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Background: Atrial Fibrillation (AF) is the most common arrhythmia in the intensive care unit (ICU) and is
associated with increased morbidity and mortality. Identification of patients at risk for AF is not routinely
performed as AF prediction models are almost solely developed for the general population or for particular ICU
populations. However, early AF risk identification could help to take targeted preemptive actions and possibly
reduce morbidity and mortality. Predictive models need to be validated across hospitals with different standards
of care and convey their predictions in a clinically useful manner. Therefore, we designed AF risk models for ICU
patients using uncertainty quantification to provide a risk score and evaluated them on multiple ICU datasets.
Methods: Three CatBoost models, utilizing feature windows comprising data 1.5-13.5, 6-18, or 12-24 hours
before AF occurrence, were built using 2-repeat-10-fold cross-validation on AmsterdamUMCdD, the first freely
available European ICU database. Furthermore, AF Patients were matched with no-AF patients for training.
Transferability was validated using a direct and a recalibration evaluation on two independent external datasets,
MIMIC-IV and GUH. The calibration of the predicted probability, used as an AF risk score, was measured using
the Expected Calibration Error (ECE) and the presented Expected Signed Calibration Error (ESCE). Additionally,
all models were evaluated across time during the ICU stay.

Results: The model performance reached Areas Under the Curve (AUCs) of 0.81 at internal validation. Direct
external validation showed partial generalizability with AUCs reaching 0.77. However, recalibration resulted in
performances matching or exceeding that of the internal validation. All models furthermore showed calibration
capabilities demonstrating adequate risk prediction competence.

Conclusion: Ultimately, recalibrating models reduces the challenge of generalization to unseen datasets.
Moreover, utilizing the patient-matching methodology together with the assessment of uncertainty calibration
can serve as a step toward the development of clinical AF prediction models.
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Fig. 1. Illustration of the model development and the case-control matching procedure used. All information between the event and 90 minutes prior to the event
was excluded. Every AF patient (green circle) was matched with a no-AF patient (blue circle). For the no-AF patient, the surrogate AF prediction point was defined
as the same time point, relative to ICU admission, as AF occurrence in the AF patient (red line). Model-1.5 is built on a time window of 1.5-13.5 hours before AF
occurrence. Model-6 is built on a time window of 6-18 hours. Model-12 is built on a time window of 12-24 hours.

1. Introduction

Atrial fibrillation (AF) is a heart rhythm disorder that causes an ir-
regular and often abnormally fast heart rate. It affects between 4.5 to
15% of patients admitted to the intensive care unit (ICU). The incidence
is even higher in specific patient populations, i.e. patients admitted after
cardiac surgery (35%) or patients with septic shock (40%-46%) [1-3].
Several studies have indicated that the occurrence of AF in critically
ill patients is associated with poorer outcomes, including prolonged
length of stay (LOS) and increased hospital mortality [1,4]. Although
several risk factors for AF are non-modifiable (e.g., age), identifying
patients at high risk of developing AF could allow clinicians to pre-
emptively address modifiable risk factors (e.g., electrolyte imbalances
or medication). However, clinical identification of patients at risk for
AF is not routinely performed in the ICU as developed clinical risk pre-
diction models are often limited to either the general population or to
selected ICU patient populations [3,5,6]. Therefore, we aimed to build
a machine learning (ML) model to predict the risk of AF occurrence
in real-time for any ICU patient using calibrated uncertainty predic-
tions. Special attention was given to developing a model that generates
a meaningful, interpretable risk output for the bedside clinician by us-
ing Shapley values. Additionally, the models were validated on data
from multiple ICUs across the globe to determine their generalizabil-
ity. Finally, the models were evaluated in a simulated clinical situation
across time to understand their behavior in clinical practice, while fully
explaining the model using interpretability libraries.

2. Materials and methods

A complete overview of all conducted experiments and methods in
this study is visualized in Online Supplementary (OS) Fig. 1.

2.1. Prediction model development

2.1.1. Study population and prediction window

The AmsterdamUMCdb database (v1.02) was used for model devel-
opment and internal validation [7]. The outcome, i.e. the occurrence
of AF, was operationalized as the first AF registration by the nursing
staff after at least one registration of a sinus rhythm. The study cohort
was limited to patients with a minimal LOS of 13.5 hours. These 13.5
hours are based on a feature aggregation window of 12 hours and a 1.5-
hour time window between feature aggregation and event occurrence
to avoid data leakage. The database and the study population charac-
teristics are summarized in Table 1.

Three models with different feature windows, but all with an ag-
gregation window of 12 hours, were designed. The different windows
reflect the period from which collected data is used to make a risk
prediction. The models respectively have a window of 1.5 — 13.5, 6
— 18, and 12 - 24 hours before AF occurrence (Model-1.5, Model-6, and
Model-12).

As there were more ICU admissions without AF (16,163) than with
AF (2,000), and as AF patients tend to have a longer LOS [1,4] the
training set was balanced by one-to-one matching every AF admission
to a no-AF admission. This was achieved by fixing the surrogate AF
prediction point for the no-AF admission to the time after admission
of the AF admission AF diagnosis following a case-control study de-
sign, as visualized in Fig. 1. Only the relative time after ICU admission
was considered. The AF admission AF diagnosis time should be before
the ICU discharge of the candidate no-AF admission. Furthermore, the
no-AF admission should not have been matched already to an AF admis-
sion. Once these requirements were fulfilled, the two admissions were
matched and shared their relative prediction points. This procedure was
performed before train-test splitting. Afterward, all AF admissions were
split into a training and a test set with an 80/20 ratio. Their respec-
tive no-AF match was then also put in their respective training or test
set to avoid splitting a match. The remaining no-AF admissions without
a match were given a random prediction moment between 13.5 hours
(resp. 18 or 24 hours, depending on the model) after admission and be-
fore discharge. These no-AF admissions were only used in a separate
imbalanced test set for evaluation on the complete cohort. Ensuing, the
models were trained on the training set and optimized using 2-repeat-
10-fold cross-validation as there was enough data where two repeats
were sufficiently stable. Finally, the models were evaluated on two dif-
ferent test sets: a balanced test set containing only matched admissions,
and an imbalanced test set containing the matched AF admissions and
all unmatched no-AF admissions.

2.1.2. Model building and feature selection

The models were built using Python (v3.8.10). CatBoost classifica-
tion models were chosen because of their interpretability, missing value
handling, strong prediction performances, and automatic categorical
feature processing [8]. Furthermore, the model probability output was
used for uncertainty quantification (UQ) to provide trustworthiness and
an AF risk score. The classification performance was measured using
the precision, recall, and Area Under the Curve (AUC) metrics.

Based on expert opinion and literature review, 282 unique potential
variables were selected in AmsterdamUMCdb (listed in the OS Sec-
tion 2). Variables with a count < 250 or above 99% missingness in
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The study population characteristics. Mean (Q25 - Q75) for continuous variables, percentages for categorical variables. BMI = Body Mass Index. SOFA = Sequential
Organ Failure Assessment score. APACHE = Acute Physiology and Chronic Health Evaluation. LOS = Length Of Stay. *Only patients admitted to the ICU were

evaluated for inclusion.

AmsterdamUMC MIMIC- IV* GUH
Time period 2003 - 2016 2008 - 2019 2013 - 2020
Total admissions 23,106 69,211 25,297
Study cohort size 18,163 59,492 23,459
AF no-AF AF no-AF AF no-AF
Study cohort size 2,000 16,163 5,350 54,142 1,005 22,454
Age (group) 71 64 71 61 71 60
(69-75) (59-75) (63-80) (50-73) (66-79) (50-72)
Gender (Male) 62% 65% 59% 56% / /

BMI 26.2 (23.9-27.8) 26.1 (23.9 - 27.8) 29 (22.1-34.8) 29.0 (22.0 - 33.6) 28.20 (24.3 - 30.6) 26.1 (22.5 - 28.4)
SOFA first 24 h 8.8 5.7 5.3 3.4 7.1 4.3

(6-11) (3-8) 3-7) (1-5) (3-10) (2-6)
APACHE II 22.0 (17-26) 16.6 (12-20) / / 27.8 (24-32) 20.2 (14-26)

Prediction point (Hours)

ICU LOS (days)

ICU survival

91.7 (31.3-91.3)
15.47 (3.9 - 20.4)

46.1%

49.2 (16 - 41.0)
3.7(0.9-29)

71.8%

64.7 (27.2 - 71.06)
7.8(2.9-9.0)

88.9%

46.6 (19 - 48.0)
3.3(1.2-3.5)

94.6%

80.03 (33.9 - 82.4)
10.3 (3.7 -11.7)

85.7%

57.1(18.4-51.7)
4.2 (1.0 - 4.0)

92.8%

the whole dataset were excluded, resulting in 194 remaining variables.
Subsequently, aggregate features were constructed to quantify the trend
over time, such as min, mean, max, and slope. Powershap [9] was used
as the feature selection method to determine the final feature set (the
full procedure and final hyperparameters are available in OS Section 3).
For a proper comparison across datasets, features in the feature set af-
ter model development that were not available in the external datasets
were dropped. The impact of dropping these features is documented in
the OS Section 4. The final list of features for all models can be found
in OS Section 5.

2.2. External validation

Two datasets were used for external validation. The first one is the
publicly available Medical Information Mart for Intensive Care (MIMIC-
IV) [10]. The second dataset comprised all patients admitted between
2013 and 2020 to the ICU of Ghent University Hospital (GUH), a ter-
tiary Belgian hospital with a total of 52 surgical and medical ICU beds.
The study population in both datasets was also defined as described in
Section 2.1.1.

Several approaches were used to evaluate different hypotheses dur-
ing external validation. To test ‘out-of-the-box-readiness’ and robust-
ness, the model trained on the AmsterdamUMCdb data was directly
applied to the external datasets (denoted as Direct - MIMIC-IV and Di-
rect - GUH).

The second hypothesis was that the prediction models could be
transferred between hospitals and adapted to local customs without
a detrimental drop in performance or the need for complete redevel-
opment. To test this, the model framework developed on Amsterda-
mUMCdb (type of model, hyperparameters, definitive feature set, etc.)
was retrained using the same one-to-one matching training approach on
each external dataset individually to recalibrate the model (denoted as
Recalibrated — MIMIC-IV and Recalibrated — GUH, respectively). These
recalibrated models were then evaluated against an unseen test set
derived from this same dataset. The same approach as explained in Sec-
tion 2.1.1 for AmsterdamUMCdb was used to construct the balanced
training and test set and model development.

Finally, to determine if adding more data would increase perfor-
mance, two datasets were created: AmsterdamUMCdb with GUH and
AmsterdamUMCdb with MIMIC-IV. These datasets were then used to
develop a model using the previously mentioned method.

2.3. Uncertainty calibration

To assess the UQ performance, the uncertainty prediction calibration
was measured using the Expected Calibration Error (ECE) to quantify
the average absolute calibration error [11]. We also propose a variant,
called the Expected Signed Calibration Error (ESCE), to quantify the
uncertainty bias. These metrics are the classification variant of the dis-
tribution coverage error and absolute distribution coverage error used
for regression UQ evaluation [12]. These metrics are used instead of the
Brier score because the Brier score does not evaluate the clinical value
of diagnostic tests or prediction models [13]. To calculate the ECE and
ESCE, the probability output p;, which is bounded between 0 and 1,
is binned. This will result in M bins in total with a bin size equal to
1/M. The errors are then calculated by subtracting the average con-
fidence per bin from the accuracy within that bin using the following
formulae:

1 .
ace(By) = 1o ’EEB} 15 =) ¢8)
conf(B,)= = b @
mtl ieB,,
M
ECE = Z ui"’l lacc(B,,) — conf(B,,)| 3)
m=1
M
ESCE= Y lli—ml(acc(Bm) — conf(B,,)) 4

m=1

B,, is the bin with the samples whose probability output falls into
the half-open interval ((1 — m)/M,m/M]. §; and y; are the predicted
resp. true class label for sample i, and n represents the number of
samples. These formulae are defined for a single bin size of 1/M. How-
ever, by only using a single bin size these metrics are susceptible to
local variance and can therefore only give a limited view of the uncer-
tainty calibration. To understand the total model calibration, the bin
size was varied from 0.005 to 0.05 with 0.001 intervals. The mean of
the ECE and ESCE over all these varying bin sizes are reported in this
manuscript. Furthermore, this method also facilitates proper graphical
visualization in calibration plots.
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performance across time. Furthermore, to evaluate and compare the
performance of each model at the same time instant, every model was
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To interpret the final models, the SHAP [14] library was used to
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The Model-1.5 internal and external validation metrics are shown “
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prediction capabilities, even when tested on all patients. Additionally,
models with a time window closer to the AF occurrence performed bet-
ter than models with a more distant time window (Model-1.5 AUC =
0.81 (Table 2), Model-6 A'UC = 0.79 '(OS Table .15), Model-12 AUC . g 2 P P 2.3 I 3
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unseen datasets resulted in an expected performance drop, represented
by the imbalanced recall metrics. The recalibrated models, however,
showed comparable performance to the models developed on Amster-
damUMCdD for the MIMIC-IV dataset, and even better performance on . o _—
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Fig. 3. Evaluation over time for Model-1.5. The weighted recall is the weighted average of the recalls of both classes. The results are calculated using the balanced

test set.

response to the features in the dataset. Additionally, the Shapley val-
ues visualize the impact on the prediction resulting from these features
and their changes across time, enabling a total image of the model’s
behavior across time. As an example, consider the time frame between
20% and 40% in Fig. 4. The maximum heart frequency rises to 180 bpm
resulting in a significantly higher AF risk prediction for that period, in-
dicated by increased Shapley values from 0.0 to 1.0. This is also visible
in the AF probability sub-graph, where the risk increases to 90%, and
drops to 60% when the heart frequency drops again. Accordingly, the
changes in the other features and their respective Shapley values can be
analyzed using the same interpretation.

The results of the comparison of all models at the same time in-
stances are shown in Table 3. Model-1.5 has the best AF recall per-
formance, demonstrating Model-1.5 can best find patients at risk for
AF compared to the other models (Wilcoxon signed rank test p-value
<0.001).

Table 3

The results of evaluating each model on the unbalanced test set but created
with data 24 to 36 hours before the prediction point to compare and evaluate
the performance of the models at the same time instant, while being trained on
their original dataset. These results are created by bootstrapping this dataset
1000 times and reported in the following format: mean [95% confidence inter-

val].

Model no-AF AF no-AF AF AUC
recall recall precision precision
Model-1.5 0.68 0.74 0.98 0.10 0.77
[0.66-0.69] [0.67-0.81] [0.98-0.99] [0.09-0.11] [0.74-0.80]
Model-6 0.66 0.73 0.98 0.10 0.76
[0.65-0.68] [0.67-0.80] [0.98-0.98] [0.09-0.10] [0.73-0.80]
Model-12  0.68 0.71 0.98 0.10 0.78
[0.67-0.70] [0.65-0.78]  [0.97-0.98] [0.09-0.11] [0.74-0.81]
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Fig. 4. Evaluation over time for a single AF patient with Model-1.5. Blue = the feature value, orange = the Shapley value, grey = the Shapley value corresponding
to the missing feature value, and Red = the decision boundary. The seven most important features are visualized together with their Shapley values. The prediction
probability of AF over time is also visualized, where AF is predicted when this probability is above 0.5.

3.3. Shapley analysis

Fig. 5 visualizes the Shapley analysis for the features in the model.
This figure demonstrates, e.g., that giving noradrenalin is correlated
with a higher risk of AF according to the model. The most important
feature here is age, where the model discovered that higher age (red) is
a considerable predictor for AF (positive Shapley value). This method
also works on the sample prediction level and enables physicians to
evaluate both input and output to make an informed decision when
using the model.

4. Discussion

We developed risk prediction models for AF occurrence in critically
ill patients achieving adequate internal validation performances. Fur-
thermore, retraining the models on combined multi-centric datasets did
not improve the performance metrics indicating that the maximum per-

formance was reached with the current features, models, and methods.
Previous papers have also aimed to predict the occurrence of AF us-
ing ML. For instance, Ortega-Martorell et al. used a similar approach
and achieved a comparable AUC (0.836), though without verified risk
prediction and external validation [15]. Others tried to leverage elec-
trocardiography (ECG) signals in ML with promising results [16,17].
However, these models focus on diagnosing AF a short time before its
occurrence and use ECG data instead of routinely collected healthcare
data.

In high-stakes environments, such as the ICU, it is argued that
model interpretability and transparency are paramount [18]. The use
of ‘white-box’ models and the Shapley analysis are key factors for both
interpretability and transparency. Furthermore, the transparency of the
models is additionally reinforced by providing a calibrated risk score
between 0 and 1 with low E(S)CE calibration errors. The uncertainty
can resonate with the thought process clinicians use when making deci-
sions and therefore contribute to the interpretability and transparency



J. Verhaeghe, T. De Corte, C.M. Sauer et al.

International Journal of Medical Informatics 175 (2023) 105086

High
Age g = & *-
Max heart frequency (bpm) +.-—— —
Has received noradrenalin .» -
Mean CVP (mm Hg) -"—h—
Mean PEEP setting (mm Hg) '——— .
Mean blood ureum (mmol/L) ’—-——--——- .

Mean ventilator administered FiO2 (%) +0——- %
Min thrombocytes (103/\mu L) H g
Administration of loop diuretics 4 -—e E

Slope systolic arterial blood pressure (mm Hg) —-—q -

Mean hourly urinary volume (mL/h) -M

Mean calculated 02 saturation on ABG (%) '-*
ICU admission Urgency - ’
Slope base excess (mmol/L) “

Fluid Balance (mL) ’——
T T T T T T Low
-15 -1.0 -0.5 0.0 0.5 1.0

SHAP value (impact on model output)

Fig. 5. Shapley analysis of Model-1.5. The grey values are NaNs (missing feature values).

of the models. Combined, all these properties transform the output of
the model from a binary occurrence prediction to a continuous risk pre-
diction that facilitates the development of decision support systems. The
Shapley analysis facilitates hypothesizing which predictors are risk fac-
tors for AF and whether clinicians can influence these to lower the risk
of AF. Additionally, given the calibrated UQ results, the analysis of the
effects of adjustment of care delivery can be used as a steppingstone for
future causal (machine learning) studies.

Although several ML models have been developed in recent years,
many fail to be translated into clinical practice [19]. One of the main
issues hampering their widespread integration is the lack of external
validity when directly applying developed models to unseen data. This
also applies to this study, as directly applying our internally validated
models to an external dataset was accompanied by a drop in overall per-
formance mainly attributable to a data shift (Experiments are available
in OS Section 7). However, using the recalibration methods we could
mitigate this issue. By applying this recalibration method, the external
validation AUC remained consistent with the internal validation AUC.
This demonstrates a suitable strategy to overcome a considerable bar-
rier between Al research and patient care and provide generalizability
for many settings.

Our study also has limitations. AF diagnosis was based on nursing
charts as electrocardiograms were not available in AmsterdamUMCdb.
Therefore, the study depends on the accuracy and timely recording
of the diagnosis by the nurses to avoid data leakage. However, this
accuracy and timely recording of AF registrations has been studied
and found to be adequate [20]. Additionally, Moss et al. found that
new-onset AF diagnosed by both clinicians and an ECG model was
associated with increased LOS and hospital mortality, whereas new-
onset AF diagnosed by only the algorithm was not [4]. Hence, using
only nursing chart notes is likely sufficient to capture clinically rele-
vant AF episodes. Classifying ML models that use ECG waveforms have
already been developed to improve AF detection and timely diagno-
sis registration [21,22]. Although adding ECG data could increase the
performance, our method enables the clinician to get a risk prediction
using only routinely collected data. Finally, as medical history is not
recorded in the AmsterdamUMCdb database, the focus was not to dis-
criminate new-onset AF from an AF event in a patient already known
with AF.

Table 4
Summary table.

- Atrial Fibrillation (AF) is associated with an
increase in length of stay and mortality for
patients admitted to the ICU.

- Clinical screening tools for broad screening of
the ICU population are not routinely used.
Machine Learning tools are being developed,
but often only identify AF risk several minutes
in advance.

- In general, few prediction models are being
used in clinical practice due to their drop in
performance when applied to an unseen
environment.

What was already known on the
topic

What this study adds to our
knowledge

- Design of interpretable and calibrated risk
prediction models for identifying patients at
risk for AF well in advance and validated on
three distinct datasets.

- A case-control design to compensate for
unbalanced data for model training and
evaluation.

- Recalibrating the designed models on unseen
datasets can achieve an equally good
performance as on original data, reducing a
barrier to the widespread use of ML models
across various ICUs.

- Accessible uncertainty prediction
complementing the classification prediction
with verified calibration using the uncertainty
calibration metrics ECE and ESCE.

5. Conclusion

We proposed AF Risk models that provide a calibrated risk score
between 0 and 1 for ICU patients. The calibration of these risk scores
was verified using the ECE and the ESCE metrics. These models were
built using a case-control design for training to facilitate discriminating
between AF and no-AF patients to achieve meaningful results of 0.81
AUC. Furthermore, these models were validated on multiple datasets us-
ing various validation methods. Among these, the recalibration method
was identified to be a reliable method with minimal effort to achieve
generalization across ICUs globally. Ultimately, the used methodologies
in this article can serve as a step toward the development of clinical AF
prediction models across multiple ICUs (Table 4).
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