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Shepherding, the task of guiding a herd of autonomous
individuals in a desired direction, is an essential skill to herd
animals, enable crowd control and rescue from danger.
Equipping robots with the capability of shepherding would
allow performing such tasks with increased efficiency and
reduced labour costs. So far, only single-robot or centralized
multi-robot solutions have been proposed. The former
is unable to observe dangers at any place surrounding the
herd, and the latter does not generalize to unconstrained
environments. Therefore, we propose a decentralized control
algorithm for multi-robot shepherding, where the robots
maintain a caging pattern around the herd to detect potential
nearby dangers. When danger is detected, part of the robot
swarm positions itself in order to repel the herd towards a
safer region. We study the performance of our algorithm for
different collective motion models of the herd. We task the
robots to shepherd a herd to safety in two dynamic scenarios:
(i) to avoid dangerous patches appearing over time and (ii) to
remain inside a safe circular enclosure. Simulations show that
the robots are always successful in shepherding when the herd
remains cohesive, and enough robots are deployed.
1. Introduction
Agents capable of guiding a group of other autonomous agents
are essential to a wide range of applications [1]. Robotic agents
can be used to herd animals such as sheep [2,3], cattle [4] and
ducks [5], to enable crowd control [6], to keep birds away from
aircraft [7,8], and to bring people to safety [9]. In the literature,
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this type of guidance is studied under the name of shepherding, as it is inspired by dogs herding sheep to
a desired location [10]. Sheepdogs are particularly skilled at shepherding, with a single dog capable of
herding more than 80 sheep [11]. These dogs have learned to exploit the sheep’s collective behaviour
of aggregating and together escaping from a threat [12]. This behaviour is widely accepted as an
example of the selfish herd theory [13]. Supporting evidence for this theory has been found for other
animal species. For instance, fish move together in schools to reduce predation risk [14].

The individual mechanisms that animals apply to establish and maintain aggregated formations have
been studied broadly in research. Various models of collective motion have been proposed in both
theoretical [15–18] and empirical [19,20] studies over the past decades. A recurring feature in these
animal models is that the individual behaviour results from a few simple rules that take as input the
motion of a relatively small set of neighbours [21,22]. Reynolds [23] proposed one of the earliest models
for the flocking of birds based on three distinct rules: (i) to avoid collision with close neighbours, (ii) to
move in the same direction and at the same speed as others and (iii) to remain as a cohesive group.
These interactions have been proposed as the founding blocks for the underlying behavioural
mechanisms in fish schools [24], mammal herds [25], pedestrian crowds [26] and other vertebrates [27].
Most notably, Couzin et al. [28] showed how the information from only a few informed individuals can
propagate to the entire collective system. When some individuals gain information about the location of
a danger and consequently change their directions towards a safer region, these changes propagate in
the entire group. Hence, the actions of a single sheepdog can influence the collective motion of the entire
herd of sheep, even though only a small part of the herd directly observes the sheepdog.

Robotic agents, visually styled to trigger an aversive response of the herd, can rely on the same
shepherding mechanisms as natural perceived threats, like dogs [29]. This corresponds to the robot
computing the optimal motion control vector based on force vectors representing the interactions among
herd members, and the interaction between the herd and a shepherd. In the classic shepherding
problem, the shepherds are tasked with guiding the herd to a certain goal location, that is automatically
known to the shepherds as prior information. In this paper, however, we study the problem setting
where this assumption is relaxed. The shepherds must actively determine the goal location based on
local information and communication. Such shepherds could be beneficial in protecting animal herds
from unforeseen dangers in dynamic environments, by guiding them to a safer location. To mimic real-
life use cases, we thus consider that the robotic shepherds can only obtain and communicate information
in a local radius, and they have no prior information about the dangers. Once a danger has been
detected, the shepherds are tasked with guiding the herd away from this danger.

We propose a solution to the previously described problem where the herd is consistently surrounded
bymultiple shepherds.We also refer to this formation as caging the herd, as the shepherds are evenly spread
out across the contour of the herd. As such, the shepherds can detect any nearby danger approaching the
herd. Additionally, with a sufficient number of shepherds, the task of steering the herd can be allocated to
the shepherds already present in the appropriate region based on the location of the detected danger.
Similar to other shepherding research works, we model a member of the herd to move in the opposite
direction of a shepherd when the relative distance is lower than a certain threshold. The shepherds
positioned between the herd and a danger will therefore move close enough to the herd, which should
trigger the herd to change direction. When the herd is not approaching a danger, the shepherds remain
far away enough, which allows the herd to continue their natural behaviour (e.g. foraging).

Long et al. [1] stated several challenges in their literature review of robotic shepherding. We believe
our approach advances the state-of-the-art of shepherding with respect to three of these challenges.
Firstly, the models they have reviewed are not easily transferable to dynamic environments. In our
work, the proposed algorithm is demonstrated in two dynamic environments: (i) dangerous patches
appear nearby the herd at a certain probability and (ii) a circular safe zone containing the herd
decreases in size over time. Secondly, a shepherd should be able to dynamically adapt the distance
threshold where the herd tends to move away from the shepherd, while being limited in energy
consumption and computation time. Therefore, we design the artificial intelligence of the shepherds
through a set of control rules, where the threshold is explicitly incorporated in the computations.
Thirdly, Long et al. argue that practical applications of shepherding require robustness with regard to
the failure of robotic agents. Hence, we propose a decentralized, multi-agent shepherding algorithm
where each shepherd gathers information from local radius-based observation and is able to
communicate information to nearby neighbours. Contrary to the majority of the literature so far [30],
no central unit providing commands or global information is available to the shepherds in our work.

We applyourapproach specifically to the shepherding of fish,motivated by the biomimetic robotics state-
of-the-art of fish-like robots [31] and the potential environmental impact. Although fish are an important part
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of our natural environment [32], theyare increasingly facedwith dangers such as illegal fishing [33], pollution
[34] and invasive species [35]. The efficiency of the proposed algorithm is demonstrated through simulation,
where four differentmodels of collectivemotion are used to simulate the fish behaviour. One of thesemodels
was proposed by Couzin et al. [24] and has been shown by multiple empirical studies to capture the key
features of fish behaviour such as nearest-neighbour distance, polarization, group speed and turning rate
[20,36–40]. More specifically, we simulate the herd as guppies who live in shallow waters, which applies to
our proposed algorithm designed for two-dimensional environments [41].

The rest of this paper is organized as follows. Section 2 briefly discusses the most prominent research
works on the topic of shepherding and the studies that have inspired our proposed algorithm. In §3, we
formulate the three main parts of the problem scenario: (i) the four considered models of collective
motion to simulate the herd, (ii) the definition of caging and (iii) the descriptions of the shepherding
tasks. Next, in §4, an algorithm for establishing and maintaining a caging formation is proposed, and
afterwards one for shepherding (while caging) the herd in the presence of danger. Results of the
respective main parts of the problem scenario are discussed in §5. Finally, we conclude the paper in §6.
Soc.Open
Sci.10:230015
2. Related work
The Robot Sheepdog Project [42] was one of the first research projects to develop a robot capable of
solving the classic shepherding problem, based on a computation of force vectors that represent the
inter-individual rules proposed by Reynolds [23]. A single robot used a ceiling-mounted camera to
track a flock of ducks and manipulate their movement. In order to direct the flock in the right
direction, the robot positions itself on the opposite side of the flock to the goal. When the robot is
correctly aligned with respect to the goal and the flock, it advances towards the flock and hence the
flock moves towards the goal. However, the robot and the ducks were placed in a circular enclosure
where the goal location was always placed at the edge of the enclosing circle. The robot shepherded
the ducks to move along the edge until the goal location was reached.

Some follow-up works have adapted the aforementioned algorithm in order to shepherd in
unconstrained environments. Strömborn et al. developed a single-agent shepherding algorithm based
on force vectors, where the shepherd switches between collecting dispersed herd members and
steering the cohesive herd [43]. This results in a side-to-side motion of the shepherding agent behind
the herd, which mimics the behaviour of real sheepdogs. Miki and Nakamura developed a similar
algorithm, where the shepherd adaptively switches between collecting and steering the herd [44], but
included a notion of cooperation between multiple shepherds who avoid overlapping. Their
experiments showed that two shepherds are more efficient in guiding the herd than only one. Other
studies corroborated the finding that single-agent solutions are limited to smaller herd sizes [45], and
thus multiple shepherds can control large herds more efficiently than a single shepherd [46].

However, most shepherding control approaches assume that the shepherds have global knowledge of
the positions of every individual in the environment [1]. Applying robotic shepherding to any
environment means that the robots can only rely on local information gathered by sensors with
limited range [47–49]. Tsunado et al. proposed an algorithm where a single shepherd constantly aims
to repel the furthest herd member from the goal location towards it, using only information collected
via a simulated local camera [30]. This algorithm was shown to be successful in simulations, while the
algorithm proposed by Strömborn et al. [43] mostly failed to guide the herd to the goal when only
local information is available to the shepherd. The challenge of moving a herd to a goal with multiple
shepherds, using only local information, was tackled by Lee & Kim [50]. Shepherds coordinate to
aggregate one cohesive herd, where some steer wandering members towards the main herd, while
others focus on keeping the main herd at its current position. Only when the herd is cohesive enough,
each shepherd repels the closest herd member towards the goal location.

A simpler but effective algorithm was presented by Miki et al. [44], where the shepherd moves in a
circular motion behind a member of the herd (relative to the guidance direction) and then comes closer to
repulse the herd member. Each herd member followed the traditional Reynolds flocking algorithm in
their work, where stochastic behaviour is considered. Experiments were conducted with one shepherd
steering a herd of 25 individuals, and two shepherds cooperating to steer 30 individuals. This steering
algorithm is similar to the one we present in this paper, where the shepherding robots have to
cooperate and only obtain partial knowledge of the environment through local sensing.

As discussed beforehand, in the problem setting that we address, the shepherds are required to
maintain a caging formation while guiding the herd away from dangers. Varava et al. [51] refer to the
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Figure 1. Behavioural zones of the collective motion models.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230015
4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

ul
y 

20
23

 

problem of steering a herd while maintaining a caging formation as herding by caging. They proposed a
centralized RRT-based (rapidly exploring random tree) algorithm using computational topology
techniques to verify the caging formations. However, their approach assumes global information and
an initial correctly caged formation. Furthermore, they did not consider the natural motion of the herd
in the absence of robots, and their simulations suggest that small increases in the number of robots
result in a significant decrease in the algorithm’s performance.

Our approach for shepherds to establish and maintain a caging formation is inspired by the simple
behavioural rules of wolf-pack hunting strategies [52]. For a stationary single prey, the wolves become
arranged in a stable configuration of a regular polygon, which we refer to as a caging formation.
While the authors do not provide any formulas, they state that wolves hunt following only two
simple decentralized rules: (i) the wolf moves towards the prey until a safe distance threshold is
reached and (ii) when close enough to the prey, the wolf moves away from the other wolves that are
close to the safe distance to the prey. To successfully follow these rules, the wolves do not need to
rely on direct communication, nor is there a role of leader needed in the group. Hence, these rules are
applicable to our problem scenario, where the shepherds operate in a decentralized system.
3. Problem formulation
Let A andH denote the respective sets of robotic agents and herd members. The state of the discrete-time
system at time t is defined by the position piðtÞ [ R2 and orientation θi(t)∈ [0, 2π) of each individual
i [ A<H. At every time step, an agent first rotates with angular velocity w to its desired orientation
û that is computed based on local information. The agent stops rotating once û is reached, or when
the time interval has passed. In the remainder of the time interval, the agent moves straight forward
at linear velocity v. At every time step, Gaussian noise σ is added to the orientation of each individual.

3.1. Collective motion models
Each herd member updates its direction of motion based on three concentric non-overlapping zones
(figure 1), containing distinct subsets of neighbours. Each zone corresponds to a type of interaction: (i)
repulsion from others inside the disc with radius zR, to establish a minimum inter-individual distance,
(ii) alignment of orientation with others inside the annulus with width zO, to all move in the same
direction, and (iii) attraction to others inside the annulus with width zA, to remain as one cohesive group.

In this paper, we consider four different models of collective motion that have been empirically
studied in fish schools [53]: metric, topological, visual reconstruction and long-range (figure 2). These
models differ from one another in the way that neighbours N i of each individual i are selected.
Using the metric model, the set of neighbours consists of all other individuals within the
interaction radius z = zR + zO + zA. In the topological model, N i only contains the k nearest neighbours.
Visual reconstruction only selects other individuals that can be visually perceived as neighbours,
which means no other individual obstructs the focal individual i from observing the peripheries of a
neighbour. Finally, in the long-range model, short-range interactions are considered by selecting k
nearest neighbours (i.e. topologically), while long-range interactions are defined by randomly selecting
λi neighbours from the remaining members of the herd. The number of long-range neighbours λi is
sampled from a Poisson distribution with average λ as parameter of the model.



metric topological

visual long-range(c)

(b)(a)

(d )

Figure 2. The set of neighbours (red) is illustrated in regards to a focal individual (blue) for the different models of collective motion.
(a) Metric: all individuals within a certain radius. (b) Topological: only the k nearest neighbours (k = 5 in this example). (c) Visual: all
individuals that are visually observable, i.e. not obstructed by any other neighbour. (d ) Long-range: in addition to topologically selecting
neighbours (solid line with k = 5), there are λi randomly selected neighbours (dashed line with λi = 1).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230015
5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

ul
y 

20
23

 

To model the aversive behaviour of a herd individual i interacting with a robotic agent, an
additional disc with radius zI surrounding i is introduced. A herd individual wants to move in
the opposite direction (i.e. repulsion) of any robot present in this zone. Later in this paper, we will
introduce two different scenarios for shepherding, where D is a set containing (i) the centres of
dangerous patches or (ii) the centre of a safe circular enclosure. The herd interacts with these dangers
likewise to robotic agents.

Let N R
i , NO

i and N A
i then denote the distinct subsets of neighbours by separating N i based on the

repulsion, orientation and attraction zones, respectively. Thus, each neighbour is only assigned to one
of the subsets: N R

i >NO
i >N A

i ¼ ;. Let Ai and Di denote the respective subsets of robotic agents and
dangerous patches located in a radius of zI around pi. In the scenario of the enclosure, Di contains the
centre of the safe disc if and only if the individual i is located outside of the disc.

Let us define the relative position of individual j from i as rij(t) = pj(t)− pi(t). Furthermore, let qi be the
motion vector of an individual i, which is computed as follows:

qiðtÞ ¼ �aR

X
j[N R

i

rij
krijk þ aO

X
j[NO

i

qj
kqjk þ aA

X
j[NA

i

rij
krijk � aI

X
j[Ai<Di

rij
krijk ,

with weights αR≥ 0, αO≥ 0, αA≥ 0 and αI≥ 0 of repulsion, orientation, attraction and animal–robot
interactions, respectively.

3.2. Caging
A caging formation can be constructed by the robotic agents based on the repulsive animal–robot
threshold zI. When two robotic agents are at a distance lower than 2zI from each other, they exert a
combined repulsive force on the herd which prevents them from intersecting the path between those
agents. In other words, caging is equivalent to a closed chain formation where the distance between
consecutive agents satisfies the upper bound of 2zI.

In order to measure whether the agents established an appropriate caging formation, we see if a
polygon can be constructed from the edges between agents where the length is shorter than 2zI.
Following [51], we then define the herd to be successfully caged, if and only if, the polygon is closed
and the entire herd is located in the interior of the polygon.

3.3. Shepherding
The agents’ objective is to prevent any herd member from entering dangerous areas. When a danger is
detected to be approaching the herd, the agents are tasked to preemptively steer the herd away. In the
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absence of dangers, the agents should remain at a minimum distance of zI from the herd to avoid any
unnecessary stress induced on the herd. The agents have no prior knowledge about the positions and
the movements of the dangers, which can only be locally observed.

In this paper, we consider two different shepherding tasks based on common scenarios in which
animal herds would benefit from safety interventions. In the first task, a stationary dangerous patch
appears in front of the herd at a certain probability. This task resembles several use cases of different
dangers such as pollution (e.g. fish near oil leaks) and poachers. In the second task, the robots are
expected to ensure that the herd remains in a given safe zone. This task is similar to deploying virtual
fences. The use of mobile robots also allows for the safe zone to be dynamically changed, which is
useful for caretaking of animals. For example, it allows to navigate the herd between nests and
optimize grazing patterns.

We model the task environment by a time-variant potential function f that reaches a local minimum in
the mean direction opposite of all dangers (assuming that each danger is equally important to avoid).
Consequently, the herd should move in the direction of the potential gradient rf . In the first
task, agent i computes the gradient based on the relative positions of the observable dangerous
patches Di as follows: rf ðpiÞ ¼ �P

d[Di
ðð pd � piÞ=kpd � pikÞ. In the case where the agent does not

detect any dangers, the gradient is undefined. In the second task, the potential gradient is defined as
rf ðpiÞ ¼ ð pe � piÞ=kpe � pik with pe the centre of a circular safe zone. In the case where the agent is
positioned within the safe zone and does not detect the boundary, the gradient is undefined. As we
propose a decentralized multi-agent solution to this shepherding problem, the potential function is a
way of representing locally observed information that will be communicated between agents.
 015
4. Algorithm
4.1. Caging
We describe the algorithm from the perspective of an individual agent ai [ A. Let An and Hn,
respectively, represent the neighbouring subsets of agents and herd members, which are located
within the detection distance dd from ai.

In the case where the agent is unable to detect any member of the herd, an arbitrary search method is
applied (e.g. a random walk). We opt for an adaptation of the herd motion model presented in §3.1 to
ensure neighbouring agents remain within communication range of each other. Agents communicate
their observations of members of the herd to one another. Consequently, other agents who are unable
to directly observe the herd, will become attracted to the neighbouring senders.

When members of the herd are directly detected, the agent attempts to reside at a given distance R�

from the closest herdable h� [ Hn. The agents should be close enough to observe, follow and quickly
interact with the herd when needed. However, they should not be closer than zI, as this would
otherwise induce unwanted stress on the herd. While approaching to and residing at the circular
boundary of h�, the agent ai attempts to remain equidistant from the two closest neighbouring agents
aj and ak from opposite sides of the axis χ defined by the bearing γi∈ [−π, π) of ai from h�. As shown
in figure 3, the neighbouring agents can be positioned anywhere in their respective half-plane.

Every agent attempts to maintain a distance of R� from the closest herd member, while moving to
position themselves at equal distance from the two neighbouring agents. In other words, the agents
move along the boundary of the union of circles defined by the positions of every herd member as
the centre points and R� always as the radius. Figure 4 shows how the agents follow this boundary,
which can be partially seen by the black trajectories (for illustrative purposes, the herd does not
move). To provide full flexibility, an agent should be able to eventually re-encounter any point on the
boundary after moving along the boundary in the same direction for enough time. This means that
the union of circles is a connected set.

Assumption 4.1. The union of the circles, where the centre points are the positions of every herd
member h [ H and the radii are R�, is a connected set.

In order to approach and rotate along a circular path of radius R�, we apply the following method to
compute the agent’s desired orientation û as proposed in [54]:

û ¼ gi þ q
p

2
þ arctan

�
kðd� � R�Þ�� �

, ð4:1Þ



ai

ak
aj

dij

dik

h*

R*

qi

χ

γ
i

Figure 3. Illustration of the proposed caging method. Agent ai follows tangential motion along the circle defined by the position of
the closest herdable h� as the centre and R� as the radius. From the two closest neighbouring agents aj and ak of opposite sides of
the axis χ, the agent ai moves towards the neighbour which has the largest relative distance. Here, the motion vector qi of ai
indicates clockwise rotation towards ak as dik > dij.

a4

a3 a2

a1

a5

a5 a2

a1

a0

a4

a3

a0

Figure 4. Trajectories (black arrows) of agents A ¼ faigi¼0...5 caging a stationary herd of four (blue fish). The agents are initially
located (green dots) in a box of density ρa near the herd, from which they establish and maintain an equidistant caged formation in
steady state (red diamonds). At all times, the agents remain at a distance R� based on the herd’s repulsive zone (blue contour) of
radius zI. The highlighted (thicker arrows) trajectories of a0 and a5, respectively, show how agents could either continuously move by
the same direction or change directions due to the movement of neighbours.
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whereq [ f�1, 1gdeterminesthedirection, i.e. clockwise (q ¼ �1)orcounterclockwise (q ¼ 1),κ> 0influences
the rate of transition between moving towards and moving along h�, and d� is the distance from ai to h�.

To obtain the cage formation, the value of q is computed based on the relative distances to the
neighbouring agents. We define the subsets of neighbouring agents Aj # An and Ak # An divided by the
axis χ as follows:

Aj ¼ fj j aj [ An ^ 0 , sgnðgiÞ � ðgi � g jÞ � pg
and

Ak ¼ An �Aj

with γj as the bearing of neighbouring agent aj from h�. The shortest distances to each neighbour subset,
dij ¼ giðAjÞ and dik ¼ giðAkÞ, are computed by

giðUÞ ¼ minu[U kpuðtÞ � piðtÞk if U = ;
2zI otherwise;

�
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where the agent assumes a distance of 2zI in the case where the neighbour subset is empty. The direction q is
then given by

q ¼ sgnðgiÞ if dij , dik
�sgnðgiÞ otherwise:

�

The orientation û of the motion vector to move along the circular path of h� is computed
with equation (4.1) based on the direction q. We define the magnitude of this motion vector as
η = (1/2)|dij− dik|, so that two agents moving towards each other will eventually reach a stable
solution. This motion vector hû; hi is then added with the predicted motion vector of the closest
member of the herd, such that the cage formation is at the appropriate relative distance of the herd.
Each member of the herd is predicted to move at mean velocity �vh in its current orientation. Thus, the
predicted motion vector of the nearest herd member is huh� ðtÞ; �vh� ðtÞi. Note that η = 0 when the agent
has positioned itself at equal distance from both neighbours, which results in the agent aligning its
orientation and velocity with the herd. However, when the agent is not equidistant to aj and ak, we
ensure that the maximum velocity is not exceeded as the magnitude η is upper bounded by

��vh� ðtÞ cosðuh� ðtÞ � ûðtÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2h� ðtÞðcos2ðuh� ðtÞ � ûðtÞÞ � 1Þ þ v2max

q
, with vmax as the maximum linear

velocity of the robotic agents (see appendix A for a derivation of the bound).

4.2. Shepherding
The idea behind the proposed algorithm is based on each individual agent adaptively changing between
two caging formations, where one causes a repulsive force on the herd and the other does not.

Each agent ai observes the gradient of the local potential rf ðpiÞ as described in the problem
formulation (see §3.3). A message containing a unique agent identifier, version and the local gradient
is communicated to all nearby neighbours within the communication range dc. Whenever a new local
gradient is observed, the agent updates its own version and sends a new message. The received
messages are then filtered so that only messages with the newest version of each agent remain. All
filtered messages are then forwarded to their nearby neighbours. The local gradients of the filtered
messages are combined as qf ¼

P
jðrf ðpjÞ=krf ðpjÞkÞ, with aj as an agent of which the gradient (with

most recent version) is defined and received by ai. In case any aj exist (including ai), we attempt to
steer the herd in the direction of qf. In this step, we have assumed that the agents share a global
coordinate system. This allows the agents to reach consensus in the mean direction when combining
multiple locally observed potential gradients.

Assumption 4.2. All agents are able to use a global coordinate system when communicating about
orientations.

Based on the aversive behaviour described in §3.1, a robotic agent is capable of triggering a herd
individual to move in the direction opposite along the axis between the herd individual and this
agent, when the relative distance is lower than zI. If an agent is positioned behind all nearby herd
members, in the direction of qf, then it performs the caging algorithm to remain at the circular
boundary of the closest herdable at a distance of r�, with r� < zI <R�. The distance r� can be
dynamically changed, as long as the upper bound is satisfied. In our experiments, we use a fixed
value. In the other case, positioned in front of the nearby herd, the agent executes the caging
algorithm with a distance of R�. Figure 5 shows how agents remain at different distances from the
herd, based on their position relative to the direction of qf. More specifically, agent ai steers by a
caging with a radius of r� if the smallest angle ghi between the agent and each individual of the
nearby herd h [ Hn is greater than π/2:

arctan
�
sinðuf � ghi Þ, cosðuf � ghi Þ

�
.

p

2
,

with θf as the orientation of the vector qf.
If no messages of gradients are received, the agents remain in a caging formation at the distance R�.
5. Results
First, in §5.1, we study the behaviour of a simulated herd, when there are no robotic agents nearby,
following the four different models of collective motion. We vary the most relevant parameters in



a2

qf

a1

R*

h*

r*
danger

Figure 5. Illustration of the proposed shepherding method. Agent a1 is located behind the closest herdable h�, in perspective of the
mean orientation θf (illustrated by the corresponding vector qf with perpendicular axis). Therefore, a1 positions itself at a distance of
r� from h�. Agent a2, positioned in front of h�, remains at a distance of R�.
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regards to cohesiveness of the group [16], the widths zO and zA of the orientation and attraction zones,
respectively, in order to examine in which parameter range assumption 4.1 holds. Afterwards in §5.2, we
run an experiment with agents deployed in the environment that follow the proposed caging algorithm.
We consider the same models of collective motion and varying parameter values (zO and zA) of the herd,
which allows us to verify if caging indeed only fails when assumption 4.1 does not hold. Finally in §5.3,
we run experiments of the two aforementioned shepherding tasks: (i) agents steering the herd away from
randomly appearing dangerous patches and (ii) agents keeping the herd inside a safe circular zone.

Results were obtained from simulation runs with 10 seeds. All experiments are run with the following
parameters unless explicitly stated otherwise: NH = 100, zI = 19, wh =wa = π/2, vamax ¼ 4, vhmax ¼ 2, dd = dc =
3 zI, σa = σh = 0.05, αR = 100, αO = 50, αA = 1 and αI∈ [500, 2500].
5.1. Collective motion models
The herd is simulated, in the absence of any robotic agents, under the different models of collective motion:
(a) metric, (b) topological, (c) visual and (d ) long-range. We simulate the herd in two-dimensional open
space environment. To facilitate immediate interaction between the NH individuals at the beginning of a
simulation, they are placed within a square region of a size (NH/ρh)

1/2 with initial density ρh = 0.01. Each
individual’s position and moving direction are initially uniformly distributed.

We aim to study which parameter values lead to fragmentation of the herd, since this would prohibit
agents from successfully caging the herd. Thus, we say that the herd is fragmented when assumption 4.1
does not hold. As previously described, a graph can be constructed where the vertices are the positions of
every herd member, and there is only an edge between two vertices if the relative distance is lower than
or equal to R�. Based on this graph, the degree of fragmentation is measured as the number of groups NG

where each distinct group is connected. We vary the respective widths zO and zA of the orientation and
attraction zones over [0, 100]. For the parametric models (topological and long-range), we chose values
that produce most similar results of fragmentation to the other two models. This allows us to make a fair
comparison between models. We set k = 50 in the topological model, since lower values of k lead to only
higher probabilities of fragmentation, as shown in [16]. We verify this by running simulations for k∈ {10,
25, 50} (see appendix C). This led them to proposing the long-range model, for which we use their
proposed values of k = 7 and λ = 0.1. As visual reconstruction, a ray-casting algorithm is used in this
paper where the individuals are simulated guppy fish based on physical measurements.

In addition to the number of groups, we examine the relative area coverage Ar which is computed as
the ratio of the areas of the convex hulls of the herd at convergence time T over initial time t0. Related to
this, the minimum number of robots needed to form a caging pattern NA,min is computationally estimated
by placing agents on the boundary of the union of circles, described in assumption 4.1, at a maximum
distance of 2zI from one another. Based on these results, we can test our hypothesis that the proposed
caging algorithm fails if and only if assumption 4.1 does not hold or there was an insufficient number
of robotic agents deployed.

Figure 6 shows the aforementioned quantitative measurements for the four considered models, and
varying the widths zO and zA of the orientation and attraction zones, respectively. Figure 6a–c.1 shows
that the herd becomes fragmented (NG > 1) for lower values of the orientation width (zO < 10), using a
metric, topological, or visual model. In this range of zO, the herd fragments into the most groups when
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Figure 6. Quantitative herd measurements (NH = 100) obtained in simulation without robotic agents, following different models of
collective motion: (a.1–3) metric, (b.1–3) topological with k = 50, (c.1–3) visual and (d.1–3) long-range with k = 7, λ = 0.1. For
each model, the widths of orientation (zO) and attraction (zA) zones are varied. The number of groups NG (a–d.1) shows that group
fragmentation only occurs with for smaller values of zO, independent of the width of zone of attraction zA, for all models (although,
the long-range model causes significantly less fragmentation). The relative area coverage Ar (a–d.2) increases with zO, mostly
independent of zA. When the herd remains as one cohesive group, the theoretical minimum number of agents NA,min needed
to form a caging pattern (a–d.3) increases with zO in correlation with the relative coverage Ar for each model respectively,
since more agents are needed to cage a larger area. On the other hand, NA,min is high when fragmentation occurs.
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zA is lowest. As opposed to the other models, figure 6d.1 shows that fragmentation is unlikely to occur with
the long-range model, independent of zO and zA. Furthermore, we see in figure 6a–d.2 that the relative area
Ar is also dependent on the width of the orientation zone zO, while mostly independent of zA. The herd
becomes denser than its initial distribution (Ar < 1) for the lowest values of zO. Increasing zO leads to
increasing the relative area coverage until Ar is approximately equal to 1 or slightly higher. Note how in
the topological model Ar eventually stabilizes once zO is approximately higher than 60. Evidently, when
the orientation zone is so large that each individual aligns its orientation with all its neighbours, the herd
will maintain its initial area. On the contrary, when zO is small enough so that neighbours also appear in
the attraction zone, the herd will become more compact. As the relative area Ar increases with zO, so
does NA,min (figure 6a–d.3) as more robotic agents are needed to form a caging pattern where
consecutive robots should remain at a distance lower than 2zI. Note that the theoretical minimum of
number of agents is not computed when the herd is fragmented (NG > 1). In the figure, a white square
means no possible value as all seeds contain fragmentation.
5.2. Caging
In this second experiment, we placed NA robotic agents following the proposed caging algorithm in the
same environment as the herd. The swarm of NA agents is placed in a square region based on initial
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Figure 7. The ratio of robots successfully caging a herd of size NH = 100, following different models of collective motion: (a.1–3)
metric, (b.1–3) topological with k = 50, (c.1–3) visual and (d.1–3) long-range with k = 7, λ = 0.1. Additionally, different sizes of
the robot swarm NA are studied: (a–d.1) NA = 10, (a–d.2) NA = 20 and (a–d.3) NA = 30. For each combination of motion model
and swarm size, the widths of orientation (zO ) and attraction (zA) zones are varied. Although the herd remains cohesive in the range
of zO > 10, caging with NA = 10 robots is entirely unsuccessful in this range since more agents are required (NA = 10 < NA,min). On
the other hand, deploying NA = 20 > NA,min robots guarantees successful caging in every seed. The same results are found for NA =
30, which shows that adding redundant robots has no negative effects on the collective performance. In the range of zO≤ 10, the
theoretical lower bound NA,min is satisfied for all considered NA, but fragmentation of the herd may occur, and thus caging is not
always successful (except for the long-range model where significantly less fragmentation occurs).
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density ρa = 0.01, at a random but detectable position from the school (i.e. within distance dd). Figure 7
shows the ratio of successfully caging a herd with different number of agents (i) NA = 10, (ii) NA = 20
and (iii) NA = 30, and for the different collective motion models of the herd.

Figure 7a–d.1 shows that, in the range of zO > 10, deploying NA = 10 robotic agents is inadequate to
successfully cage a herd of size NH = 100. This was expected as NA = 10 <NA,min (see the first column
inside the colour-grids of figure 6a–d.3). However, when a sufficient number of robots is deployed
(NA = 20 >NA,min), caging is successful in every seed with zO > 10 (figure 7a–d.2). Figure 7a–d.3 shows
that adding a redundant number of robots to the task does not decrease the ratio of success. This is
an important quality of the algorithm, as the theoretical minimum number of agents to be deployed is
usually unknown a priori. For any NA∈ {20, 30}, the theoretical lower bound NA,min is satisfied when
fragmentation of the herd does not occur in the range of zO≤ 10. However, the herd is not guaranteed
to remain as one cohesive group in this range of zO, in which case the robots will fail to cage
properly. In this experiment, the agents consistently try to remain at a distance of R� > zI from the
herd, which means that caging does not prohibit the herd from fragmenting. Small adaptations
to the proposed caging algorithm could prevent fragmentation; for instance the agents should
maintain the maximum relative distance of 2zI between agents instead of following the herd’s



60
1

050

40

30

20

R*

time t
10 102 103

time t

ca
gi

ng
su

cc
es

s 
P C

10 102 103

m
ea

n 
m

in
. a

ge
nt

–h
er

d 
di

st
an

ce

metric

long-range
visual
topological

Figure 8. The average minimum distance between the robotic agents and the herd, and ratio of success in caging PC in the inset,
over time t from 0 to 103 in log scale with NH = 100, NA = 20, zO = 50 and zA = 50. The mean is drawn as a solid line and the
standard deviation as shaded area. The desired convergence value R� of the minimum agent–herd distance is indicated on the y-axis
and drawn as a dashed horizontal line. For each plot, measurements of four different models are shown: (black) metric, (red)
topological, (blue) visual and (green) long-range.

100

50

0

–50

–100
100

50

0

–50

–100
–100 –50 0 50 100

T = 0 T = 5 T = 10 T = 15

T = 20 T = 25 T = 30 T = 35

x
–100 –50 0 50 100

x
–100 –50 0 50 100 –100 –50 0 50 100

x x

y

y

Figure 9. Visualization of robotic agents (green or orange diamonds) shepherding the herd (blue dots) away from a dangerous
patch (red circle). When a robot has detected a danger, it is coloured orange and green otherwise. The orientation of each individual
is represented by an arrow. The blue contour is the union of each herd member’s circular zone with radius zI. In other words, only
agents that are positioned in the blue contour generate a repulsive force onto the herd. At t = 0, agents detect the danger. Next
(t = 5 to 20), the agents positioned between the herd and the danger now execute the caging algorithm with distance r� < zI,
while the other agents remain at R� > zI. This causes the herd to re-orientate and move away from the danger. Once the danger is
enough far away, all agents occupy a distance of R� from the herd.
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movement. As an exception, the robot swarm is still successful in this range (figure 7d.2–3) as
fragmentation of the herd is unlikely to occur (figure 6d.1). In all cases, we find that failure in caging
the entire herd occurs if and only if the herd is fragmented, or there is an inadequate number of
robots deployed based on the theoretical minimum.

In order to observe the time needed for the robot swarm to converge to a stationary caging formation,
we measure the average of minimum relative distances between each robotic agent and their respective
closest individual of the herd ‖pa(t)− ph�(t)‖. As described in §4.1, the agents should approach a distance
of R�, which is lower bounded by zI to account for prediction errors of the herd’s movement. Figure 8
shows that the robots are able to converge to R� over time for every collective motion model of
the herd. More specifically, the average minimum distance between agents and herd reaches R� at
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Figure 10. Fraction of the herd (NH = 100) located in dangerous patches, averaged over 2000 time steps, and following different models
of collective motion: (a.1–3) metric, (b.1–3) topological with k = 50, (c.1–3) visual and (d.1–3) long-range with k = 7, λ = 0.1. The left
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shepherding robot swarm of sizes (a–d.2) NA = 20 and (a–d.3) NA = 40 are studied. For each combination of motion model and swarm
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on average in danger for every model and values of zO and zA. The topological model results in the lowest endangered fraction, followed
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deploying 20 shepherding robots successfully ensures the safety of the entire herd. Adding more robots (NA = 40) shows to only
potentially improve performance: the metric-modelled herd is successfully shepherded for most values of zO and zA; however, the
visual-modelled herd remains endangered (although with low probability).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230015
13

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

ul
y 

20
23

 

approximately t = 102. After this time, the robots spread out around the herd and eventually reach a
successful caging formation (PC = 1).
5.3. Shepherding
To examine the proposed shepherding algorithm, we simulate two different tasks: (i) dangerous patches
and (ii) safe enclosure as described in §3.3. We study the performance of our shepherding algorithm for
the four models of collective motion that have been presented in previous sections: metric, topological,
visual and long-range. Results in the paper are shown for a herd size NH = 100.
5.3.1. Dangerous patches

Figure 9 visualizes the first scenario over time, where a dangerous patch is placed in front of the herd. At
t = 0, the robots are in a caging formation, remaining at a distance R� > zI from the herd. At this time,
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some robots detect the danger and locally communicate this to their neighbours. The appropriate subset
of robots now apply a cage formation at a distance r� < zI, in order to push the herd in the opposite
direction of the danger. In the following time steps, the herd changes movement and other robots also
redirect their orientation. The herd and robots move away together from the danger. Once the danger
is far enough away (the danger is out of the detection distance dd at t = 20), each robot transitions
back to caging at the distance R�, which is fully established again at t = 35.

In order to observe whether the robotic agents are capable of repeatedly shepherding the herd in
different directions, dangerous patches are placed in front of the herd after a certain time interval. Each
time interval is newly sampled from a Gaussian distribution with mean 150 and standard deviation 25.
An individual of the herd only detects the danger once it is located inside the patch, which is similar to
animals encountering oil leaks and plastic pollution. When the herd is dense, multiple individuals may
detect the danger at the same time. In some way this may be necessary, as the mean direction of the herd
is hardly changed by the action of a single individual. Figure 10 shows the fraction of the herd that is
located outside of the safe enclosure, on average over time. Without shepherding, the herd is endangered
for any model of its collective motion. With 20 shepherding robots, the herd stays out of any danger
when modelled as topological or long-range for any values of zO and zA. For the metric model, the mean
fraction is significantly decreased by deploying robots and eventually becomes zero with a robot swarm
of size NA = 40 for most values of zO and zA. Although the performance of shepherding a herd that
follows a visual model improves by adding more robots (NA = 20 to 40), a certain fraction of the herd
remains endangered. We argue that the models likely differ in speed of information diffusion, which
influences the number of individuals that continues to move towards the danger. For the visual model,
deploying additional robots may not improve information diffusion when those additional robots are
positioned in an area occluded by others. We find that this issue only arises for larger herd sizes, as
appendix D shows that for any collective motion model, a herd of size NH = 10 remains safe when
shepherded by robots following the proposed algorithm.

Figure 11 shows the fraction of the herd that is positioned in a dangerous patch at time t. We see that for
bothNH = 100 andNH = 10, a fraction of the herd is endangeredwithout the aid of shepherding robots,while
the herd remains safe at all times in the presence of robots following our proposed algorithm.
5.3.2. Safe enclosure

Figure 12 visualizes the second scenario over time, where the safe zone (white) shrinks until a certain
area. At t = 0, the robots are in a caging formation, remaining at a distance R� from the herd. Some
robots have detected the danger zone (red) for the first time and begin re-orientating. At t = 5, the
robots push the herd away from the boundary of the safe zone in a certain direction, until the
boundary is reached again (t = 50). At this time, the agents redirect the herd towards another
direction. This pattern continues as the robots attempt to keep the herd in the centre of the safe zone.

The fraction of the herd that is located outside of the safe enclosure, on average over time, is presented
in figure 13. Without shepherding, the herd is endangered when modelled as metric, topological and
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visual. Following the long-range model, however, only a small fraction of the herd is in danger. With 20
shepherding robots, the herd stays out of any danger when modelled as topological or visual for any
zO > 25. The long-range herd is continuously shepherded in the safe enclosure, with both 20 and 40
robots, for any values of zO and zA. The metric model, however, performs the worst, as a fraction of
the herd moves out of the safe enclosure when zO is large.

Figure 14 shows the fraction of the herd that is positioned out of the safe enclosure at time t. We see
again that for both NH = 100 and NH = 10, a fraction of the herd is endangered when no robots are present,
while the herd remains safe at all times with the aid of shepherding robots. Most notably, there is a peak
in the fraction of endangered herdables at the beginning of the scenario. This is most likely due to the
herd being slower in detecting and reacting to the rapid shrinking of the safe enclosure.
6. Conclusion
In this paper, we proposed an algorithm on the individual level, which enables a swarm of robotic agents
to shepherd an autonomous herd (i.e. a group following collective motion) away from dangers before the
latter succumbs to these dangers. The robots rely on caging the herd at all times, so that any danger
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surrounding the herd can be immediately detected. We assume that herd individuals move away from
robots that are closer than a certain distance. Based on this assumption, robots are capable of steering the
herd in a desired direction by placing themselves close enough to the herd in the appropriate relative
position. We studied the performance of the proposed caging algorithm in simulation for four
different models of collective motion to simulate the herd: (i) metric, (ii) topological, (iii) visual and
(iv) long-range. We found that when the herd remains cohesive (i.e. information can be passed
between every pair of individuals in the herd), the robots are always capable of caging successfully if
an appropriate number of robots is deployed. The required number of robots can be computed from
Monte Carlo simulations if the collective motion model of the herd is known. Otherwise, it is best to
overestimate the number as the performance of the algorithm does not decrease by deploying
redundant robots. For parameters where the herd remains cohesive following a metric model, we
examined the performance of robots shepherding by caging. We defined two different shepherding
task scenarios: a first where dangerous patches appear with a probability over time, and a second
where the herd should remain in a safe circular area. Simulation results for herds of sizes 10 and 100
both show that shepherding prevents any individual of the herd from encountering a danger.
Without shepherding, a fraction of the herd is endangered. To the best of our knowledge, equipping
robots with the proposed algorithm results in the first decentralized multi-robot system only using
local observations and communication capable of shepherding a herd by caging. Future work includes
simulating the motion of the herd by trained models of real animal trajectories, and eventually real-
life experiments.
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Appendix A. Bound on the motion vector in caging to not exceed the
maximum linear velocity
The motion vector q of an agent following the proposed caging algorithm described in §4.1 is the
summation of vectors hû; hi and huh� ; �vh� i. We now define an upper bound on η such that ‖q‖≤ vmax.
This allows for the robot to move at maximum velocity, while maximizing its contribution to caging
(i.e. by setting η to its upper bound). The value of η indicates how much velocity can be used on
establishing a caging pattern, while replicating the movement of the nearest herd member h�. Hence,
it is required that the maximum linear velocity of the robot vmax is higher than the herd’s.

Let qh,x ¼ �vh� cosðuh� Þ and qh,y ¼ �vh� sinðuh� Þ. It follows that

q ¼ hqh,x þ h cosðûÞ; qh,y þ h sinðûÞi:

Thus, a bound on the velocity is defined as

v2max � ðqh,x þ h cosðûÞÞ2 þ ðqh,y þ h sinðûÞÞ2,
v2max � h2 þ 2hðqh,x cosðûÞ þ qh,y sinðûÞÞ þ q2h,x þ q2h,y

and 0 � h2 þ 2hðqh,x cosðûÞ þ qh,y sinðûÞÞ þ ð�v2h� � v2maxÞ:

We can rewrite qh,x cosðûÞ þ qh,y sinðûÞ as follows:

¼ �vh� cosðuh� Þ cosðûÞ þ �vh� sinðuh� Þ sinðûÞ
¼ �vh� cosðuh� � ûÞ:
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Substituting this in the upper bound:

0 � h2 þ 2h�vh� cosðuh� � ûÞ þ ð�v2h� � v2maxÞ,

h � ��vh� cosðuh� � ûÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2h� cos

2ðuh� � ûÞ � ð�v2h� � v2maxÞ
q

and h � ��vh� cosðuh� � ûÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2h� ðcos2ðuh� � ûÞ � 1Þ þ v2max

q
:

After root analysis, to ensure that η is positive, we find that

h � ��vh� cosðuh� � ûÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2h� ðcos2ðuh� � ûÞ � 1Þ þ v2max

q
:
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Appendix B. Simulation parameters
Table 1 summarizes all parameters used in the simulation experiments, where topological and long-
range are, respectively, abbreviated as top and l–r.
Table 1. Simulation parameters.

symbol parameter value association

wh,max/wa,max max. angular velocity p
3 =

p
2 rad s

�1 herd/robot

vh,max/va,max max. linear velocity 2=4 cm s�1 herd/robot

σh/σa Gaussian orientation noise 0:05=0:05 rad herd/robot

zR radius of repulsion zone 1 cm herd

zO radius of orientation zone ½10, 100� cm herd

zA radius of attraction zone ½10, 100� cm herd

k nearest neighbours 50 (top), 7 (l–r) herd

λ average of Poisson distribution (l–r) 0.1 herd

zI radius of aversive zone 19 cm herd

αR weight of repulsion interaction 100 herd

αO weight of repulsion interaction 50 herd

αA weight of repulsion interaction 1 herd

αI weight of repulsion interaction [500, 2500] herd

dd robot-detection radius 57 cm robot (cage)

R� distance robot–herd 24 cm robot (cage)

κ transition rate 0.2 robot (cage)

r� distance robot–herd 17 cm robot (shepherd)

dc communication radius 57 cm robot (shepherd)

dz danger-detection radius 40 cm robot (shepherd)

NH number of herd members [10, 100] herd

NA number of robotic agents [0, 10, 20, 30, 40] robot

ci.10:230015
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Figure 15. Quantitative herd measurements (NH = 100) obtained in simulation without robotic agents, following the topological
model with different values of k nearest neighbours: (a.1–3) 10, (b.1–3) 25, (c.1–3) 50. For each model configuration, the widths of
orientation (zO) and attraction (zA) zones are varied. The left column (a–c.1) shows the number of groups NG, the middle column
(a–c.2) shows the relative area coverage Ar, and the right column (a–c.3) shows the theoretical minimum number of agents NA,min
needed to form a caging pattern.
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Appendix C. Quantitative herd measurements of the topological model
for different values of k nearest neighbours
Figure 15 shows that a topological model with k = 10 leads to group fragmentation for any widths of the
zones. When k is set to 25, the herd remains cohesive for most values of zO and zA. Finally, for k = 50, the
topological model produces results most similar to those of the other three models (figure 6).
Appendix D. Shepherding a herd of 10 individuals
In figure 16, the average fraction of endangered herd over time is shown for all four herd models.
Without shepherding, the herd is on average endangered for every model and any values of the zone
widths zO and zA. Shepherding with 20 robots ensures that the herd remains entirely out of danger,
for any model configuration. Deploying redundant robots is shown to not decrease performance, as
the herd remains out of danger with NA = 40 shepherding robots.
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Figure 16. Fraction of the herd (NH = 10) located in dangerous patches, averaged over 2000 time steps, and following different
models of collective motion: (a.1–3) metric, (b.1–3) topological with k = 50, (c.1–3) visual and (d.1–3) long-range with k = 7,
λ = 0.1. The left column (a–d.1) NA = 0 shows the results where no robots are present and thus no shepherding takes place.
In the other columns, a shepherding robot swarm of sizes (a–d.2) NA = 20 and (a–d.3) NA = 40 are studied. For each
combination of motion model and swarm size, the widths of orientation (zO) and attraction (zA) zones are varied.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230015
20

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

ul
y 

20
23

 

References

1. Long NK, Sammut K, Sgarioto D, Garratt M,

Abbass HA. 2020 A comprehensive review of
shepherding as a bio-inspired swarm-robotics
guidance approach. IEEE Trans. Emerg. Top.
Comput. Intell. 4, 523–537. (doi:10.1109/TETCI.
2020.2992778)

2. Bat-Erdene B, Mandakh OE. 2017 Shepherding
algorithm of multi-mobile robot system. In
2017 1st IEEE Int. Conf. on Robotic Computing
(IRC), Taichung, Taiwan, 10–12 April 2017,
pp. 358–361. (doi:10.1109/IRC.2017.51)

3. Evered M, Burling P, Trotter M. 2014 An
investigation of predator response in robotic
herding of sheep. Int. Proc. Chem. Biol.
Environ. Eng. 63, 49–54. (doi:10.1079/
9780851994093.0235)

4. Butler Z, Corke P, Peterson R, Rus D. 2006 From
robots to animals: virtual fences for controlling
cattle. Int. J. Rob. Res. 25, 485–508. (doi:10.
1177/0278364906065375)

5. Vaughan R, Sumpter N, Henderson J, Frost A,
Cameron S. 2000 Experiments in automatic flock
control. Rob. Auton. Syst. 31, 109–117. (doi:10.
1016/S0921-8890(99)00084-6)

6. Lien JM, Pratt E. 2009 Interactive planning for
shepherd motion. In 2009 AAAI Spring Symp. on
Agents that Learn from Human Teachers, Palo
Alto, CA, USA, 23–25 March 2009, pp. 95–102.

7. Paranjape AA, Chung SJ, Kim K, Shim DH. 2018
Robotic herding of a flock of birds using an
unmanned aerial vehicle. IEEE Trans. Rob. 34,
901–915. (doi:10.1109/TRO.2018.2853610)

8. Gade S, Paranjape AA, Chung SJ. 2015 Herding
a flock of birds approaching an airport using an
unmanned aerial vehicle. In 2015 AIAA
Guidance, Navigation, and Control Conf.,
Kissimmee, FL, USA, 5–9 January 2015, AIAA
2015-1540. (doi:10.2514/6.2015-1540)

9. Garrell A, Sanfeliu A, Moreno-Noguer F. 2009
Discrete time motion model for guiding people
in urban areas using multiple robots. In 2009
IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, St Louis, MO, USA, 10–15 October
2009, pp. 486–491. (doi:10.1109/IROS.2009.
5354740)

10. Lien JM, Bayazit OB, Sowell RT, Rodriguez S,
Amato NM. 2004 Shepherding behaviors. In IEEE
Int. Conf. on Robotics and Automation, New
Orleans, LA, USA, 26 April–1 May 2004, vol. 4, pp.
4159–4164. (doi:10.1109/ROBOT.2004.1308924)

11. Coppinger L, Coppinger R. 1993 Dogs for
herding and guarding livestock. Livestock Handl.
Transp. 13, 235–253. (doi:10.1079/
9780851994093.0235)

http://dx.doi.org/10.1109/TETCI.2020.2992778
http://dx.doi.org/10.1109/TETCI.2020.2992778
http://dx.doi.org/10.1109/IRC.2017.51
http://dx.doi.org/10.1079/9780851994093.0235
http://dx.doi.org/10.1079/9780851994093.0235
http://dx.doi.org/10.1177/0278364906065375
http://dx.doi.org/10.1177/0278364906065375
http://dx.doi.org/10.1016/S0921-8890(99)00084-6
http://dx.doi.org/10.1016/S0921-8890(99)00084-6
http://dx.doi.org/10.1109/TRO.2018.2853610
http://dx.doi.org/10.2514/6.2015-1540
http://dx.doi.org/10.1109/IROS.2009.5354740
http://dx.doi.org/10.1109/IROS.2009.5354740
http://dx.doi.org/10.1109/ROBOT.2004.1308924
http://dx.doi.org/10.1079/9780851994093.0235
http://dx.doi.org/10.1079/9780851994093.0235


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230015
21

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

ul
y 

20
23

 

12. King AJ, Wilson AM, Wilshin SD, Lowe J, Haddadi
H, Hailes S, Morton AJ. 2012 Selfish-herd
behaviour of sheep under threat. Curr. Biol. 22,
R561–R562. (doi:10.1016/j.cub.2012.05.008)

13. Hamilton WD. 1971 Geometry for the selfish
herd. J. Theor. Biol. 31, 295–311. (doi:10.1016/
0022-5193(71)90189-5)

14. Morrell LJ, Ruxton GD, James R. 2011 Spatial
positioning in the selfish herd. Behav. Ecol. 22,
16–22. (doi:10.1093/beheco/arq157)

15. Ballerini M et al. 2008 Interaction ruling animal
collective behavior depends on topological
rather than metric distance: evidence from a
field study. Proc. Natl Acad. Sci. USA 105,
1232–1237. (doi:10.1073/pnas.0711437105)

16. Zumaya M, Larralde H, Aldana M. 2018 Delay in
the dispersal of flocks moving in unbounded
space using long-range interactions. Sci. Rep. 8,
15872. (doi:10.1038/s41598-018-34208-x)

17. King AE, Turner MS. 2021 Non-local interactions
in collective motion. R. Soc. Open Sci. 8, 201536.
(doi:10.1098/rsos.201536)

18. Hubbard S, Babak P, Sigurdsson ST, Magnússon
KG. 2004 A model of the formation of fish schools
and migrations of fish. Ecol. Modell. 174,
359–374. (doi:10.1016/j.ecolmodel.2003.06.006)

19. Katz Y, Tunstrøm K, Ioannou CC, Huepe C,
Couzin ID. 2011 Inferring the structure and
dynamics of interactions in schooling fish. Proc.
Natl Acad. Sci. USA 108, 18 720–18 725.
(doi:10.1073/pnas.1107583108)

20. Hoare DJ, Couzin ID, Godin JG, Krause J. 2004
Context-dependent group size choice in fish.
Anim. Behav. 67, 155–164. (doi:10.1016/j.
anbehav.2003.04.004)

21. Giardina I. 2008 Collective behavior in animal
groups: theoretical models and empirical
studies. HFSP J. 2, 205–219. (doi:10.2976/1.
2961038)

22. Nauta J, Van Havermaet S, Simoens P, Khaluf Y.
2020 Enhanced foraging in robot swarms using
collective Lévy walks. In 24th Eur. Conf. on
Artificial Intelligence (ECAI), Santiago de
Compostela, Spain, 29 August–8 September
2020, vol. 325, pp. 171–178.

23. Reynolds CW. 1987 Flocks, herds and schools: a
distributed behavioral model. In Proc. 14th
Annual Conf. on Computer Graphics and
Interactive Techniques, pp. 25–34. New York,
NY: ACM.

24. Couzin ID, Krause J, James R, Ruxton GD, Franks
NR. 2002 Collective memory and spatial sorting
in animal groups. J. Theor. Biol. 218, 1–11.
(doi:10.1006/jtbi.2002.3065)

25. Gueron S, Levin SA, Rubenstein DI. 1996 The
dynamics of herds: from individuals to
aggregations. J. Theor. Biol. 182, 85–98.
(doi:10.1006/jtbi.1996.0144)

26. Porzycki J, Was J, Hedayatifar L, Hassanibesheli
F, Kułakowski K. 2017 Velocity correlations
and spatial dependencies between neighbors
in a unidirectional flow of pedestrians.
Phys. Rev. E 96, 022307. (doi:10.1103/PhysRevE.
96.022307)

27. Couzin ID, Krause J. 2003 Self-organization and
collective behavior in vertebrates. Adv. Study
Behav. 32, 1–75. (doi:10.1016/S0065-
3454(03)01001-5)
28. Couzin ID, Krause J, Franks NR, Levin SA. 2005
Effective leadership and decision-making in
animal groups on the move. Nature 433,
513–516. (doi:10.1038/nature03236)

29. Mondada F, Martinoli A, Correll N, Gribovskiy A,
Halloy JI, Siegwart R, Deneubourg JL. 2013 A
general methodology for the control of mixed
natural-artificial societies. Singapore: Pan
Stanford Publishing.

30. Tsunoda Y, Sueoka Y, Sato Y, Osuka K. 2018
Analysis of local-camera-based shepherding
navigation. Adv. Rob. 32, 1217–1228. (doi:10.
1080/01691864.2018.1539410)

31. Berlinger F, Gauci M, Nagpal R. 2021 Implicit
coordination for 3D underwater collective
behaviors in a fish-inspired robot swarm. Sci. Rob.
6, eabd8668. (doi:10.1126/scirobotics.abd8668)

32. Holmlund CM, Hammer M. 1999 Ecosystem
services generated by fish populations. Ecol.
Econ. 29, 253–268. (doi:10.1016/S0921-
8009(99)00015-4)

33. Le Gallic B, Cox A. 2006 An economic analysis of
illegal, unreported and unregulated (IUU)
fishing: key drivers and possible solutions.
Marine Policy 30, 689–695. (doi:10.1016/j.
marpol.2005.09.008)

34. Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S.
2020 Effects of pollution on fish behavior,
personality, and cognition: some research
perspectives. Front. Ecol. Evol. 8, 86. (doi:10.
3389/fevo.2020.00086)

35. Essl F et al. 2020 Drivers of future alien species
impacts: an expert-based assessment. Glob. Change
Biol. 26, 4880–4893. (doi:10.1111/gcb.15199)

36. Viscido SV, Parrish JK, Grünbaum D. 2004
Individual behavior and emergent properties of
fish schools: a comparison of observation and
theory. Mar. Ecol. Prog. Ser. 273, 239–249.
(doi:10.3354/meps273239)

37. Huth A, Wissel C. 1994 The simulation of fish
schools in comparison with experimental data.
Ecol. Modell. 75, 135–146. (doi:10.1016/0304-
3800(94)90013-2)

38. Parrish JK, Edelstein-Keshet L. 1999 Complexity,
pattern, and evolutionary trade-offs in animal
aggregation. Science 284, 99–101. (doi:10.
1126/science.284.5411.99)

39. Hensor E, Couzin ID, James R, Krause J. 2005
Modelling density-dependent fish shoal
distributions in the laboratory and field. Oikos 110,
344–352. (doi:10.1111/j.0030-1299.2005.13513.x)

40. Gautrais J, Jost C, Soria M, Campo A, Motsch S,
Fournier R, Blanco S, Theraulaz G. 2009
Analyzing fish movement as a persistent
turning walker. J. Math. Biol. 58, 429–445.
(doi:10.1007/s00285-008-0198-7)

41. Landgraf T, Gebhardt GH, Bierbach D,
Romanczuk P, Musiolek L, Hafner VV, Krause J.
2021 Animal-in-the-loop: using interactive
robotic conspecifics to study social behavior in
animal groups. Annu. Rev. Control Rob. Auton.
Syst. 4, 487–507. (doi:10.1146/annurev-control-
061920-103228)

42. Vaughan R, Sumpter N, Frost A, Cameron S.
1998 Robot sheepdog project achieves
automatic flock control. In Proc. 5th Int. Conf. on
the Simulation of Adaptive Behavior, pp. 489–
493. Cambridge, MA: MIT Press.
43. Strömbom D, Mann RP, Wilson AM, Hailes S,
Morton AJ, Sumpter DJ, King AJ. 2014 Solving
the shepherding problem: heuristics for herding
autonomous, interacting agents. J. R. Soc.
Interface 11, 20140719. (doi:10.1098/rsif.
2014.0719)

44. Miki T, Nakamura T. 2006 An effective simple
shepherding algorithm suitable for
implementation to a multi-mmobile robot
system. In 1st Int. Conf. on Innovative Computing,
Information and Control (ICICIC’06), Beijing, China,
30 August–1 September 2006, vol. 3, pp. 161–
165. (doi:10.1109/ICICIC.2006.411)

45. Lien JM, Rodriguez S, Malric JP, Amato NM.
2005 Shepherding behaviors with multiple
shepherds. In Proc. 2005 IEEE Int. Conf. on
Robotics and Automation, Barcelona, Spain, 18–
22 April 2005, pp. 3402–3407. (doi:10.1109/
ROBOT.2005.1570636)

46. Pierson A, Schwager M. 2015 Bio-inspired non-
cooperative multi-robot herding. In 2015 IEEE
Int. Conf. on Robotics and Automation (ICRA),
Seattle, WA, USA, 26–30 July 2015, pp. 1843–
1849. (doi:10.1109/ICRA.2015.7139438)

47. Khaluf Y, Rausch I, Simoens P. 2018 The impact
of interaction models on the coherence of
collective decision-making: a case study with
simulated locusts. In Swarm intelligence (eds M
Dorigo, M Birattari, C Blum, A Christensen, A
Reina, V Trianni). Lecture Notes in Computer
Science, vol. 11172, pp. 252–263. Cham,
Switzerland: Springer. (doi:10.1007/978-3-030-
00533-7_20)

48. Hu J, Turgut AE, Krajnik T, Lennox B, Arvin F.
2020 Occlusion-based coordination protocol
design for autonomous robotic shepherding
tasks. IEEE Trans. Cogn. Dev. Syst. 14, 126–135.
(doi:10.1109/TCDS.2020.3018549)

49. Özdemir A, Gauci M, Groß R. 2017 Shepherding
with robots that do not compute. In Artificial
Life Conf. Proc., Lyon, France, 4–8 September
2017, pp. 332–339. Cambridge, MA: MIT Press.

50. Lee W, Kim D. 2017 Autonomous shepherding
behaviors of multiple target steering robots.
Sensors 17, 2729. (doi:10.3390/s17122729)

51. Varava A, Hang K, Kragic D, Pokorny FT. 2017
Herding by caging: a topological approach
towards guiding moving agents via mobile
robots. In Robotics: Science and Systems,
Cambridge, MA, USA, 12–16 July 2017,
pp. 696–700.

52. Muro C, Escobedo R, Spector L, Coppinger R.
2011 Wolf-pack (Canis lupus) hunting strategies
emerge from simple rules in computational
simulations. Behav. Processes 88, 192–197.
(doi:10.1016/j.beproc.2011.09.006)

53. Strandburg-Peshkin A et al. 2013 Visual sensory
networks and effective information transfer in
animal groups. Curr. Biol. 23, R709–R711.
(doi:10.1016/j.cub.2013.07.059)

54. Nelson DR, Barber DB, McLain TW, Beard RW.
2007 Vector field path following for miniature
air vehicles. IEEE Trans. Rob. 23, 519–529.
(doi:10.1109/TRO.2007.898976)

55. Van Havermaet S, Simoens P, Landgraf T, Khaluf
Y. 2023 Steering herds away from dangers in
dynamic environments. Figshare. (doi:10.6084/
m9.figshare.c.6631199)

http://dx.doi.org/10.1016/j.cub.2012.05.008
http://dx.doi.org/10.1016/0022-5193(71)90189-5
http://dx.doi.org/10.1016/0022-5193(71)90189-5
http://dx.doi.org/10.1093/beheco/arq157
http://dx.doi.org/10.1073/pnas.0711437105
https://doi.org/10.1038/s41598-018-34208-x
http://dx.doi.org/10.1098/rsos.201536
http://dx.doi.org/10.1016/j.ecolmodel.2003.06.006
http://dx.doi.org/10.1073/pnas.1107583108
http://dx.doi.org/10.1016/j.anbehav.2003.04.004
http://dx.doi.org/10.1016/j.anbehav.2003.04.004
http://dx.doi.org/10.2976/1.2961038
http://dx.doi.org/10.2976/1.2961038
http://dx.doi.org/10.1006/jtbi.2002.3065
http://dx.doi.org/10.1006/jtbi.1996.0144
http://dx.doi.org/10.1103/PhysRevE.96.022307
http://dx.doi.org/10.1103/PhysRevE.96.022307
http://dx.doi.org/10.1016/S0065-3454(03)01001-5
http://dx.doi.org/10.1016/S0065-3454(03)01001-5
http://dx.doi.org/10.1038/nature03236
http://dx.doi.org/10.1080/01691864.2018.1539410
http://dx.doi.org/10.1080/01691864.2018.1539410
http://dx.doi.org/10.1126/scirobotics.abd8668
http://dx.doi.org/10.1016/S0921-8009(99)00015-4
http://dx.doi.org/10.1016/S0921-8009(99)00015-4
http://dx.doi.org/10.1016/j.marpol.2005.09.008
http://dx.doi.org/10.1016/j.marpol.2005.09.008
http://dx.doi.org/10.3389/fevo.2020.00086
http://dx.doi.org/10.3389/fevo.2020.00086
http://dx.doi.org/10.1111/gcb.15199
https://doi.org/10.3354/meps273239
http://dx.doi.org/10.1016/0304-3800(94)90013-2
http://dx.doi.org/10.1016/0304-3800(94)90013-2
http://dx.doi.org/10.1126/science.284.5411.99
http://dx.doi.org/10.1126/science.284.5411.99
http://dx.doi.org/10.1111/j.0030-1299.2005.13513.x
http://dx.doi.org/10.1007/s00285-008-0198-7
https://doi.org/10.1146/annurev-control-061920-103228
https://doi.org/10.1146/annurev-control-061920-103228
http://dx.doi.org/10.1098/rsif.2014.0719
http://dx.doi.org/10.1098/rsif.2014.0719
http://dx.doi.org/10.1109/ICICIC.2006.411
http://dx.doi.org/10.1109/ROBOT.2005.1570636
http://dx.doi.org/10.1109/ROBOT.2005.1570636
http://dx.doi.org/10.1109/ICRA.2015.7139438
http://dx.doi.org/10.1007/978-3-030-00533-7_20
http://dx.doi.org/10.1007/978-3-030-00533-7_20
http://dx.doi.org/10.1109/TCDS.2020.3018549
http://dx.doi.org/10.3390/s17122729
http://dx.doi.org/10.1016/j.beproc.2011.09.006
http://dx.doi.org/10.1016/j.cub.2013.07.059
http://dx.doi.org/10.1109/TRO.2007.898976
http://dx.doi.org/10.6084/m9.figshare.c.6631199
http://dx.doi.org/10.6084/m9.figshare.c.6631199

	Steering herds away from dangers in dynamic environments
	Introduction
	Related work
	Problem formulation
	Collective motion models
	Caging
	Shepherding

	Algorithm
	Caging
	Shepherding

	Results
	Collective motion models
	Caging
	Shepherding
	Dangerous patches
	Safe enclosure


	Conclusion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Appendix A. Bound on the motion vector in caging to not exceed the maximum linear velocity
	Appendix B. Simulation parameters
	Appendix C. Quantitative herd measurements of the topological model for different values of k nearest neighbours
	Appendix D. Shepherding a herd of 10 individuals
	References


