Streaming Linked Data: A Survey on Life Cycle Compliance

Pieter Bonte?, Riccardo Tommasini

“Ghent University - imec, Belgium
PINSA Lyon, LIRIS, France

b

ARTICLE INFO

Keywords:

Linked Data

RDF Stream Processing
life-cycle

ABSTRACT

Data streams are becoming omnipresent on the Web. The Stream Reasoning (SR) paradigm,
which combines Stream Processing with Semantic Web techniques, has been successful in
processing these data streams. The progress in SR research has led to several applications in
domains such as the Internet of Things, social media analysis, Smart Cities, and many others.
Each of these applications produces and consumes data streams, however, there are no fixed
guidelines on how to manage data streams on the Web, as there are for their static counterparts.
More specifically, there is no fixed life cycle for Streaming Linked Data (SLD) yet. Tommasini
et al. [66] introduced an initial proposal for a SLD life cycle, however, it has not been verified if
the proposed life cycle captures existing applications and no guidelines were given for each step.

In this paper, we survey existing SR applications and identify if the life cycle proposed by
Tommasini et al. fully captures the surveyed applications. Based on our analysis, we found that
some of the steps needed reordering or being split up. This paper proposes an update of the
life cycle and surveys the existing literature for each life cycle step while proposing a number
of guidelines and best practices. Compared to the initial proposal by Tommasini et al., we drill
down into the details of the processing step which was previously neglected. The updated life
cycle and guidelines serves as a blueprint for future SR applications. A life cycle for SLD that
allows to efficiently manage data streams on the web, brings us a step closer to the realization of
the SR vision.

Final version:

Pieter Bonte, Riccardo Tommasini. Streaming Linked Data: A Survey on Life Cycle Compliance.
Journal of Web Semantics, 2023, 77, pp.100785. https://doi.org/10.1016/j.websem.2023.100785

ORCID(S):

Bonte et Tommasini: Preprint submitted to Elsevier Page 1 of 31

https://doi.org/10.1016/j.websem.2023.100785

Streaming Linked Data Life Cycle

Figure 1: Streaming Linked Data life cycle.

1. Introduction

The Semantic Web community has witnessed a growing interest in streaming data over the last decade. Under the
Stream Reasoning (SR) umbrella, Semantic Web technologies were combined with Stream Processing ones to answer
the research questions is it possible to make sense, in real-time, of heterogeneous, vast, incomplete, and noisy data
streams coming from complex domains? This research question spans a number of application domains, including
social media analytics, the Internet of Things for smart cities [52, 31], and cluster management [56].

The research outcomes of SR include but are not limited to, findings on Continuous Querying over RDF
Data, Incremental Reasoning, and Complex Event Recognition [21]. In particular, the research around RDF Stream
Processing (RSP) has been incredibly active. Indeed, the related literature shows evidence of query languages
and systems architectures but also working prototypes, benchmarks, and applications [43]. RSP proposes several
extensions! of the semantic Web stack depicted in Figure 2, i.e., an extension of RDF to represent infinite streams
of data, i.e. RDF Streams, continuous extensions of SPARQL, and engines capable of ingesting RDF streams and
evaluating queries under continuous semantics defined in RSP-QL [22].

Recent achievements, e.g., RSP4J [64] and the Stream Reasoning Playground [55] attempt to push the community
boundaries by lowering the cost of approaching the field. Moreover, the growing availability of data streams re-opened
the debate around publishing dynamic data on the Web. In particular, there is a growing need for guidelines on how to
produce and consume data streams in a sustainable manner.

Similar guidelines exist for non-streaming data, e.g., the Linked

Data Principles, which support the original vision of Sir Tim | Joor Interfaces and Applioations
Barners-Lee, and the FAIR initiative, which provides principles to d
make data Findable, Accessible, Interoperable and Reusable. To- —
gether they inspired the first attempt to define a Streaming Linked I

Data (SLD) life cycle [66]. Such a proposal identifies the life cycle I Urig Lo |

steps starting from three situations a practitioner may find when
dealing with SLD. Three possible starting points are identified, i.e., | Continuous Quening:

| Ontologies: OWL "Rules. RIF/SWIRLl

Querying:
Web Data published in batches; Linked Data published in batches; RSPLGL | Taxonomies: RDFS |
and Web Data published as streams. Although realistic, the work S —
presented in [66] elicits the life cycle, neglecting an application RO Stream Data Interchange: RDF

perspective. In practice, a lot of attention is given to how to provision)
data, neglecting the important role of querying.

Despite RSP leading to the vision of SLD, best practices for L
sharing highly dynamic datasets on the Web are still missing. The
existing proposal [66] does not fully capture the complexity of stream
reasoning applications. Therefore, this paper presents a novel life
cycle for SLD, which extends the one in [66] with best practices
elicited from state-of-the-art SR/SLD applications.

The new life cycle is depicted in Figure 1. It consists of seven steps and aims at making data streams findable,
accessible, reusable, and interoperable [70]. In particular, the life cycle details how to publish SLD, indicating how to
(i) identify and name data streams as Web resources, (ii) model data and metadata, (iii) shape the data, (iv) annotate the
data into RDF, (v) describe the data to improve stream discovery, and (vi) serve the streaming data. Differently from
[66], the description step (4) is postponed after the conversion that, in turn, is split into shaping and annotation. Like
in [66], the paper highlights the available resources to be used within each step ultimately helping practitioners in the
maintenance. For example, the paper discusses ontologies [67, 27], systems [44, 64], and describes how to use them

Figure 2: RSP extension proposal for the Se-
mantic Web Stack.

'Non-Standard

Bonte et Tommasini: Preprint submitted to Elsevier Page 2 of 31

Streaming Linked Data Life Cycle

in practice with reference to the seven steps. Compared to [66], this paper goes into much more detail when discussing
each step, proving the reader with ample background to make the correct decisions when publishing SLD. Finally, the
life cycle terminates in a guerying step, which is discussed in more depth than in [66] and includes the sub-task we
identified while studying the surveyed projects. In summary, the paper contributions are:

e we survey existing stream reasoning/streaming linked data projects and we highlight their characteristics.

e we criticize the existing linked data lifecycle proposal [66]. In particular, we show that it does not fully capture
how existing SR applications were designed. Therefore, we justify two amendments, i.e., we postpone the
description step and we split the conversion step into two, i.e., shaping and annotation.

e We drill down into the details of the querying step that was previously neglected. In particular, we distinguish
the essential operational components of application pipelines and we present them using the RSP-QL reference
model.

e we introduce a running example of the novel life cycle using a well-known stream reasoning task, i.e., the DEBS
Grand Challenge 2015. We use such an application to walk through the new life cycle as was done in [63],

e We provide a more comprehensive description of the resources required at every step than in [63]. In particular,
we present the alternatives and discuss the pros and cons.

o Finally, we discuss the level of maturity of the state of the art for each step, we elicit best practices, and we draw
potential future research directions for the SR/SLD community.

We highlight that this paper focuses on surveying SR/SLD projects and not on Semantic Web of Things (SWoT)

projects in general. The difference resides in the fact that the former has much more dedicated focus on how to handle
streams on the Web, while the latter has its focus on the Thing, i.e. how to discover the Thing, how to represent the
Thing, how to communicate with the Thing and how to make various Things interoperable. Even though the Things
might produce streams, the discovery, description and general focus is on the Things and not on the streams as in SLD.
There is some overlap between SLD and SWoT, i.e. some SWoT projects fall within the SLD paradigm, however, SLD
also has applications outside of the SW0T, such as social media analysis.
Outline. Section 2 describes the survey methodology while Section 3 introduces the selected Stream Reasoning
Applications. Section 4 discusses the limitation of the existing proposal wrt. the selected SR applications. Section 5
introduces a running example used to explain the different steps of the lifecycle. Section 6 presents the updated lifecycle
in details, and Section 7 positions the survey in the state of the art. Section 8 concludes the paper by highlighting best
practices and drawing guidelines for future research.

2. Survey Methodology

In particular, we aim at answering the following research questions: Are existing stream reasoning applications
compliant with the proposed SLD lifecycle? Intuitively, in case of a negative response, we are interested to understand
the reason for such a mismatch.

Our analysis of the state-of-the-art follows the guidelines for systematic mapping studies proposed in [12], which
were successfully applied to other surveys on the semantic web. In particular, we follow the same research protocol
applied in [12]. Reyero-Lobo et al. first collected relevant studies following a keyword-based search then applied
different filters, i.e., a source-based filter that discards non-relevant research areas; a metadata-based filter that inspects

Collection Filtering Snowballing

(keyword-based) - | (sOUrce/metadata/content) |se—-

Figure 3: Selecting relevant work on Streaming Linked Data.

Bonte et Tommasini: Preprint submitted to Elsevier Page 3 of 31

Streaming Linked Data Life Cycle

Projet Year Deployment Domain Task
SpitFire 2011 Smart Building Enabling services for Semantic Web of Things
Bottari 2012 Seul, Korea Social Media Augment.ed reality application for pers.onahzed
and localized restaurant recommendations,
London, UK Collect analyse of data streams and
SLb 2013 Milan, ltaly Event Management visualise the results in dashboards .
Spatio-temporal diagnosis of traffic conditions;
StarCity 2014 Dublin, Ireland Smart City Spatio-Temporal exploration of traffic contexts;
Traffic Status Prediction.
. Integrate, communicate and enable
OpenloT 2015 Internet of Things interoperability between loT sensors
CityPulse 2016 Aarhus, Denmark Smart City Smart city service creation
. . Fertility management of dairy cows;
AgriloT 2016 Smart Farming soil fertility for crop cultivation
. Munich, Germany Manufacturing, o . . .
Optique 2017 Stanger, Norway Oil Extraction Monitoring of qualist of drills and turbine
OpenSense2 2017 Lausanne, Switzerland Smart City Estimating air quality
StreamingMASSIF | 2018 Ghent, Belgium Smart City Detection of traffic events
CitySensing 2019 Milan, Italy Smart City Visual story telling of activity in the city
Table 1

Summary of the Selected Projects.

the title, abstract, venues, and years; a content-based filter which inspects the paper in details. An enrichment step
(aka snowballing) concludes the selection, where additional papers are added inspecting citations and related works of
those resulting from the filtering. Figure 3 visualizes these different steps and indicates the number of identified works
in each step.

For our search, we used DBLP, ACM library, and Google Scholar. The latter was also used for enrichment. The
keywords we selected are stream reasoning, streaming linked data, dynamic linked data, rdf stream processing, Linked
Streams and Linked Stream Data. Moreover, we refine the selected papers by searching for keywords that indicate the
phase of the proposed life cycle, i.e., naming, modeling, converting, serving, querying.

According to [12], the paper collection process should follow Inclusion Criteria, which simultaneously defines
the scope and allow one to deterministically decide if a paper needs to be considered. The criteria applied during the
metadata-based filtering are:

IC1 Papers written in English
IC2 Papers published between 2010 and 2022
IC3 Papers subject to peer review.

Moreover, for content-based filtering, we focus on a paper that describes a stream reasoning system within the
context of a use case. In particular, we exclude papers that focus only on the definition of a query language, an execution
engine, or a benchmark to prioritize work that approaches stream reasoning as a full-stack problem.

3. Summary of Selected Projects

To verify if the steps of the SLD life cycle in [66] map to real SR/SLD applications, we investigated various
successful SLD frameworks and applications from the literature. For these frameworks and applications, we investigate
if they are compliant to the SLD life cycle in[66] or if the life cycle needs updating to better capture real-life SR/SLD
applications.

BOTTARI [4] is a streaming analytic application designed to make sense of social media using inductive and
inductive stream reasoning methods. The platform performs analyses of the activities of monitored influencers around
the points of interest (POIs) of a given area. The analysis is window-based, spanning from a few seconds to months. The
social media streams are gathered from the Web (in particular from Twitter) and converted into an RDF stream using
the proprietary crawling and sentiment mining infrastructure of Saltlux. BOTTARI, which employs augmented reality

Bonte et Tommasini: Preprint submitted to Elsevier Page 4 of 31

Streaming Linked Data Life Cycle

applications for personalized and localized restaurant recommendations, was experimentally deployed in the Insadong
district of Seoul. In BOTTARI, data is modelled using the SIOC and WGS-84 ontology. In order to convert the tweets
to RDF, a hard-coded solution for annotation is used. Once annotated, the RDF data is served using websockets and
queried using the C-SPARQL [8] RSP engine.

The CityPulse project [52] handles a typical Smart City use case. The framework allows the development of
applications that can provide a continuous and dynamic view of a city, making sense of social and sensor streams. To
this extent, CityPulse employs semantic discovery, data analytics, and large-scale reasoning in real-time. CityPulse is
built in a service-oriented manner combining RDF Stream Processing and Complex Event Processing. The framework
was demonstrated using live data from the city of Aarhus, Denmark. In CityPulse, the sensor data is annotated
using a custom hard-coded solution, resulting in a stream producing graph shaped time-annotated events. The events
themselves have been identified using random identifiers, allowing to differentiate between events. The SSN, PROV-O
and OWL-S ontology are used to model the event data, while the SAO ontology is used the describe the streams
themselves. The CQELS [38] RSP engine is used to query the RDF streams.

SLD (which stands for Streaming Linked Data) [7] is a framework to collect, annotate, and analyse data streams.
To this aim, SLD uses semantic technologies like RDF and SPARQL as well as techniques for sentiment mining. The
framework follows the publication method proposed in [9]. SLD was successfully used to monitor the London Olympic
Games 2012 and the Milano Design Week 2013 and 2016. In SDL, the idea of instantaneous Graphs (iGraphs) is used
to identify a set of triples that have the same timestamp. The data itself is modeled using the SIOC ontology® and a
custom hard-coded mapper is used to annotate the data to RDF. The C-SPARQL engine is used to guery the data.

STAR-CITY [41], which stands for Semantic Traffic Analytics and Reasoning for CITY, is a system for streaming
data integration and analysis focusing on traffic data management. STAR-CITY is capable of interpreting the semantics
of contextual information and then deriving innovative and easy-to-explore insights. In practice, it computes the spatio-
temporal similarities of traffic congestion and calculates accurate traffic forecasting using recent theoretical research
work in contextual predictive reasoning. STAR-CITY was developed in collaboration with IBM Dublin, Ireland, where
it was also applied. STAR-CITY also uses a custom hard coded mapper to annotate the data to RDF and uses the Time?
and Geo Ontology * to model the events. Rest APIs are used to provide and serve the data that is being queried by the
Jena SPARQL engine.

The SpitFire project [49] enables the creation of SWoT services by providing specialized vocabularies, i.e. the
SpitFire Ontology, abstracting sensors, semi-automatic generation of annotations, and efficient search of sensors. It
uses custom code to annotate the sensor data. The streams themselves are not described, but rather the sensor (or
things) that produce the sensor streams. Once a certain sensor has been identified as being of interest, the CQELS
engine is used to query the data.

The OpenloT project [59] is an open-source IoT platform aiming at semantic interoperability of IoT services. It
is designed to enable and facilitate SWoT projects and has showcased its capabilities through agriculture, smart city,
smart building, or IoT-enabled communication [1] applications. OpenloT uses the X-GSN [16] sensor middleware to
collect data streams from virtual sensors or physical devices. X-GSN has custom hard-coded mapping functionality to
annotate the sensor data to the SSN ontology. As OpenloT is a SWoT project, the streams themselves are not described,
but rather the sensor (or things) that produce the sensor streams. OpenloT uses the Linked Stream Middleware [40] for
this purpose and allows guerying using the CQELS RSP engine.

Agri-IoT [31] is a highly customizable online platform for IoT-based data analytic in the context of smart farming. It
is capable of large-scale data querying, and automatic reasoning based on data streams of data coming from a variety of
sources, e.g., sensory systems, surveillance cameras, hyperspectral images from drones, weather forecasting services,
and social media. Agri-IoT aims at helping farmers in more informed decision-making in real-time and fast reaction
to changes and unpredictable events. In Agri-IoT is annotated using a custom hard coded mapper and the events are
modeled using the Agri-IoT ontology, which extends the SSN > and OWL-S ontology®. The SAO ontology’ is used to
describe the streams themselves, such that they can be queried by RSP engines such as CQELS and C-SPARQL.

Zhttps://www.w3.org/Submission/sioc-spec/
3https://www.w3.org/TR/owl-time/
“https://www.w3.0rg/2005/Incubator/geo/X GR-geo-ont-20071023/
Shttps://www.w3.org/TR/vocab-ssn/
Shttps://www.w3.org/Submission/OWL-S/
"http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao

Bonte et Tommasini: Preprint submitted to Elsevier Page 5 of 31

http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao

Streaming Linked Data Life Cycle

The Optique [33, 35] project handles several Big Data scenarios in the context of energy production. The case of
Siemens Energy (Munich, Germany) aims at monitoring a number of service centers for power plants, the main task was
monitoring remotely and in real-time thousands of appliances like gas and steam turbines, generators, and compressors
installed in plants. The case of Statoil (Stavanger, Norway) aims at improving the data gathering and analysis routines
of Statoil geologists, who need IT specialists in order to make sense of multiple complex and large data sources.
The Optique platform employs semantic technologies for enabling ontology-based data access for the aforementioned
scenarios. Logical reasoning is used in form of query rewriting to efficiently analyze data from heterogeneous data
sources. In the Optique project, R2ZRML [19] is used to annotate the data which much more flexible instead of a hard-
coded solution. Incorporating the annotation allows performing rewriting from the RDF Streams to the underlying
data to improve efficiency. The data is modeled using a turbine ontology and queryed using the STARQL engine.

The OpenSense2 project aims at integrating air quality measurements captured by various mobile and crowd-
sensing data sources and sensors, intending to understand the impact of urban air pollution exposure on the health
of the citizens. OpenSense2 also uses X-GSN and allows to use its custom mapping annotation functionality or
use augmented CSV as a common format for describing observation as RDF can be too verbose. This augmented
CSV follows descriptions that follow the specifications of the CSV on the Web Working Group®. The sensor data is
modeled using the SSN ontology. OpenSense2 allows to use Complex Event Processing (CEP) or RSP engines such
as CSPARQL and CQELS to guery the data.

StreamingMassif [10] is an extension of the MASSIF platform for cascading stream reasoning. It combines several
layers of processing that include RSP, Description Logic reasoning, complex event recognition, and aggregations.
Streaming Massif was studied to overcome MASSIF limitations in terms of throughput and latency. Its layered structure
eases the deployment of expressive components for advanced analytics. Streaming Massif uses a simplified version of
RML [24] to annotate the data while identifying the time annotated graphs using the idea of iGraphs. It allows the use
of multiple ontologies to model the data and WebSockets are used to serve the data to the engine. By exploiting the
shape of the data, it is able to push some of the processing closer to the source of the stream.

CitySensing combines various social media streams and anonymous call data records during large city-scale events,
such as the Milan Design Week. It is mainly used for visual storytelling, giving an overview of activity hotspots
in a visual interface. CitySensing semantically annotates the stream through the FraPPE ontology, which takes its
inspiration from the digital image domain. The ontology allows to split up the view and events in the city in pixels
and frames to provide a spatial unit of aggregated information. Doing this allows zooming in and out on the events
happening throughout the city. CitySensing uses an ontology-based access approach while annotating the data with
the FraPPE ontology and integrating it with more static resources. Data are ingested from streaming data sources,
i.e., Instagram, Twitter, and Telecomltalia’s Call Data Records, and several static sources for places and events. Input
data are converted using triple templates into the activity stream 2.0 format. The description of streaming data follows
sGraph approach, but it is not fully detailed in the work, nor is the serving protocol. Finally, a system called Natron
semantically augments data using a custom Named Entity Recognition and evaluates a continuous query every 15min.
The result of this continuous query is a stream modeled in FraPPE.

4. Renewing the SLD life cycle

We can now look at the presented projects, in terms of the original life cycle steps, i.e., identify, model, describe,
convert, serve, and query. Table 2 classifies the projects above, according to the six steps of the original SLD life
cycle. Two problems can be identified by comparing how existing SLD applications were designed and how to how
to original life cycle models its various steps. A first problem arises when looking at the position of the Convert
steps in the original life cycle. Conversion from potential raw data to RDF happens after the description step, making it
impossible the describe the conversion step in the stream meta-data in the Describe step. Incorporating this information
allows to exploit how the data is shaped to improve querying, e.g. in Streaming MASSIF and OpenloT, or to enable
rewriting techniques, e.g. in Optique and CitySensing. The former brings us to the second problem, the Convert step
does not investigate the shape of the items in the stream. Shaping events differently can have an impact on querying
performance. Based on these insights, and the investigation of how the above projects provisioned their RDF Streams,
we propose an improved SLD life cycle by 1) reordering the steps and placing the Describe step before the Serve step
instead of directly after the Model step and 2) splitting up the Convert step in both a Shape and Annotate step. The new
life cycle is depicted in Figure 1 and contains the following steps:

8https://www.w3.org/TR/csv2rdf/

Bonte et Tommasini: Preprint submitted to Elsevier Page 6 of 31

https://www.w3.org/TR/csv2rdf/

Streaming Linked Data Life Cycle

Projet Domain Identify Model Describe Convert Serve Query
SpiteFire Smart City custom DSO REST CQELS
Bottari Social Media source (tw) SIOC,WGS-84 custom websocket C-SPARQL
CityPulse Smart City random g?/{/\ll,_l_)sROV-O, SAO custom REST? CQELS
SLD Event M ts and igraphs SIOC sGraph custom CSPARQL
. . Time and
StarCity Smart City Geo Ontology custom REST SPARQL
OpenloT Crowd M SSN custom CQELS
. . CSPARQL,
Agri-loT Smart Farming DSO SAO CQELS
Optique Energy M source (db) DSO R2RML STARQL
CEP,
OpenSense2 | Smart City SSN ccuss\t/ozr;DF CSPARQL,
CQELS
Streamin YASPER,
& Healthcare igraphs multiple RML websocket CSPRITE,
MASSIF
OBEP
. . . . Activity Streams 2.0 Triple
CitySensing | Smart City source(ig,tw) FrApPE sGraph Template Natron
Table 2

Classification of SLD projects according to the original life cycle. Legend: [M]management; [T]time [S]tamp; [D]domain
[S]specific [O]ntology

e [dentify, which focuses on the assignment of an IRI to identify data streams as Web resources.

e Model, which necessitates knowledge representation abilities to represent both the data stream metadata and the
data itself, while accounting for their ephemeral nature.

e Shape, which discusses the method of the data model of choice, i.e., how to represent the smallest unit of data.
RDF does, in fact, lead to a variety of design decisions that have an impact on querying performance.

e Annotate, which focuses on converting raw streaming data into RDF streams. This optional step emphasizes the
need for having an interoperable data format for data streams, too.

e Describe highlights the need for extensive and interoperable metadata that enables stream discovery.
e Serve focuses on the format, protocol, and services needed for data sharing in practice.

e Query concludes the life cycle indicating the remaining processing steps which are summarized in the following.

5. Running Example

As a running example, we will use the taxi dataset made available by ACM DEBS 2015 Grand Challenge’. The
goal of the running example is to provide tangible examples for each of the steps of the updated lifecycle. The DEBS
challenge consists of a taxi route analysis scenario in the city of New Year. The dataset consists of two streams: A ride
stream that represents the route of a taxi rides in terms of (i) taxi description, (ii) pick-up and drop-off information
(e.g., geographical coordinates of the place and time of the event), and (iii) the number of passengers. The fare stream
describes the ride payment information (e.g., tip, payment type and total amount). In more detail, Table 3 describes the
fields contained in the rides stream, while Table 4 describes the fields in the fare stream. Note that the rideld, taxild
and driverld are contained in both streams.

The dataset was used in the DEBS challenges to solve two queries: 1) finding the frequent routes and 2) detecting
the most profitable areas. For the first query, the goal was to find the top 10 most frequent routes during the last 30
minutes. The second query aimed to inditify areas that are, at a certain time, most profitable for taxi drivers. In the
remainder of this paper, we will use the taxi dataset as a running example to detail the various steps of the life cycle.

http://wuw.debs2015.0rg/call-grand-challenge.html

Bonte et Tommasini: Preprint submitted to Elsevier Page 7 of 31

http://www.debs2015.org/call-grand-challenge.html

Streaming Linked Data Life Cycle

field | description field | description
rideld | the unique ride id rideld | the unique ride id
taxild | the unique id for the taxi itself taxild | the unique id for the taxi itself
driverld | the unique id of the taxi driver driverld | the unique id of the taxi driver
isStart | indicates if the ride has started or ended startTime | the time the ride started
eventTime | timestamp of the event paymentType | the type of payment, either cash or card
startLon | the longitude where the ride started tip | the tip amount for the ride
startLat | the latitude where the ride started tolls | the amount of tolls payed for this ride
endLon | the longitude where the ride ended totalFare | the total fare
endLat | the latitude where the ride ended
passengerCnt | the number of passengers

Table 3 Table 4
Description of the taxi ride stream data Description of the taxi fare stream data

6. The New Lifecycle in Pratice

The following section will go through each of the life cycle steps in more detail. For each step, state-of-the-art
solutions are described and compared. The running example is used to give ample examples for each step.

6.1. Identify

The lifecycle’s identification step aims to distinguish relevant resources and design IRIs to identify them. When
discussing streaming data on the Web, two types of resources are critical: the stream itself and the elements that
the stream contains. Indeed, data streams, like datasets, represent a collection of data points, each of which can be
independently identified. Some important aspects of the data stream are highlighted by Tommasini et al. [66] as they
affect how data should be managed and identified, i.e., they are unbounded and ordered [61]:

e Unboundedness refers to the stream’s inability to be stored in its entirety.
e Order refers to how data is consumed, i.e., sequentially as soon as it arrives.

Definition 6.1. A Web data stream is a Web Resource that identifies an unbounded ordered collection of pairs (o, i),
where o is a Web resource, such as a named graph, and i is a metadatum, e.g. a timestamp, that can be used to build an
ordering relation.

Definition 6.1, as originally proposed by Tommasini et al. [66], makes no assumption on the data that will be
received. Instead, the definition decouples the identification between the data stream and the resource it contains. The
use of HTTP IRIs to identify Web resources is recommended by Linked Data best practices for good IRIs design. While
these recommended practices apply to the Web Stream resource as well, it’s worth noting that for data access it is not
the same. Streaming data does, in fact, necessitate an always-on connection (e.g., WebSocket). Hereafter, the section
introduces two methods for solving identification, one from Sequeda et Corcho [57] and the other from Barbieri et
Della Valle [9]. Notably, both methods require human intervention to design the URI scheme as shown in Figure 10.

hrs:1 a s:Sensor ;

s:measures [

_measurement a hr:HeartRateMonitor 1.

hrs:1 s:measures hrs:1/2022-07-15 17:00:00 .

rdf :type hr:HeartRateMonitor;

hr:heartRate "74";

hr:timestamp "2022-07-15 17:00:00"~"xsd:dateTime
hrs:3 s:measures hrs:1/2022-07-15 17:05:00 .

rdf:type hr:HeartRateMonitor;

hr:heartRate "58";

hr:timestamp "2022-07-15 17:05:00"~"xsd:dateTime

Listing 1: Sensor and Observation from Sequeda et Corcho [57].

Sequeda and Corcho suggested three new IRI approaches for identifying sensors and their observations [57]. The
URI scheme below identifies a window with start and end times:

Bonte et Tommasini: Preprint submitted to Elsevier Page 8 of 31

Streaming Linked Data Life Cycle
http://linkeddata.stream/sensor/name/%start time%,%end timej,

Listing 1 shows an example from [57] that specifies a sensor as a streaming data source, and an observation as a
streaming element. Sequeda et Corcho’s vision includes spatio-temporal metadata in addition to streaming data. Sensor
data are frequently linked to location metadata.'”.

:sgraphl sld:lastUpdate "7, xsd:dataTime ;
sld:expires "7;,,"""xsd:dataTime ;
sld:windowType sld:logicalTumbling ;
sld:windowSize "PT1H"~~xsd:duration .

:igraphl :receivedAt "r7;"""

:igraph2 :receivedAt "7;.,"

xsd:dataTime ; :rdfs:seeAlso :sgraphl.
'~~xsd:dataTime ; :rdfs:seeAlso :sgraphl.

:igraphl { # I-Graph at r; using TriX Syntax
:brokerl :does [:trl :with "$ 1000" 1 }

:igraph2 { # I-Graph at 7;,; using TriX Syntax
:brokerl :does [:tr2 :with "$ 3000"] .
:broker2 :does [:tr3 :with "$ 2000" 1 . }

Listing 2: sGraph and iGraphs from Barbieri et Della Valle [9].

Barbieri et Della Valle suggested to identify streams using IRIs that resolve a named graph comprising all relevant
metadata (called sGraph) and IRIs to identify a single element in a stream (called iGraphs) via time-stamping. iGraphs
and sGraph are linked to each other using the rdfs:seeAlso property, while the :receivedAt [9] property attaches
a timestamp to the iGraphs using xsd literals. For example, in lines 1-4 in Listing 2 the sGraph is the result of
resolving http://stockex.org/transactions. The iGraphs<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>