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A B S T R A C T

X-ray Computed Tomography (CT) is a commonly used imaging technique for non-destructive inspection of
manufactured objects. However, a full CT scan requires a long acquisition time, making this method unsuitable
for inline applications. In contrast to X-ray CT, inspection can be performed directly in the projection space,
using simulated X-ray projections of a reference model of the manufactured object. However, to effectively
compare simulated and measured projections, an accurate 3D pose estimation of the object and consequent
alignment between the measured object and the reference model are crucial. In this paper, we present a
fast method to estimate the 3D pose of a measured object based on convolutional neural networks (CNNs).
Through experiments on synthetic and measured data, we demonstrate that our method allows estimating the
3D pose of the object with sub-pixel accuracy. Even if very few projections are available, our approach is
comparable to CT-based methods for registration, and outperforms state-of-the-art deep learning methods for
radiograph-based pose estimation.
1. Introduction

X-ray CT is a non-destructive procedure widely used for quality con-
trol of additively manufactured objects. CT-based inspection involves a
multi-step procedure that consists of the acquisition of projections from
which a voxelized model is reconstructed, segmented and finally com-
pared to a mesh derived from a computer-aided-design (CAD) model,
after registration (Kruth et al., 2011). For effective inspection, aligning
the measured object with its reference model is fundamental. It requires
high-quality reconstructions, for which thousand of projections are usu-
ally needed, with a comparatively long acquisition time (Withers et al.,
2021). Moreover, to prevent artifacts in the reconstructed volume, an
equiangular acquisition covering at least 180◦ is needed. In addition,
the volumetric reconstruction quality is affected by the presence of
noise and artifacts (Rodríguez-Sánchez, Thompson, Körner, Brierley,
& Leach, 2020), which can influence registration and, consequently,
the entire quality control process. As a result, the CT procedure is not
suitable for real-time inspection and applications where full rotation
around the object is not feasible or cost-inefficient.

Recently, it has been shown that inspection can be performed
directly in the projection space, thus avoiding the 3D reconstruction.
For example, to secure the borders against smuggling, Abdolshah,
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Teimouri, and Rahmani (2017) classified the content of shipping con-
tainers by extracting Scale Invariant Feature Transforms (SIFT) feature
vectors from its X-ray radiographs. Dong, Taylor, and Cootes (2018)
investigated weld defects on aircraft components from radiographs
by first extracting weld lines and then identifying defective regions.
Czyzewski, Krawiec, Brzezinski, Porebski, and Minor (2021) automat-
ically classified X-ray diffraction images with a CNN to detect seven
types of anomalies in crystals.

Radiograph-based inspection, however, often lacks volumetric in-
formation. To enable 3D radiographic inspection, the measured pro-
jections can be compared to those simulated from the reference CAD
model. For example, van Dael, Verboven, Zanella, Sijbers, and Nicolai
(2019) built a statistical shape and non-uniform density model of
apples from CT data of intact fruits. From this model, radiographs
were simulated for comparison with the measured projection data. To
perform 3D inspection from 2D projections, Evangelista et al. (2020)
mapped X-ray projections to the CAD model of the object to directly
locate the defects on the part itself.

Independent of the inspection scheme used, an accurate 3D pose
estimation of the object and consequent alignment between the mea-
sured object and the reference mesh are crucial. So far, few studies have
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Fig. 1. The system’s geometry (a) and the Euler angles 𝛾, 𝛿 and 𝜙 (b).
been conducted to estimate the object pose from its radiographs. Kü-
gler, Stefanov, and Mukhopadhyay (2018) recovered the 3D pose of
screws on a skull bone by extracting pseudo landmark positions with
a CNN from normalized regions of interest (ROIs). Miao, Wang, and
Liao (2016) estimated the 3D pose of an object hierarchically from
difference images between simulated and measured radiographs on
specific ROIs. Similarly, Bui, Albarqouni, Schrapp, Navab, and Ilic
(2017) optimized the pose of the object combined with a distance
between the X-ray projections produced with the estimated pose and
the measured X-ray images.

In our previous work (Presenti, Sijbers, & De Beenhouwer, 2021),
an analytical framework for projection-based inspection was proposed.
Based on simulated projections from the CAD model of the object, a
few task-specific preferred orientations were selected and dynamically
acquired during the inspection process. To do so, the 3D pose of the
object inside the imaging system was analytically estimated from a few
projections by exploiting the acquisition geometry information.

Neural networks are a powerful instrument widely adopted for 3D
object pose estimation. Many networks have been designed for this
purpose, and applied to the most disparate applications. For exam-
ple, Peng, Liu, Huang, Zhou, and Bao (2019) extract a vector field that
represents the object keypoint locations that are subsequently given
to a PnP solver to predict the final pose. Kehl, Manhardt, Tombari,
Ilic, and Navab (2017) use an SSD-based method for object detection
and pose estimation from RGB images. Bukschat and Vetter (2020)
extend the EfficientDet network, created for object detection, to 3D
pose estimation.

In X-ray inspection, it is common to demand 100 μm of accuracy and
down to 1 μm for metrology tasks (Tan, Kiekens, Kruth, Voet, & Dewulf,
2011). This is far from the accuracy of the state-of-the-art networks
for pose estimation from images, which reaches a few degrees and
millimeters or centimeters (Brynte & Kahl, 2020; Giefer, Castellanos,
Babr, & Freitag, 2019; Kendall, Grimes, & Cipolla, 2016). To the au-
thor’s knowledge, so far very few works have been proposed for object
pose estimation from X-ray radiographs. Davison et al. (2018) develop
a voting-based scheme to identify landmark locations from medical
images. Kügler et al. (2018) estimate the pose of screws placed close
to the skull temporal bone. Their i3PosNet outputs pseudo-landmarks
from which the pose is reconstructed by geometric considerations. The
PoseNet architecture is utilized by Bui, Albarqouni, Schrapp, Navab,
and Ilic (2017) to estimate the 3D pose of an object from its X-ray
projection.

In this work, we present a framework, named RDpose (Radiographic
Deep Pose), to estimate the 3D pose of an object from its measured
projections, based on CNNs. In the RDpose framework, the ResNet-50-
V2 network (He, Zhang, S., & J., 2016) pre-trained on the ImageNet
dataset (Deng et al., 2009) is fine-tuned to regress the 3D pose of
an object from its radiographs. To refine the estimation, the network
trained with one projection input is used as a feature extractor on
2

a multi-input, sharing weights network. In this way, the pose of the
object can be iteratively improved while acquiring new projections.
RDpose is expected to enable inline 3D inspection of objects from their
radiographs after real-time accurate alignment between the measured
object and its reference model.

2. Methods

In this section, we first describe the system geometry and the
parameters that define the object pose with respect to the acquisition
system. Next, the tool for creating realistic synthetic polychromatic
data is introduced, as well as the source focal spot model and noise
simulation. Finally, the architecture of RDpose framework is described.

2.1. The system geometry and problem formulation

Let  = {𝐱, 𝐲, 𝐳} be a reference system defined with respect to the
initial source and detector positions, with the 𝐲 and 𝐳 axis parallel to
the detector plane, and the 𝐱 axis along the source–detector direction.
The center 𝐎 = {0, 0, 0} of  coincides with the rotation center of the
acquisition system and with the barycentre of the mesh model (see
Fig. 1(a)). In an ideal setting, the object is perfectly aligned with the
reference model. However, when a physical object is placed inside a
real acquisition system, its position and orientation are unknown with
respect to the reference coordinate system. Let 𝐑𝐮(𝜃) be the rotation
matrix describing the rotation by an angle 𝜃 around the axis 𝐮 =
(𝑢𝑥, 𝑢𝑦, 𝑢𝑧). The orientation of the object is defined by the rotation angles
𝜙, 𝛿 and 𝛾 around 𝐱, 𝐳′ and 𝐲′′, respectively, with 𝐳′ = 𝐑𝑥(𝜙)𝐳 and
𝐲′′ = 𝐑𝑧′ (𝛿)𝐑𝑥(𝜙)𝐲 (see Fig. 1(b)). These are the so-called intrinsic Euler
rotations, defined with respect to axes updated after each rotation. The
barycentre of the object is assumed to be translated by 𝐭 = {𝑡𝑥, 𝑡𝑦, 𝑡𝑧}
with respect to the center of the reference system 𝐎.

In industrial inline inspection, some prior knowledge about the pose
of the object to be inspected is often provided, such that constraints can
be imposed to its pose. In our paper, we assume the rotation around the
vertical axis to be unconstrained, 𝛾 ∈ [0, 360)◦. The other parameters
are assumed to vary within narrower intervals: 𝛿 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥], 𝜙 ∈
[𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥], 𝑡𝑥 ∈ [𝑡𝑥𝑚𝑖𝑛 , 𝑡𝑥𝑚𝑎𝑥 ], 𝑡𝑦 ∈ [𝑡𝑦𝑚𝑖𝑛 , 𝑡𝑦𝑚𝑎𝑥 ] and 𝑡𝑧 ∈ [𝑡𝑧𝑚𝑖𝑛 , 𝑡𝑧𝑚𝑎𝑥 ].

2.2. Synthetic projection model

A frequent problem with neural networks is the demand for a large
number of data points to achieve a balance between high accuracy and
generalization. Training a pose regression network requires acquiring
thousands of projections of the object at different orientations, which is
highly impractical. Instead, our model was trained only on realistically
simulated X-ray projections that account for the projection geometry,
the source focal spot size and spectrum and the noise that can be
expected in real projection data. Realistically simulated projections
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Fig. 2. The architecture of the network with one projection as input. For each output, features are extracted from the input image by the ResNet-50-V2 convolutional body and
subsequently averaged and flattened. Next, a fully connected layer returns the output. Only two of the seven outputs are shown.
from a CAD model were created with a mesh projector (Marinovszki,
De Beenhouwer, & Sijbers, 2018), which uses ray-tracing and models
the material with energy-dependent attenuation values. To generate the
synthetic projection training dataset, the system geometry parameters
such as the source-object distance (SOD), the source–detector distance
(SDD), the detector size and pixel dimension, the source power, the
number of averages among the flat fields and the exposure time must be
established. To simulate the X-ray data, similar acquisition parameters
were used as for the measured data with which the network was tested.
To ensure the pixel intensity of the simulated projections resembles
that of the measured ones, the source spectrum must be accurately
estimated. In this work, the energy spectrum of the X-ray source was
calculated using Monte Carlo simulations (Nazemi et al., 2021). When
simulating projections, often a point source is considered. However, the
X-rays are emitted from an approximately Gaussian shaped focal spot.
The finite focal spot causes the formation of penumbra at the borders of
the imaged object in the detector. We relied on manufacturer supplied
data for the vertical and horizontal focal spot size, as a function of the
target power. Simulated projections were created with a point source
positioned at the horizontal and vertical approximation of the focal
spot shape, and then averaged with the weights of the corresponding
Gaussian probability distributions. Finally, Poisson noise was added to
the synthetic radiographs and to the synthetic flat fields. The beam
intensity 𝐼0 of the Poisson noise was estimated heuristically so as to
obtain a similar SNR as the measured data.

2.3. The network architecture

The aim of the RDpose framework is to estimate the 3D pose of
an object starting from a single projection image. Depending on the
required accuracy for a specific application, the pose estimation can be
iteratively improved while acquiring additional projections. The core of
the framework is formed by a ResNet-50-V2 network, which was used
here as a feature extractor. The RDpose framework consists of multiple
3

networks, each making use of the feature extractor, for which the input
and output layers were adapted to learn from an increasing number of
input images.

2.3.1. Single-input network
The single-input network is expected to estimate the 3D pose of

the measured object from a single projection image. A sketch of the
network architecture that accepts as input the first acquired projec-
tion and outputs the 3D pose parameters of the object is shown in
Fig. 2. ResNet-50-V2, implemented in Keras (high-level API built on
Tensorflow) (Abadi et al., 2015; He et al., 2016), and excluding its
classification head, was used as a feature extractor. For every pose
parameter, a fully connected network was attached to the feature
extractor composed of an average pooling layer with pooling size 3,
a flattening layer and, finally, a fully connected layer to the output
(see Fig. 2). The feature extractor parameter weights were initialized to
those obtained from the ImageNet dataset. During training, the network
is optimized with our X-ray dataset (see Section 3.2 for details).

As explained in Section 2.1, the angle 𝛾 is within the interval
[0, 360)◦. Mapping this parameter into [0, 1] or [−1, 1], codomains of
common activation functions, would heavily penalize a predicted value
close to 360◦ when the true value is around 0◦. To circumvent this
problem, we opted for estimating the sine and cosine of 𝛾, parameters
that together uniquely define the rotation angle and are by definition
in [−1, 1]. The network thus returns seven separate outputs: the sine
and cosine of 𝛾, the angles 𝛿 and 𝜙 and the translations 𝑡𝑥, 𝑡𝑦 and 𝑡𝑧. As
activation functions of the final layers, the hyperbolic tangent function
was used for the sine and cosine of 𝛾 and the sigmoid function for the
other parameters.

2.3.2. Multi-input network
To improve the estimate obtained from a single projection, multiple

projections acquired at different angular views can be fed to a multi-

input network. A fixed angular distance between the consecutive input
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Fig. 3. The architecture of the network with two projections as input. For each output, features are extracted from the input images by the ResNet-50-V2 convolutional body and
subsequently averaged, flattened and concatenated. Next, two fully connected layers return the output. Only two of the seven outputs are shown.
images was chosen, so that the network could learn the angular relation
between the projection images. In the RDpose framework, the single-
input network was extended to multiple projections by concatenating
the features extracted from each input image. As an example, the
summary scheme of the dual-input network is shown in Fig. 3. The
feature extractor structure is the same as the one used for the single-
input network. Its parameter weights were initialized to those obtained
after the single-input network training, and further optimized (see
Section 3.2 for details). The feature extractor was therefore applied to
the different inputs by sharing weights. Then, for every output, the fea-
tures were averaged with a pooling size 3, flattened and concatenated.
Concatenation is followed by a fully connected layer with 64 nodes and,
4

finally, a fully connected layer with the sigmoid or tangent hyperbolic
activation function.

3. Experiments

Our RDpose framework was tested on both simulated and realistic
data to evaluate the accuracy and precision of pose estimation. More-
over, our method was compared to conventional CT-based registration
and to the state-of-the-art radiograph-based registration (Kendall et al.,
2016). In our experiments, we tested the RDpose framework for one,
two and three input images. Details about the generation of training
and test data are given in Section 3.1. Subsequently, the hyperparame-
ters chosen for the training of the networks are reported in Section 3.2.
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Fig. 4. A render of the fuse cover used in our experiments (a), and pictures of the real object (b) and the object inside the X-ray system (c).
Fig. 5. Couples of simulated projections in our datasets. In the first row, the images corresponding to an acquisition angle of 0◦, and in the second and third rows, the images
after a 90◦ and 225◦ rotation, respectively.
Fig. 6. Measured projections of the fuse cover acquired at (a) 0◦, (b) 90◦ and (c) 225◦.
Finally, in Section 3.3, the experiments conducted to validate RDpose
are discussed.

3.1. Training and test data

The RDpose framework was evaluated with both simulated and
real data of a fuse cover made of glass fiber reinforced nylon (see
Fig. 4). To train the single-input network, 288 000 projections were
5

simulated from the mesh model of the fuse cover with the system
parameters as shown in the first row of Table 1. In order to reduce
the memory footprint during training, the pixel size of the simulated
images was chosen four times larger in each dimension than for the
measured (real) data (see the second row of Table 1). The object pose
was perturbed by randomly varying 𝛾 ∈ [0, 360)◦, 𝛿, 𝜙 ∈ [−16, 16]◦,
𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ∈ [−4, 4] mm. These parameter ranges were selected from the
analysis of the measured data. For the multi-input networks, a second
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Fig. 7. Absolute difference between the ground truth and the estimated rotation (a) and translation (b) for the networks with one, two and three input images.
Fig. 8. Projection difference between the measured ground truth radiograph of the object acquired at position 1 and the simulated radiographs with pose parameters as estimated
with (a)–(c) ICP, (d)–(f) the NN with one image as input, (g)–(i) the NN with two images as input and (l)–(n) the NN with three images as input. In the first row, it is shown
the acquisition at 0◦, while in the second and third rows the ones at 90◦ and 225◦, respectively.
and a third dataset, each composed of 288 000 simulated projections,
were simulated by rotating the reference mesh by first 90◦ and then
225◦ around the center of the reference system, while maintaining
the object and acquisition system parameters identical to those of the
first acquisition. Poisson distributed projections were simulated using
a beam intensity of 𝐼0 ∈ [32 000, 34 000]. The beam intensity range was
estimated heuristically so as to obtain a similar SNR to the measured
data. A few simulated projection images of all three datasets are shown
in Fig. 5.

To evaluate the accuracy of the method, 7 200 simulated projections
were generated, with the system parameters and beam intensity range
of 𝐼0 identical to those of the training data. The object pose was also
randomly perturbed within the same intervals as for the training data.
For each of the projections in the dataset, an acquisition at angular
6

distance of 90◦ and one at 225◦ were simulated as the second and third
input for the multi-input networks, respectively.

3.2. The network hyper-parameters

In our experiments, the weighted mean absolute error (MAE) be-
tween labels and predictions was used as a loss function with weights
𝑤 =

{

0.35, 0.35, 0.05, 0.05, 0.1, 0.05, 0.05
}

for the sin 𝛾, cos 𝛾, 𝛿, 𝜙, 𝑡𝑥, 𝑡𝑦 and
𝑡𝑧 outputs, respectively. The sine and cosine of 𝛾 and the translation 𝑡𝑥
received higher weights being out of plane parameters (see Fig. 1(a)),
which are more difficult to regress from a single projection. Both
the single-input and the multi-input networks were fine-tuned on our
datasets by training only the newly introduced layers for the first
20 epochs, while freezing the feature extractor. Subsequently, all the
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Fig. 9. Projection difference between the measured ground truth radiograph of the object acquired at position 2 and the simulated radiographs with pose parameters as estimated
with (a)–(c) ICP, (d)–(f) the NN with one image as input, (g)–(i) the NN with two images as input and (l)–(n) the NN with three images as input. In the first row, it is shown
the acquisition at 0◦, while in the second and third rows the ones at 90◦ and 225◦, respectively.
Table 1
The system geometry used in our experiments.
Object SOD SDD Proj size Pixel size Resolution

Fuse cover (simul.) 108.340 mm 650 mm 354 × 360 0.600 mm 0.100 mm
Fuse cover (real) 108.340 mm 650 mm 1416 × 1440 0.150 mm 0.025 mm
Table 2
The 95% confidence interval of the pose parameters estimated by the three-inputs
network on simulated and measured images.

Parameter Simulated Measured

𝛾 (−1.688 ± 0.017)◦ (−1.876 ± 0.012)◦

𝛿 (−3.236 ± 0.005)◦ (−3.417 ± 0.012)◦

𝜙 (−1.287 ± 0.005)◦ (−1.407 ± 0.009)◦

𝑡𝑥 (1248 ± 2) μm (1224 ± 5) μm
𝑡𝑦 (461 ± 0) μm (423 ± 1) μm
𝑡𝑧 (−1206 ± 1) μm (−1218 ± 2) μm

networks layers were trained for an additional 80 epochs. The learning
rate was initialized to 10−4 and reduced to 10−5 and 0.5×10−6 after 20
and 40 epochs, respectively.

3.3. Comparison to state-of-the-art

To evaluate the precision of RDpose, a scan of the real object
composed of 2159 projections equiangularly distributed over 360◦

was acquired. To limit the size of the network, the high resolution
projections, acquired with the geometry settings as in the second row
of Table 1, were downsampled four times in each dimension with a
bicubic interpolation. After this operation, the image size corresponded
to the one of the simulated data, which had a virtual detector pixel
size that was four times larger than the pixel size of the real detector.
7

In addition, projections of the mesh model at a perturbed pose were
simulated at the same angles as for the real data acquisition. Among
the acquired projections, couples of projections at angular distance
of 90◦ and 255◦ were used as input for the three-inputs network.
For each prediction, the estimated local pose was transformed to the
global coordinate system (where the 𝑥 axis coincides with the source–
detector direction at the first acquisition). The accuracy of the angular
distance between two consecutive acquisitions is system dependent.
The manufacturer of the acquisition system used in our experiments
specified that the axial and radial run-out at 15 cm is lower than 1 μm
for the rotation axis. Therefore, we can assume that the error on the
angular distance between two consecutive acquisition is < 1 μm.

To compare RDpose to a conventional registration approach, three
other full CT scans of 2159 projections equiangularly spanning 360◦

were acquired by placing the real object in different poses. An example
of measured projections of the object at 0◦, 90◦ and 225◦ is shown in
Fig. 6. Then, 2D slices were reconstructed with the Feldkamp, Davis and
Kress (FDK) algorithm (Feldkamp, Davis, & Kress, 1984). The resulting
3D volume was then manually thresholded and an STL model was
extracted by using the VTK library (Schroeder, Martin, & Lorensen,
2006). Finally, the reference mesh was aligned to the reconstructed
one with an iterative closest point (ICP) algorithm. Among the acquired
radiographs, only those at 0◦, 90◦ and 225◦ rotation, and downsampled
four times, were used as input of our networks.

We compared our results to PoseNet (Kendall et al., 2016), a net-
work based on GoogLeNet (Szegedy et al., 2014). In this architecture,
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Table 3
The MSE between the vertices of the reconstructed mesh and the nominal mesh oriented as estimated by
ICP and RDpose.
Experiment ICP NN - 1 image NN - 2 images NN - 3 images

position 1 0.13 0.30 0.19 0.24
position 2 0.30 0.14 0.17 0.16
position 3 0.22 0.52 0.32 0.17
position 4 0.14 0.21 0.19 0.20
Table 4
The mean MSE between the measured projections and the simulated ones ± the 95% CI. All the values have
to be multiplied by a factor 10−3.
Experiment ICP NN - 1 image NN - 2 images NN - 3 images

position 1 𝟔.𝟎 ± 𝟎.𝟎𝟒𝟏 7.6 ± 0.045 6.1 ± 0.038 6.1 ± 0.037
position 2 6.1 ± 0.033 5.9 ± 0.037 6.0 ± 0.038 𝟓.𝟖 ± 𝟎.𝟎𝟑𝟕
position 3 7.0 ± 0.049 9.5 ± 0.053 7.5 ± 0.046 𝟔.𝟗 ± 𝟎.𝟎𝟓𝟎
position 4 𝟓.𝟐 ± 𝟎.𝟎𝟑𝟐 5.6 ± 0.028 5.5 ± 0.035 𝟓.𝟐 ± 𝟎.𝟎𝟑𝟑
Table 5
The performance of RDpose compared to PoseNet.

PoseNet RDpose RDpose RDpose
1 input 2 inputs 3 inputs

𝐭𝑀𝐴𝐸 98 μm 77 μm 9 μm 𝟓 μ𝐦
𝐪𝑀𝑆𝐸 6 × 10−4 7 × 10−4 6 × 10−4 𝟏 × 𝟏𝟎−𝟕

inception modules were repeated, and auxiliary outputs connected to
intermediate layers were introduced to improve the network perfor-
mance. During training, the auxiliary outputs loss was included in
the network loss function. Auxiliary outputs were not used in our
implementation of PoseNet, and the translation parameters and the
quaternion defining the rotation were directly regressed. PoseNet was
trained for 100 epochs, with a learning rate of 10−3, and the MSE as
a loss function. As Bui et al. (2017), the performance of the networks
was validated in terms of the MSE between the estimated quaternions
and the ground truth ones (𝐪𝑀𝑆𝐸) and the MAE between the estimated
and the ground truth translation vectors (𝐭𝑀𝐴𝐸). Finally, we compared
our network to EPro-PNP by Chen et al. (2022), a state-of-the-art
probabilistic PnP method for end-to-end pose estimation. The network
was trained on 256 × 256 downscaled input images and returned a 3 × 3
rotation matrix and a 3 × 1 translation vector.

4. Results and discussion

The absolute difference between the ground truth rotation and
translation of the object and the pose estimated from simulated test
data is shown in Figs. 7(a) and 7(b), respectively, for the network with
one, two and three projections as input. The mean errors obtained by
the single-input network are 𝛾 = 0.21◦, 𝛿 = 0.26◦, 𝜙 = 0.20◦, 𝑡𝑥 =
0.15 mm, 𝑡𝑦 = 0.04 mm and 𝑡𝑧 = 0.04 mm. For the two-inputs network,
he accuracy increased, with mean errors of 𝛾 = 0.06◦, 𝛿 = 0.05◦,
𝜙 = 0.05◦, 𝑡𝑥 = 11 μm, 𝑡𝑦 = 7 μm and 𝑡𝑧 = 10 μm. Finally, the three-
nputs network showed a further increase in accuracy, with mean errors
f 𝛾 = 0.03◦, 𝛿 = 0.03◦, 𝜙 = 0.04◦, 𝑡𝑥 = 5 μm, 𝑡𝑦 = 5 μm and 𝑡𝑧 = 5 μm.
he precision of the three-inputs network is shown in Table 2. Here, the
5% confidence intervals (CI) of the parameters are reported for both
imulated and measured data. From this experiment, we can conclude
hat RDpose showed a high precision, i.e. the estimates over multiple
easurements returned values in a narrow range.

The parameters sine and cosine of 𝛾 are not independent, but are
elated by the orthogonality rule. The orthogonality of our predicted
arameters was evaluated by calculating (sin 𝛾)2+(cos 𝛾)2, obtaining the

value of (1.0015 ± 0.0053)◦ for the one input network. This shows that
the designed network learns the relation between the two parameters
from the observation of the labels. Therefore, explicit modeling of the
orthogonality loss is not required.
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Measured projections were compared to simulated ones with the
reference mesh oriented and positioned as estimated by our networks
and by the ICP alignment. Figs. 8 and 9 show the difference images
for the two positions underlined in Table 3. The 2159 projections of
the 4 experiments were compared to simulated ones after alignment.
For memory reasons, this comparison was performed on four times
down-sampled projections. The mean MSE over the projections and
the 95% CI are reported on Table 4. In Table 3, the MSE between
the vertices of the reconstructed mesh from the measured data and
those of the reference mesh oriented as estimated with ICP and with
the neural networks is reported for the four experiments. Color map
representations of the 𝐿1−norm between the vertices of the meshes
after registration are shown in Fig. 10, for the two positions underlined
in Table 3.

From these results, we might conclude that RDpose framework
and ICP are comparable. By observing Fig. 10, one may notice a
discrepancy between the colormap and the MSE. The first thing to bear
in mind when looking at the colormap images is that the reference
mesh of the analyzed object did not correspond exactly to the measured
object. Secondly, the two registration methods seemed to concentrate
on two distinguished parts of the object. Moreover, and maybe more
significant, the vertices in the CAD model were not equidistributed. As
the colormap was created with a color gradient between two vertices
of a triangle, the area of the triangle impacts our perception of the
registration quality. In other words, if a vertex with a high error belongs
to a triangle with a large surface, this will visually result in a larger
red area than for a smaller triangle. Similarly, also the MSE measure
might not be an appropriate indicator for registration accuracy. Indeed,
if many vertices are concentrated on an area where the distance to
the extracted mesh for the object is high, this will have a high neg-
ative impact on the MSE measure. However, despite the difficulty of
interpreting and comparing these results, two main arguments point
in our favor: first, the ICP registration was achieved from a full CT
acquisition, while our results were based on a maximum of three 2D
projections; second, the ICP algorithm was applied to a mesh extracted
from high-resolution projections, in contrast to our method where, for
computational reasons, the registration was performed from four times
down-sampled projections.

Results of the comparison between RDpose and the PoseNet net-
work (Kendall et al., 2016), are reported in Table 5. Our approach
outperformed PoseNet both in terms of the 𝑡𝑀𝐴𝐸 and the 𝑞𝑀𝑆𝐸 . More-
over, the advantage of using multiple projections is clearly shown,
allowing for a more accurate estimation of the object pose. As far as
we know, the use of more than one projection as input is an innovative
approach for deep learning radiograph-based 3D registration.

Table 6 shows the comparison between RDPose and EPro-PnP net-
works. From this result, the advantage of a multi-input network is
evident compared to a single input network which is the state-of-the-
art on pose estimation. When comparing the two architectures on a
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Table 6
The mean absolute error of RDpose and EPro-PnP.

𝛾 𝛿 𝜑 𝑡𝑥 𝑡𝑦 𝑡𝑧
EPro-PnP 0.21◦ 0.06◦ 0.06◦ 30 μm 𝟒 μ𝐦 𝟒 μ𝐦
RDPose, 1 input 0.21◦ 0.26◦ 0.20◦ 150 μm 40 μm 40 μm
RDPose, 2 inputs 0.06◦ 0.05◦ 0.05◦ 11 μm 7 μm 10 μm
RDPose, 3 inputs 𝟎.𝟎𝟑◦ 𝟎.𝟎𝟑◦ 𝟎.𝟎𝟒◦ 𝟓 μ𝐦 5 μm 5 μm
Fig. 10. 𝐿1-norm between the reconstructed mesh and the nominal one oriented as estimated with ICP ((a) and (e)), the NN with one image as input ((b) and (f)), the NN with
two images as input ((c) and (g)) and the NN with three images as input ((d) and (h)). The images in the first row refers to position 1, while those in the second row refers to
position 2.
single input, instead, our method has a worse performance. However,
as previously mentioned, the innovative idea of the RDpose approach
is the iterative refinement of the object pose, rather than the use of a
specific network architecture.

5. Conclusion

In this paper, we presented RDpose, a CNN-based method to esti-
mate the 3D pose of an object from its X-ray projections. By using a
pre-trained ResNet50-V2 network, the pose was regressed from a single
projection image and iteratively refined when more projections were
acquired. With the RDpose framework, real-time, few-view, and limited
angular acquisition X-ray inspection becomes feasible. By skipping the
3D reconstruction, indeed, very few X-ray projections are sufficient for
an accurate registration. Our methodology was validated with a test
case glass fiber reinforced object for both simulated and measured data.
In our experiments, the networks were trained solely with realistic data
simulated from the object reference model. Compared to conventional
3D volumetric registration, RDpose achieved a similar accuracy on
pose estimation without the need for a CT reconstruction. Moreover,
our multi-input networks outperformed the state-of-the-art CNN-based
methods for 3D pose estimation from radiographs, taking advantage of
the 3D information obtained from different orientations.
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