this, the kernels, biases, and outputs of the layers were regularized. ReLU

activation was used on the input layer and hidden layers whereas the Adam

optimization method was used with an initial learning rate of 0.001 to train

the parameters of the network [26]. The training was done in batches of 256

data points and used a total of 2000 epochs.

Hyperparameters that are not listed in this section were kept to the

defaults as provided by Keras. For the calculations, a workstation with

NVIDIA® Quadro� RTX 4000 with 8 GB GDDR6 ram is used.
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3. Results and discussion

In this section, the material characterization results using the MLP re-

gression model are reported for a synthetic dataset on the one hand, in order

to validate the method, and for an experimental dataset on the other hand

to illustrate the method’s applicability.

First, numerical dataset simulations are conducted for an orthotropic

wooden plate using the forward model SAFE. In the subsequent validation

study, the required size of the training data is first analyzed via a parametric

search. Then, different percentages of random noise are added to the real

wavenumbers in both the training and the test data in order to introduce

and mimic suboptimal experimental measurement conditions. The addition

of noise on the training and test dataset is crucial to be able to distinguish

noise features from other features in order to make the trained models more

generalizable.

Following the numerical validation of the inversion method, the proposed

stiffness characterization method is then demonstrated on an experimental

wavefield dataset of a [0/90]5s G/PA6 laminate.

3.1. Numerical case study: SAFE simulation for a Homogeneous wooden

plate

To assess the robustness, accuracy, and computational time of the pro-

posed machine learning method, a numerical case study is conducted on a

homogenized orthotropic wooden plate (beech wood) with a thickness of 5

mm and a density of 674 kg/m3 [27]. Beech wood is an example of a material

with a strong anisotropic nature and a low density, which is challenging for

14



the characterization process. The assumed ground truth values for the elastic

stiffness parameters of the material are summarized in Table 1.

Table 1: Beech wood elastic parameters used for the study. Tensor constants are

in GPa.

ij 11 12 13 22 23 33 44 55 66

Cij 17.33 3.03 1.69 3.26 0.74 1.64 0.62 1.09 1.52

The full dispersion curve information for this material in different wave

propagation directions is calculated by way of the SAFE method and is used

to validate the machine learning model. To this end, a frequency range

between 10 kHz and 200 kHz with a 10 kHz step size is considered for 0,

45, and 90-degree propagation directions, and the first 5 wave modes of the

selected frequency range are selected. This leads to a total of 300 input

parameters (20 frequency bins × 3 propagation directions × 5 identifiable

wave modes) which are subsequently used to estimate 9 stiffness parameters.

In addition, a large training and test dataset is created by way of the

SAFE forward method for materials with stiffness values between -40% and

+60% of the above mentioned literature values, while the thickness and den-

sity are considered fixed. Due to the tendency of classical inversion algo-

rithms to use middle points as initial solutions, non-symmetric parameter

bounds are used. These datasets were created by using a random distribu-

tion between the search space boundaries of the true stiffness parameters.

The distribution of the stiffness parameters are crucial for MLP model to

learn the relation between wavenumber and stiffness parameters, and to ac-
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curately predict the stiffness parameters through whole boundary range. The

histogram of the training and test dataset is represented in Fig. 3.
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(a)

(b)

Figure 3: Histogram of the generated training and test data for the different

stiffness parameters a) The distribution of the training data for a collection of 105

data points, and b) The distributions of the test data for 104 data points.
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A search space consisting of 2 layers is created to find the optimum num-

ber of units per layer (layer size) of the model using the hyperband algorithm

[25] in ‘Keras Tuner’. The optimal size of the layers was found to be 3700

for the first hidden layer and 450 for the second layer. The convergence of

the MAPE indicator with respect to the training data size is depicted in Fig.

4(a) and shows that a MAPE of about 1.5% can be achieved by using 100

thousand data points, which is an acceptable quantity. As can be seen in

the figure, it is possible to further increase the accuracy of the method by

simply increasing the size of the dataset, but obviously, the required compu-

tational time and power linearly increase with respect to dataset size. In the

present study, 100 thousand data points in the dataset was selected, ensuring

reasonable accuracy and computational speed. Note that 100 thousand data

points correspond to 3.6 data points per stiffness parameter (3.69 ≈ 100k),

which shows the extremely sparse nature of the datasets. The full 105 point

numerical dataset for beech wood as well as the MLP code written in Python

can be freely downloaded from [19].

The creation of the dataset (100k) takes 1 hour, and 8 seconds per epoch

is required for training. Therefore, in total, only 1.5 hour is required to cre-

ate the dataset and train the algorithm, while the characterization of the

material properties in the inversion step itself is completed instantly. Even

though this total duration is already far less than for any known conven-

tional characterization method (typically 3.5 hours including statistics) [10],

the true advantage of the MLP regression method is that all calculations

can be performed beforehand. After training the MLP, the prediction of

a stiffness tensor from a given set of wavenumbers, under the assumption
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that all wavenumbers fall within the wavenumber range considered during

the training step, takes less than a second. This brings real-time stiffness

characterization and model updating within reach.

The convergence of the training and validation data with respect to MAE

and loss (MAPE) is plotted in Fig. 4(b) and Fig. 4(c), respectively. The

MAE and MAPE plots show a good convergence on both the training and

validation dataset, indicating that the MLP is properly trained. A visual-

ization of the predicted versus the real true stiffness parameters for the test

datasets is displayed in Fig. 5, confirming a good correlation for most of the

stiffness parameters. In fact, only the off-diagonal stiffness parameters (C12,

C13, and C23)) show increased error levels, which is in line with the sensitivity

studies conducted for guided wave modes conducted by Kudela et. al. [28]

and for natural frequencies by Gsell et al. [2].
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Figure 4: The results of the machine learning algorithm for inverse stiffness char-

acterization for a beech wood plate based on full field dispersion curves. a) The

convergence of MAPE of the test data with respect to data size, b) The MAE

evolution with respect to epoch number, and c) The loss evolution with respect to

epoch number.

For the considered synthetic dataset on the 5mm thick beech wood plate

with tensor constants given in Table 1, Table 2 presents an average error

level of around 1.5% on the inverted stiffness parameters with respect to the

actual stiffness constants in the absence of noise (column 2).

In reality, however, non-zero noise levels might degrade the performance
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Figure 5: Predicted versus true stiffness parameters for MLP-based inversion of

the datasets (blue dots) generated in view of the validation of the method for the

case of an orthotropic beech wood plate. As a reference the red line represents the

exact match.
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of the identification process, leading to higher error rates on the inverted

parameters. Therefore, a complementary numerical study is performed in

which a random noise level is added to both the training and test data in

order to predict the accuracy of the models in the presence of noise. For this

study, the noise-affected data is defined as follows:

kr,noise = kr ± rand(NL)kr (6)

where kr is the real wavenumber, kr,noise is the real wavenumber perturbed

by noise, and rand(NL) is the random noise level with a maximum which is

assumed to be 1, 2, 3, 5 and up to 10% in our study.

Again, and for each maximal noise level considered, ‘Keras Tuner’ is used

to optimize the hyperparameters of the model. The average percentage error

level of each stiffness component for the beech wood test data considering

the different maximal noise levels is shared in Table 2, together with the

optimized layer sizes at the respective noise levels. As can be expected, the

results show that the accuracy of the predictions decreases when the noise

level increase. Still, only a 5.5% average error rate is attained in the presence

of 10% noise. Note that, as the accuracy of the extracted wavenumber data

depends on the signal-to-noise ratio (SNR) of an experiment, it is possible to

train models with various noise ratios and to select one that is close to the

experiment.
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Table 2: The effect (expressed as the % deviation of the actual C-tensor parame-

ters) of noise (expressed in maximal % digression on the wavenumber data) on the

reconstructed C-tensor parameters for a beech wood plate with a density of 674

kg/m3 and thickness of 5 mm, using a ML approach. The size of the training data

(with noise) and test data (with noise) are 100000×300 and 10000×300, respec-

tively. The values in the last two rows denote the layer size in the Keras model

after hyperparameter tuning.

Noise (%) 0 1 2 3 5 10

C ′
11 1.05 1.60 1.79 2.50 2.97 4.23

C ′
12 2.17 3.12 3.72 4.82 6.55 8.91

C ′
13 2.69 4.45 5.27 6.48 8.31 11.22

C ′
22 0.86 1.40 1.76 2.10 2.64 4.16

C ′
23 2.43 4.02 4.97 6.06 7.36 10.44

C ′
33 0.83 1.42 1.56 2.01 2.47 3.14

C ′
44 1.02 1.03 0.80 0.99 1.23 1.39

C ′
55 0.97 0.89 0.98 1.25 1.41 2.10

C ′
66 0.60 0.95 0.90 1.09 1.60 2.77

Avg. 1.40 2.10 2.42 3.03 3.84 5.37

Layer I 3700 2700 1400 1900 1850 1450

Layer II 450 4850 1250 850 2550 1950

As shown in Table 2, the error rates of the trained models are on aver-

age between 1.5% and 5.5% depending on the considered noise levels. To

achieve a higher accuracy, the frequency range and the number of measure-
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ment directions can be increased because 1) the sensitivity of the stiffness

components strongly correlates with the identification of the cut-off frequen-

cies and the existence of higher-order wave modes, and 2) the orthotropic

wave propagation behavior can be more accurately assessed and identified

from an increasing number of in-plane directions. However, as this expands

the total number of points in the training dataset, the required computa-

tional power significantly increases, and high-performance computing (HPC)

or cloud-based calculation systems might be needed to manage the ML-based

regression.

As a final note based on the numerical validation test considered here, we

remark that the above-obtained results and conclusions are in contradiction

to the results reported in a recent study [29] in which it is claimed that

the dispersion behavior of the two fundamental wave modes (A0 and S0) at

only two discrete measurement points on the surface is sufficient to invert

the full orthotropic stiffness tensor. In that study, an average error of 4.5%

is attained based on a dataset created by the semi-analytical finite element

model where large boundaries are considered. It should be noted, however,

that the study does not allude to a procedure for the elimination of non-

physical stiffness parameters in the presence of large inversion boundaries,

nor does it provide the details of a mode-tracking algorithm to separate and

identify the fundamental modes. Depending on the steps in these procedures,

the performance of the algorithm is not guaranteed.
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3.2. Numerical case study: COMSOL Simulation for a Homogeneous wooden

plate

The studies conducted in the previous section focused on the inversions, in

the absence or presence of noise, where both the training and the test datasets

are created by means of the SAFE method. However, this above followed

approach should be conducted with care to avoid the so-called inverse crime

[30, 31]. Inverse crime problems generally occur when the same forward

model (predictor) is used to create the synthetic data as well as being adopted

during the inversion procedure (estimator). Traditionally, the inverse crime

problem is commonly avoided in literature by introducing certain derogations

during the inversion procedure, such as adding noise to the predicted data

[32]. Applied to our study, the addition of noise in combination with the fact

that the dataset is extremely sparse can be considered sufficient to stay away

from the inverse crime problem.

Nevertheless, in order to become totally convinced, a supplementary syn-

thetic dataset is created by using COMSOL finite element (FE) simulations to

emulate actual experimental measurements. Details of the COMSOL model

(See Fig. 6) can be found in literature [10]. The simulations are conducted

in the frequency domain, and 300 input parameters (20 frequency bins × 3

propagation directions × 5 identifiable wave modes) are extracted by using

MPDM and manual post-processing, as explained in Section 2.2 for the ex-

perimental data. A random noise level up to 2% is added to the extracted

wavenumbers to mimic noise effects comparable with experimental measure-

ments. Subsequently, the MLP model trained in Sec. 3.1 in the presence

of 2% noise is used to predict the elastic stiffness parameters. By adopting
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this approach 1) the likelihood of an inverse crime is eliminated because the

estimator data is created with an independent forward model (COMSOL),

different from the model used in the training (SAFE) and 2) Unlike the SAFE

model, COMSOL finite element (FE) simulations provide good estimations

of the true wave propagation behavior in finite size plates, at least when mesh

convergence is guaranteed, because the FE model is able to compute the en-

tire velocity response of the medium in both the spatial and the frequency

domain. Additionally, the FE model has the ability to cope with the effect

of boundary conditions and edge reflections.

𝑥

𝑧

0.5 𝑚

5 𝑚𝑚

(a)

𝑥

𝑧

(b)

Figure 6: Model parameters and results of the numerical simulation, a) The ge-

ometry and size of the plate in the two-dimensional finite element model, together

with the source position, and (b) The displacement field in z direction for beech

wood plate with 5 mm thickness (see Table 1 for material properties) at 60 kHz

for an in-plane propagation angle ϕ = 0.

The inverted stiffness parameters derived from the independent wave

propagation simulation data are shared in Table 3, and the inversion results

are compared with a traditional heuristic algorithm based on Particle Swarm

Optimization presented in literature [10]. An average 1.5% error compared

to the actual stiffness values as well as to the traditional inversion method

is achieved by using the MLP model. The average error on the principal

and shear components are found to be around 1.6% and 0.2%, respectively.
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The off-diagonal stiffness parameters have relatively higher error rates: on

average 2.5%, with the highest error being 5.3% for the C ′
13 component. The

obtained error levels are in line with the results obtained in the previous

section, indicating that the effect of the inverse crime approach in the above

numerical study is not problematic. To further validate the accuracy of

the MLP model, the dispersion curves calculated from the inverted stiffness

parameters (best match using the SAFE) are superimposed on top of the

dispersion data obtained from COMSOL, see Fig. 7.

Table 3: Elasticity values for a 5 mm thick beech wood plate with density 674

kg/m3 [27], along with the respective inverted homogenized tensor constants ob-

tained by means of the here proposed MLP approach and its comparison with

inversion results achieved from a two-stage PSO based inversion algorithm in the

presence of 2% noise [10].

Actual Values Machine Learning Traditional Inversion [10]

ij C ′
ij C ′

ij C ′
ij

11 17.33 17.77 17.27(±0.31)

12 3.03 3.10 3.01(±0.42)

13 1.69 1.78 1.68(±0.47)

22 3.26 3.30 3.26(±0.10)

23 0.74 0.74 0.74(±0.16)

33 1.64 1.66 1.64(±0.11)

44 0.62 0.62 0.62(±0.14)

55 1.09 1.09 1.09(±0.01)

66 1.52 1.51 1.52(±0.09)
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Figure 7: Wavenumber-frequency pairs for in-plane direction ϕ = 45 corresponding

to the MLP optimized stiffness values (black dots) superimposed on the dispersion

landscape for a 5 mm thick beech wood plate deduced from the COMSOL Lamb

wave propagation data in the same direction.

3.3. Experimental case study: Homogeneous G/PA6 plate

For the experimental case study, Lamb wave propagation data have been

acquired on the surface of a cross-ply [0/90]5s G/PA6 laminate with a thick-

ness of 5.5 mm and a density of 1710 kg/m3. The individual elastic properties

of the G/PA6 plies are taken from literature [33], and the homogenized (real)

stiffness parameters estimated by accounting for the assumed layer thickness

and stacking orientation parameters [34], are listed in column 2 of Table 4.

Details on the overall measurement technique and signal acquisition can be

found in literature [10]. In this case study, a broadband sweep sine voltage

signal with frequencies between 5 kHz to 300 kHz and a total time duration of

16 ms is used. The wavenumber-frequency pairs are automatically extracted

by using MPDM [10]. However, to prevent missed data points or to eliminate

closely located wavenumbers, the extracted wavenumber-frequency pairs are
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further post-processed manually.

The training dataset is again created by using the efficient forward SAFE

algorithm for 3 in-plane propagation directions (ϕ = 0, 45, and 90), and 10

frequency points between 60 and 240 kHz with a 20 kHz step size. As for the

numerical test case, the first 5 wave modes of the selected frequency range

are selected which leads to a total of 150 wavenumber-frequency pairs (10

frequency bins × 3 propagation directions × 5 wave modes) used for the

training.

The MLP-based inverted stiffness parameters are summarized in the third

column of Table 4, and are in reasonable agreement with the homogenized

values that were calculated from the individual ply parameters reported in

literature. It should be noted, however, that the homogenized literature

values are reported for a material with a low-moisture content, and that

the actual conditions at the time of the experiment on the composite plate

might somewhat deviate with respect to moisture and temperature, which

could definitely explain the small discrepancy between literature and inverted

stiffness values [33].

In addition and to confirm the acceptability of the inverted stiffness pa-

rameters based on the MLP approach, a comparison is again provided be-

tween the ML based inversion results and the inversion results obtained by

using a traditional heuristic inversion algorithm based on Particle Swarm

Optimization [10]. Interestingly, the difference between the results obtained

with the traditional inversion method and the proposed MLP-based inversion

method is less than 0.5%. Furthermore, in Fig. 8, the computed dispersion

curves calculated from the MLP-optimized stiffness parameters (best match
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using SAFE) are superposed on the experimentally recorded dispersion land-

scape. An excellent match is obtained, confirming the high accuracy of the

inverted stiffness parameters.

Table 4: Homogenized elasticity values for a 5.5 mm thick multi-layered G/PA6

plate with density 1710 kg/m3 based on individual ply properties found in lit-

erature, and comparison of the here proposed MLP based inversion results with

results obtained from a two-stage PSO based inversion algorithm.

Literature[33] Machine Learning Traditional Inversion [10]

ij C ′
ij C ′

ij C ′
ij

11 24.84 21.82 21.87(±0.02)

12 5.10 6.03 6.13(±0.05)

13 5.41 5.35 5.42(±0.01)

22 24.84 23.68 23.53(±0.02)

23 5.41 6.61 6.65(±0.02)

33 12.30 11.88 11.94(±0.02)

44 3.28 2.94 2.94(±0.00)

55 3.28 2.84 2.84(±0.00)

66 3.04 4.27 4.27(±0.01)
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Figure 8: Wavenumber-frequency pairs for in-plane direction ϕ = 90 corresponding

to the MLP optimized stiffness values (black dots) superimposed on the dispersion

landscape for a 6 mm thick [0/90]5s cross-ply G/PA6 plate deduced from the

experimental Lamb wave propagation data in the same direction.

4. Conclusions

A multilayer perceptron-based inversion scheme has been proposed to

identify the elastic stiffness properties of orthotropic plates from the 3D sur-

face velocity response to a broadband vibrational excitation. In the first step,

the proposed method extracts the real wavenumber values as a function of

frequency from the experimental wave propagation datasets at different in-

plane directions using the matrix pencil decomposition method (MPDM).

Alongside, for the inversion, the dispersion behavior for a large number of

materials with a range of orthotropic elastic stiffness parameters is simu-

lated by a fast semi-analytical finite element (SAFE) method. The resulting

simulation database thus consists of a large set of directional wavenumber-

frequency values which are used to train a multilayer perceptron algorithm

in view of identifying the targeted orthotropic elastic stiffness parameters.

31



The proposed inversion method is first validated using a synthetic dataset

created by SAFE, representative for a wooden plate, showing excellent per-

formance with an average relative error of 1.5% in the absence of noise, and

increasing up to 5.5% in the presence of 10% noise. Next, the same procedure

is applied on a numerical dataset created by an independent forward finite

element (COMSOL) model in the presence of 2% noise, resulting in a similar

1.5% average error, and thereby verifying the negligible effect of an inverse

crime approach in the applied procedure. Finally, further validation of the

MLP method is obtained on experimentally measured 3D Infrared Scanning

Laser Doppler Vibrometry data for a 5.5. mm thick cross-ply glass fiber rein-

forced polyamide plate. The inverted stiffness parameters are compared with

the results of a traditional inversion method, showing less than 0.5% average

difference. In addition, a good agreement with the homogenized stiffness

values reported in literature is found.

The main benefit of the proposed multilayer perceptron-based inversion

method is that, following a training stage which can be programmed in ad-

vance, the method yields accurate estimates of the elastic parameters of

orthotropic plates within a second, which makes it particularly useful for

real-time structural health monitoring and online model calibration and up-

dating.
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