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� An effective strategy for pore type
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presented.
� Pore geometry was studied across
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� Relative measurements of pore
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print scenarios.
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The manufacturing of metal parts via powder-bed fusion is often still facing quality issues due to
microstructural porosity. Minimizing this porosity remains a priority and requires the optimization of
printing process parameters. While the analysis of printed parts using X-ray computed tomography
can localize and identify the pore types (e.g. keyhole or lack-of-fusion pores), these pore types can be dif-
ficult to identify across printer settings and print materials. Therefore, there is a need for a material and
process agnostic approach. This work presents such an approach by considering a set of geometric pore
features that do not differ considerably across print scenarios. These features are then leveraged for
supervised pore type classification. The distributions of pore features were analyzed in different materials
and under varying laser parameters, showing that they behave in a generic way. For classification, it is
observed that they outperform other features leveraged in the state-of-the-art for pore classification in
a single material, reaching up to 93.0% accuracy. Additionally, accuracies up to 90.2% for cross-material
classification were observed by training on pores of one material and validating on another. These results
pave the way to a general-purpose pore classification method usable across materials and process
conditions.
� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matdes.2023.111757&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.matdes.2023.111757
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mathieu.vandecasteele@ugent.be
https://doi.org/10.1016/j.matdes.2023.111757
http://www.sciencedirect.com/science/journal/02641275
http://www.elsevier.com/locate/matdes


M. Vandecasteele, R. Heylen, D. Iuso et al. Materials & Design 227 (2023) 111757
1. Introduction

The additive Manufacturing (AM), i.e. 3D printing, of metal
parts has the potential to revolutionize the manufacturing industry
as it offers three key advantages over traditional part manufactur-
ing. First, AM only uses as much material as needed, leading to less
material waste as compared to subtractive manufacturing [1]. Sec-
ond, AM has decreased manufacturing cost and time since no part-
specific tools are needed [2]. Third, AM allows an increase of part
complexity without an increase of cost [3]. These advantages allow
AM to create complex and customized parts at a lower cost than
traditional manufacturing.

The laser powder-bed fusion (LPBF) process is a popular tech-
nique used in metal AM. During the process, powder particles are
deposited and melted by a laser in a layer-wise manner to build
up the part. Due to the complexity of this process, a variety of
defects may occur in the finished parts. Porosity, or voids in the
printed part, remains one of the most challenging defects. Porosity
is a result of micro-structural defects, often referred to as pores,
Fig. 1. Overview of 3D printing defects. (a) The different zones influenced by laser speed
lack-of-fusion porosity, zone III produces keyhole porosity and zone IV produces defects
keyhole porosity is observed. These pores were created due to the process operating in
observed. These pores were created due to the process operating in zone II. (d) A 2.5D s
observed. These defects were created due to the process operating in zone IV.
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that have a negative influence on its strength and mechanical
properties [4].

The most commonly-observed pores types are keyhole and
lack-of-fusion pores. They are associated with either transferring
too much energy into the powder-bed or not transferring enough
energy into the powder-bed, respectively. The energy density that
is transferred into the powder-bed is partly determined by the
laser power and speed. In fact, we can outline a couple of zones
in a parameter space spanned by the laser power and speed [5],
as seen on Fig. 1a. In Zone I, the parameters are optimal and no
porosity is expected to be generated. Zone II is the lack-of-fusion
zone, where the energy density is too low to fuse the metal pow-
der, resulting in lack-of-fusion pores. Zone III, the keyhole zone,
is associated with an energy density that is too high, resulting in
keyhole pores. Finally, zone IV is associated with the phenomenon
called balling. In this zone, the melted metal can solidify into iso-
lated spheres. Example X-ray CT slices of keyhole and lack-of-
fusion pores can be seen on Fig. 1b and c, while the balling effect
can be observed on Fig. 1d. Most of the different sources of porosity
and power. Zone I is optimal and may produce high quality parts. Zone II produces
due to a phenomenon called balling. (b) An example X-ray CT slice of a layer where
zone III. (c) An example X-ray CT slice of a layer where lack-of-fusion porosity is
urface measurement, using confocal microscopy, of a sample where balling can be
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come down to the fact that there is either too much (keyhole) or
not enough energy (lack-of-fusion).

These lack of fusion and keyhole pores can occur due to several
reasons, and mitigating all these sources of porosity remains chal-
lenging. Porosity can be powder-induced, dependent on the quality
of the powder and out of the control of the part manufacturer.
Porosity can also be model-induced, where printing parameters
for special geometries (e.g. overhangs) have yet to be fully opti-
mized [6]. Stochastic, process-induced variability can also produce
porosity due to all kinds of phenomena, such as: melt pool spatter
[7,8], heat accumulation [9,10] and plume formation [11,8]. While
optimal printing parameters have been estimated for many metals
[12–15] and, occasionally for different object geometries [16,17],
these printing parameters are, in general, not perfect. These vari-
able printing conditions (e.g. humidity, part geometry) have the
effect of locally shifting the boundaries of the defect zones in
Fig. 1a, constantly changing which process parameters are optimal.
As a result, dependent on part complexity, up to 40% of 3D printed
metal objects fail to meet quality standards and need to be
scrapped [18]. These challenges are further evidenced by ongoing
research on different mitigation strategies such as: post-process
heat treatments [19–21], in situ process monitoring systems [22–
25] and process optimization by post-process analysis [26–28].
This work will mostly be focused on the last strategy.

The aim of post-process analysis is not only to identify the pores
in a part, but is also to find the causes of these pores, i.e. what
physical process caused the pore creation [29]. X-ray computed
tomography has been shown to provide information on the loca-
tion, distribution, size, and morphology of pores in a 3D printed
part without destroying it [30]. This pore information is useful to
narrow down the cause of the porosity, allowing an operator to
adjust the printing process to mitigate the creation of these pores.
Adjusting the printing process can be interpreted in a broad sense:
it may involve changing the build chamber conditions, changing
the scanning strategy, adjusting the laser parameters, etc. Regard-
less of the adjustment employed, the result of these adjustments
must be different for keyhole and lack-of-fusion pores. In the for-
mer case, the energy density deposited by the laser must decrease,
with for the latter, the energy density must increase. As a result of
this difference, it is crucial that a pore’s type be properly identified.

Keyhole and lack-of-fusion pores have distinct shapes [31]. The
dissimilarities in pore shape can be expressed by some morpholog-
ical features, such as size, surface area, aspect ratio, sphericity etc.
The differences in these features between pore types have been
investigated in several studies [32–39]. A common classification
approach is setting defined limits on some of these features [40–
42]. However this can be challenging to apply due to possible over-
laps in the range of values of the features between pore types.
More elaborate statistical methods have also been proposed to
address this problem, such as k-means clustering [41], decision
trees and artificial neural networks [43]. Using user defined fea-
tures can also be completely omitted if using deep neural networks
as demonstrated in [44].

While some of the previously mentioned works on pore classi-
fication show excellent performance, their evaluation is lacking on
two important aspects: robustness to changing process conditions
and generalization to other materials. The former is important
because a pore’s shape is influenced by the extent to which the
process conditions deviate from the optimal conditions. For exam-
ple, typically keyhole pores tend to be become larger as the devia-
tion from the optimal printing conditions increase [45–47]. It is
thus essential to investigate if the chosen parameters and methods
are robust to these changes to ensure that they are applicable to a
wide range of process conditions. The latter aspect is also impor-
tant because different materials have different thermal conductiv-
ities and laser absorptivities, both of which can impact pore shape
3

[48]. By not considering these aspects of pore classification, exist-
ing studies provide little information on whether their results can
generalize to different printing scenarios and, potentially, to new
printing materials. Therefore, the open question remains: could a
classification model trained on pores of one material be leveraged
on a new material with similar accuracy? To the best of our knowl-
edge, no other study has addressed this question.

Even though pore shapes may vary across process conditions
and materials, they still share some underlying similarities because
the physics of pore creation is rather consistent across different
metals and printing modes (e.g. conduction mode, keyhole mode)
[49,50]. The challenge is to find morphological features of pores
that showminimal variance across these scenarios. If such features
exist, a general purpose pore type classifier could then be created
that is usable across materials and process conditions and thus
completely process- and material-agnostic. Such a classifier would
allow us to leverage our knowledge of pores created under any
process condition from any material and apply it to unseen cases.

We hypothesize that there must exist some pore features that
show minimal variance across process conditions and materials.
Under this hypothesis, it should also be possible to design a general
purpose pore type classifier. In this study, we evaluate this hypoth-
esis and, in turn, introduce the following contributions to the field:

� We present geometrical features of pores that show small
enough variance across metals and process conditions to allow
for generalizability,
� We present a supervised pore type classification method, show-
ing state-of-the-art classification accuracies both within a sin-
gle material and across materials,
� We evaluate both of these contributions to show that indeed,
there is evidence to support the hypothesis that a general pur-
pose classifier is possible.

2. Materials

To test the material-agnostic properties of pore classification,
test objects were 3D printed in three different materials: 316L
stainless steel, a cobalt-chrome alloy and Ti6AI4V titanium. While
these materials were chosen based on their availability, they are
common materials in metal AM and make representative test
materials. To create porosity, non-optimal energy densities were
induced into the power-bed by altering of the laser parameters.
The strategy used for altering the laser parameters is explained
in more detail in the experimental design section. The specific laser
parameters used in the experiments are listed in appendix B. The
remaining process parameters are kept at their known optimal
levels and are included in the descriptions below.

The steel sample was fabricated using a 3DX DMP320 laser
powder bed fusion (LPBF) machine. The laser source of the LPBF
machine was an Ytterbium fiber with wavelength of 1064 nm
and had a spot size of 75 lm. The print was carried out under an
argon atmosphere. The powder particle size of the stainless steel
ranged between 20–50 lm. Each layer of the printed part was
30 lm thick and a hatching distance of 100 lm was used.

The Cobalt-chrome sample was printed on a Renishaw machine
AM250. The LPBF machine equipped with a pulsed laser operating
at wavelength of 1070 nm. The sample was created with particle
size of 15–45 lm. The print was executed with layer thickness of
40 lm and single line hatching pattern.

The Ti6AI4V samplewas fabricatedwith an SLM 125HLmachine
equipped with a Materialise Control Platform (MCP). The machine
employs a ytterbium fiber laser operating at a wavelength of
1080 nm. Printing was carried out under an argon atmosphere.
The powder particle sizes range between 15 and 45 lm. Each layer
is 30 lm thick and a hatching distance of 130 lm was used.
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To identify porosity, the three printed samples were scanned
with the UAntwerp FleXCT scanner [51]. For each sample, the
source-to-detector distance was set to 650 mm and the source-
to-object distance to 43.33 mm. In order to increase the similarity
in image quality despite the samples being of different materials,
some of the scanner parameters were set specifically for each sam-
ple. The steel sample was scanned at 230 kV, with an exposure
time of 600 ms, current of 90 lA and copper filtration of 1.5 mm,
for a total of 4282 X-ray projections. The cobalt-chrome sample
was scanned at 220 kV, exposure time of 1095 ms, current of 75
lA and copper filtration of 1 mm, for 4282 X-ray projections. The
titanium sample was scanned at 200 kV, exposure time of
2100 ms, current of 75 lA and copper filtration of 1 mm, for
1443 X-ray projections. Using the FDK reconstruction and a
beam-hardening compensation algorithm, 3D X-ray CT images
were obtained with a resolution of 10 lm in the three directions.
These X-ray CT images provided ground truth information on the
porosity of the printed samples.
3. Methods

3.1. Overview

Given a X-ray CT scan of a printed part, our goal is to identify
and classify the pores into keyhole and lack-of-fusion classes.
The general workflow is outlined in the following subsections. At
first the pores are segmented from the bulk material using classical
image processing techniques as described in the segmentation
subsection. The features for each pore are then calculated as
explained in the feature detection subsection. We also justify there
why we use the particular features we chose. The feature values for
every pore are then input into a trained classification model that
determines the pore type. This is outlined in the last subsection.
Note that the novelty of this work is situated in the proposed fea-
tures and the investigation of their material agnosticism and
robustness to varying printing parameters. Therefore, the segmen-
tation and classification methods have been deliberately chosen to
be standard approaches in order to show that the features do not
depend on any bespoke segmentation or classification techniques.
3.2. Segmentation

For the segmentation of pores from the X-ray CT data, we
employed the established algorithm of Kim et al. [52] which has
previously been validated and has seen widespread use [53–58].
The method is described in pseudo-code in Algorithm1. For every
slice, a denoising is applied by a non-local means filtering with a
fixed estimate on the standard deviation of the Gaussian noise.
Fig. 2b (Sdenoised in Algorithm1) shows an example of a denoised slice
from the original slice in Fig. 2a. To segment the pores, Bersen’s
Local Thresholding algorithm [59] is used with a window size of 5
and a fixed value for the contrast threshold. The result is a binary
image where pores are segmented for every slice. If a pore is larger
than the window size of Bersen’s, the center pixels of the pore may
be incorrectly assigned as not being part of the pore. Therefore, after
Bersen’s thresholding, a hole fillingmethod is applied to close these
holes. Fig. 2c (Sbinaryfill in Algorithm1) shows the output after this
segmentation. Finally, as seen on Fig. 2d (Sbinarydenoised in Algo-
rithm1), a median filtering is applied with window size 5 to elimi-
nate very small pores due to partial voluming effects. These
artifacts are most notable along the edges of the sample.

To acquire and label individual 3D pores, the binary segmented
images are then stacked and a 3D connected components proce-
dure [60] is performed. Finally, and in addition to the work of
Kim et al. [52], a marker-based watersheds segmentation [61]
4

was performed on the distance transformation of each individual
pore. This was done to correctly separate individual pores that
touch each other.

Algorithm1 Pore Segmentation Algorithm

Input: Slices ¼ CT ScanSlices 16� bitð Þ
Output: Pores

1: BinarySlices fg
2: for every Slice S in Slices do
3: Sdenoised  Nonlocalmeans Smedian; std ¼ 2000ð Þ
4: Sbinary  Bernsen Sdenoised; size ¼ 5; c ¼ 3000ð Þ
5: Sbinaryfill  Fillholes Sbinary

� �
6: Sbinarydenoised  Medianfilter Sbinaryfill; size ¼ 5

� �
7: BinarySlices:append Sbinarydenoised

� �
8: end for
9: ST  Stack BinarySlicesð Þ
10: CC  Connectedcomponents3D STð Þ
11: Pores fg
12: for every Component C in CC do
13: D DistanceTransform Cð Þ
14: W  Watersheds3D Dð Þ
15: for every Pore P in W do
16: Pores:append Pð Þ
17: end for
18: end for

Prior to running the experiments, the accuracy of the pore seg-
mentation algorithm was evaluated through a comparison with
microscopy imaging. This comparison study is provided in Appen-
dix A and its results visually agree with previously-reported high
accuracies [52].

3.3. Feature detection

If the laser energy density supplied to the powder bed is too
high, the LPBF process will operate in the keyhole melting mode.
In the keyhole regime, the increased laser and vapor pressure cre-
ates a deep depression in the meltpool, which can lead to a run-
away, tunnel-shaped depression that leaves pores at the bottom
[62]. The pores that are created are then contracted into a spherical
shape to minimize surface area [63] and are filled with inert gas
from the build chamber. Keyhole pores are also more likely to be
elongated along the build direction [41]. These physical character-
istics can be translated into measurable 3D features and used for
classification.

Meanwhile, lack-of-fusion porosity occurs when the supplied
energy density is too low. They are created due to an insufficient
overlap of successive melt pools [50]. These kind of pores are elon-
gated along the scan direction and may contain unmelted powder
particles [64]. Their shape is also rather irregular [65]. Again, these
physical characteristics of lack-of-fusion pores can be translated
into 3D features.

The spherical nature of keyhole pores, and the irregular nature
of lack-of-fusion pores, can be captured in a compactness feature.
The compactness of a pore is defined as the ratio of the volume
of the pore to the volume of the equivalent sphere with the same
radius as the pore:

C ¼ Vpore

4
3 pR3

pore

: ð1Þ

The radius of the pore is defined as being the half of the width of the
pore, where the width is the longest linear distance found in the
build (XY) plane: Rpore ¼ 1=2max Dxy

� �
. Dxy denotes a vector of all



Fig. 2. Intermediate results of applying the segmentation algorithm on an example slice. (a) The original unaltered slice. (b) Denoising of the slice using non-local means
filtering. (c) Binarized image by applying Bernsen’s local thresholding and hole filling procedure. (d) The final binarized image after denoising using a median filter.

M. Vandecasteele, R. Heylen, D. Iuso et al. Materials & Design 227 (2023) 111757
pairwise in-plane distances between voxels in the given pore. The
compactness feature values for keyhole pores are close to 1 due
to their surface area minimization. Meanwhile, lack-of-fusion pores
have a more irregular shape, leading to a lower compactness value.

A second feature that we propose is the relative mean intensity.
This feature leverages the fact that lack-of-fusion pores may con-
tain unmelted particles. It is defined as the ratio of the mean inten-
sity of the pore’s neighborhood to the mean intensity of the pore
itself:

bIrel ¼ bIn=bIp ¼ X
n2N

In

" #
= jNj

X
p2P

Ip

" #
= jPj

,
; ð2Þ

with N being the set of all voxels that are part of the pore’s neighbor-
hood, and jNj being the size of this set. Likewise, P is the set of all
voxels that are part of the pore. For lack-of-fusion pores, this feature
value is closer to 1 due to the presence of the unmelted powder par-
ticles. For keyhole pores, these values are higher as they are filled
with whatever gas is present in the build chamber (e.g. argon). It
could be argued that the same information may be conveyed by
simply using the mean intensity of the pore itself as a feature. How-
ever, the intensity of a sample as measured by a X-ray CT system is
dependent on the material. By comparing the intensity of a pore to
the intensity of the material, the feature is independent of the par-
ticular material used.

In order to calculate this relative mean intensity feature, the
neighborhood of a pore N has to be properly defined. We define
5

this neighbourhood as the union of all voxels that are within 10
voxels (100 lm) from the pore boundary, minus the voxels of the
pore itself and minus the voxels that are part of any other nearby
pore. To determine this neighborhood for every pore, a distance
transformation map is first computed for the entire binarized vol-
ume. This distance transform computes the Euclidean distance of
each voxel to the nearest pore. By thresholding the distance trans-
form map and cropping it to include only distances around the
pore in question, we obtain a set of voxels that surround the pore
but does not include other nearby pores. Fig. 3 shows the output of
this algorithm for an Example 2D slice. The red line is the bounding
box used to crop the distance transform map while the blue line
displays our computed pore neighborhood.

A third feature is the longitudinal aspect ratio. It captures the
elongation along the build direction (keyhole) or along the scan
direction (lack-of-fusion). The feature is defined as:

AR ¼ Zbb

max Dxy
� � ð3Þ

with Zbb being the pore height as determined by calculating the
bounding box. max Dxy

� �
is again the width of the pore as defined

earlier. For keyhole pores, their elongation along the build direction
results in a aspect ratio value close to 1. For lack-of-fusion pores,
these values are lower due to their elongation within the XY-plane.

Some 3D renderings of example pores can be seen on Fig. 4a
(lack-of-fusion) and Fig. 4b (keyhole). Note the more spherical/el-



Fig. 3. Result of the described method for determining a pore’s neighborhood. The
red line being the bounding box, while the blue line is the pore’s neighborhood
determined by thresholding the distance transform in this bounding box.
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lipsoidal structure of the keyhole pores and their height (Z-axis) to
width ratio (in the XY-plane) compared to the lack-of-fusion pores.
3.4. Classification

Finally, given the proposed feature values of the pores, a
machine learning classifier is trained to classify a pore as either
being a keyhole or lack-of-fusion type. This is a binary classifica-
tion problem with few features, so a simple classifier should suf-
fice. There is likely no need for deep learning, boosting, or
highly-elaborate techniques. As a result, a Bayes classifier [66] is
leveraged here for pore classification, with an equal prior of 0:5
on both pore type classes. The amount of keyhole pores and lack-
of-fusion pores expected in a randomly selected part depends on
a lot on the printing conditions, and thus is very hard to determine.
For these reasons, an equal prior for both the pore classes is the
most suitable approach. The Bayes model also assumes a normal
(Gaussian) distribution for the density estimations.
4. Experimental setup

To train and evaluate our classifier, and to evaluate the robust-
ness of our chosen features, multiple test objects were printed with
the design shown in Fig. 5. The object consists of a main cylinder
with a diameter of 5 mm and height of 17 mm. This cylinder sits
on an asymmetrical base plate that is removed when cutting the
object off of the build plate. Protruding from the sides of the cylin-
der are small cylinders of 0.55 mm in diameter angled at 45
degrees. These cylinders are distributed every 90 degrees in the
horizontal plane and every 3.3 mm along the vertical axis of the
main cylinder. A pattern of small indentations were made in the
top 0.6 mm of the main cylinder to identify, and provide a frame
of reference for the printed object. This design was printed in
316L stainless steel, cobalt-chrome, and Ti6AI4V titanium.

This design was chosen because it is easy to print and easy to
align with CT reconstructions by matching the smaller cylinders.
The cylinder is the main part where the porosity will be studied,
the square plate forms the interface between the build plate and
the main cylinder. The plate is also useful for identification of the
6

first layer of the main test object (the cylinder) and can help in
alignment.

The majority of the test object was printed with optimal laser
parameters, with the exception of 14 zones within the main cylin-
der where we aim to induce porosity of known types. A subset of
these zones is shown in Fig. 6a. Each zone consists of three con-
secutive print layers where the middle 25 scan lines are printed
with off-nominal laser settings. The laser pattern for one of these
layers is shown in Fig. 6b. With the hatching pattern of the print
being rotated 67 degrees every layer, the pattern of off-nominal
printing for all three layers in the zone looks as shown in
Fig. 6c. This pattern creates areas of single-, double-, and triple-
layer printing errors, which provides additional variations in
printing conditions. In between these porosity-inducing zones,
we printed at least 1 mm of nominal layers, thereby avoiding that
pores from one section are confused with those from another
section.

Table 1 shows the relative energy density, compared to the
optimal energy density, and the expected porosity of each of these
zones. Zone 0 is used to depict optimal layers where no porosity is
expected. The other 14 zones are defect zones created approxi-
mately every 30 layers. For every defect zone, the energy density
is adjusted by multiplying the optimal energy density by a specific
factor. A large range of factors were chosen (0.25 to 4) for two rea-
sons. First, the optimal zones (in the laser parameter space) for
these materials vary based on printing conditions. By choosing a
large range, we maximize the probability of creating pores in at
least some defect zones. Second, the different factors simulate
the creation of pores under varying degrees of deviation from the
optimal. Note that due to limitations in printer settings, the energy
density factors are slightly different for the cobalt-chrome sample
and are indicated in parentheses.

The increase or decrease of the energy densities were achieved
by fixing all laser parameters to their optimal values and then
increasing or decreasing one laser parameter in a way that impacts
the emitted energy. For the stainless steel and titanium samples,
the laser power was fixed while the laser speed was decreased
from zone 1 to 6. From zone 7 to 9 the laser speed was fixed while
the laser power was increased. This was done similarly for the
cobalt-chrome sample, but since this sample was created with a
pulse laser machine, the laser point distance and exposure time
were adjusted instead of laser speed.

It is important to note that the energy density alone does not
dictate whether pores will be generated. The creation of a pore is
a stochastic process and the particular process parameter that
was adjusted to reach a specific energy density must also be con-
sidered. For example, zone 4 and zone 9 have the same relative
energy density of 2.5, but that does not necessarily mean that
the amount of keyhole porosity observed in one of these zones is
the same as the amount observed in the other. In conclusion, the
zones with an equal relative energy density do not represent the
same type of deviation from the optimal printing conditions.
Therefore, Tables B.1–B.3 in the appendix show the used laser
parameters together with the absolute energy density for both
samples. For the stainless steel sample, the energy density is calcu-
lated by: E ¼ P = v h zð Þ. where P is the power of the laser, v the
speed, h the hatch spacing and z the thickness of the layer. For
the cobalt-chrome sample (pulse laser) this equation is instead:
E ¼ P = v 0 h zð Þ, where v 0 ¼ d=ton is the ratio of the laser point dis-
tance d to the laser exposure time ton. .

Fig. 7a–c show scatter plots of the pore locations of each printed
object plotted in the YZ plane. On the right of each figure is a his-
togram of the pore count binned according to the print layers. On
these figures, the green lines indicate the top layer of defect zones
that may contain lack-of-fusion pores, while the red lines indicate



Fig. 4. 3D rendered examples of (a) lack-of-fusion pores and (b) keyhole pores.
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defect zones where keyhole pores are likely to be introduced. The
lowest line is zone 1 as described in Table 1.

As expected, not every defect zone generated porosity. How-
ever, we can see some clear increases of porosity in certain layers.
For stainless steel, Fig. 7a, we can observe an increase of porosity
underneath keyhole zones 3 to 6 and an increase of porosity at
lack-of-fusion zone 14. In the cobalt-chrome sample, Fig. 7b, there
is an increase of porosity underneath keyhole zones 5 and 6, and
lack-of-fusion zones 11 and 14. The titanium sample, Fig. 7c, shows
7

an increase in porosity for lack-of-fusion zones 10, 12 and 13. A
clear increase can also be observed for keyhole zone 6 and, albeit
small, for keyhole zone 4.

In addition to the pores created due to the defect zones, there is
an increase of porosity at the side protrusions due to geometry
effects, and an increase of porosity near the borders of the samples
due to turn-point defects [67]. Note that this is less evident in the
YZ-projection but can be seen more clearly on a XY-projection if
the pores created by the defect zones are omitted, as illustrated



Fig. 5. Visualization of the printed test object.

Fig. 6. Pores are induced by using of-nominal laser parameters in zones three layers
thick and 1 mm apart. (a) a region of the main cylinder showing three pore-
inducing zones. (b) a layer in the pore-inducing zone; scan lines with off-nominal
laser parameters are shown in red. (c) an overlay of scan line patterns for the three
off-nominal layers in the pore-inducing zone.

Table 1
The different defect zones with their relative energy density with respect to the
optimal energy density and the expected porosity. Note that some zones were defined
slightly differently for the cobalt-chrome and titanium sample, indicated in paren-
thesis and brackets respectively.

Zone ID Relative Energy Density Expected Porosity

0 1 None (fully dense)
1 1.25 Keyhole
2 1.5 Keyhole
3 2 Keyhole
4 2.5 Keyhole
5 3 Keyhole
6 4 Keyhole
7 1.5 Keyhole
8 2 Keyhole
9 2.5 [2] Keyhole
10 0.75 Lack-of-fusion
11 0.5 Lack-of-fusion
12 0.75 (0.8) Lack-of-fusion
13 0.5 (0.67) Lack-of-fusion
14 0.25 (0.50) Lack-of-fusion
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on Fig. 8. Although these pores could probably also be attributed to
be either keyhole or lack-of-fusion porosity, they were not gener-
ated in a controlled way and, therefore, there is uncertainty on
their labels. As a result, we do not use these pores near the edges
of the object for training or validation.

The keyhole and lack-of-fusion pores generated by the
described method were used to create a dataset for supervised
classification and feature distribution analysis. However, a specific
policy must be defined to formally label these pores. Lack-of-fusion
pores are formed on the layer itself, where the parameters are non-
optimal [25]. This can also be observed on Fig. 7. Considering this,
we make the following assumption: the centroid of lack-of-fusion
pores are positioned at the lack-of-fusion defect layers. For exam-
ple, if a lack-of-fusion defect zone is at layers 200, 201 and 202, all
8

pores within those layers are considered lack-of-fusion pores.
Meanwhile, keyhole pores are created below the layer where an
increase of energy density is applied [68]. This phenomenon can
also be observed on Fig. 7. Here we make the common assumption
that they will appear at maximum 20 layers below the keyhole
defect layers [25]. Additionally, for both pore types, the inclusion
of the pores at the edges and in the side protrusions are avoided
by assuming that the pores are created within 2 mm from the cen-
ter axis of the samples.

For the stainless sample, a total of 3279 pores are labeled as
keyhole pores and 50 pores are labeled as lack-of-fusion pores.
For the cobalt-chrome sample, we obtained 486 keyhole pores
and 214 lack-of-fusion pores. In the titanium sample, 22 keyhole
and 346 lack-of-fusion pores were obtained. It is evident that there
is a class imbalance, especially for the stainless steel and titanium
samples. To deal with this, SMOTE (Synthetic Minority Oversam-
pling Technique) [69] was leveraged to over-sample the minority
class. SMOTE creates new samples for a class by interpolating
between the feature values of existing samples of that class. When
performing the interpolation, the choice of the amount of samples
must be carefully considered. If the number is low, the amount of
synthetic samples that can be created is low. If the number is high,
more samples can be created. However, if we consider potentially
very distant neighbors for interpolation, the interpolated features
can potentially be considerably altered from what is present in
the class. In this work, the 5 nearest neighbors were considered
for generating extra samples. For the cobalt-chrome sample, the
lack-of-fusion samples were oversampled to 486 to achieve a bal-
anced dataset. For the stainless steel sample, the maximum
amount of lack-of-fusion samples that may be synthesized, consid-
ering 5 nearest-neighbors is 250 for a total of 300 samples. The
keyhole pores were then uniformally downsampled to 300 samples
to achieve a balanced dataset. In the titanium sample, the keyhole
pores were oversampled to 132, the lack-of-fusion samples were
downsampled to the same amount.

For the inner-material classification, training and validation
was done using a 5-fold cross-validation. The features were statis-
tically normalized fold-wise by the mean and standard deviation of
the training samples. For the cross-material classification, all the
samples of one material were considered as the training set, the
samples of the others materials were then used as validation set.
Again, all features are normalized by the mean and standard devi-
ation of the training samples. Analysis of the feature distributions
across laser parameters and across materials was done on the unal-
tered data, i.e. without SMOTE. All the experiments were con-
ducted using MATLAB version R2020a.



Fig. 7. Visualization of pore locations in the YZ plane for (a) the 316L stainless steel sample, (b) the cobalt-chrome sample and (c) the titanium sample. The green lines
indicate the defect layers where the energy density was lowered, red lines an increased energy density, as described in Table 1. On the right of each figure, histograms of the
pore counts per print layer are plotted.

Fig. 8. XY view of the stainless steel sample with the porosity created by the defect
zones omitted. The bulk of the pores are situated in the protrusions due to geometry
effects and near the border due to turn-point effects.
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5. Results

5.1. Robustness to varying printing parameters

The distributions of each feature value for both materials can be
seen on Fig. 9, grouped over all defect zones. Because not all defect
zones produced porosity, only the relevant zones are shown here.
These feature distributions were acquired by calculating a his-
togram, i.e. grouping the values into bins and normalizing the
result according to the total number of values. For the longitudinal
aspect ratio and the compactness, the bins have size 0:1, for the rel-
ative mean intensity, the size is 0:05, due to the smaller range.

The influence of the laser parameters on the features can be
quantified by means of linear regression analysis. For every feature
Y, a multiple linear regression model is fitted for both pore types
and materials: Y ¼ w1X1 þw2X2 þ b, where X1 and X2 denote the
9

laser speed and power respectively, while w1;w2 and b are the
model parameters to be estimated. The prediction errors, or resid-
uals, are used to calculate the coefficient of determination R2. This
coefficient provides a measure of how well the variance in the fea-
ture values is explained by the changes in laser parameters. These
values can be observed for all three materials in Table 2. In all
cases, the R2 values are less than 0.20, and only one of the values
exceeded 0.08. Note that for the lack-of-fusion pores of the steel
sample, this analysis was not possible due to there being only a
single lack-of-fusion pore creation zone.

It is evident from the figures and the R2 values that the laser
parameters have very little influence on the keyhole distributions.
For the stainless steel sample, the most notable outlier is the rela-
tive mean intensity of the keyhole pores, with a R2 value of
0:05100. Fig. 9b (left image) shows that these distributions shift
towards the right as the energy density increases. This shift can
most likely be attributed to the partial volume effect. As the energy
density increases, so will the volume of the keyhole pores. Conse-
quently, the partial voluming effect will have less of an influence
on these larger pores, increasing the relative mean intensity. Fortu-
nately, the distributions shift away from the lack-of-fusion distri-
bution, indicating it should not to be troublesome for pore type
classification.

For the lack-of-fusion pores in the cobalt-chrome and titanium
samples, a larger R2 is observed for both the aspect ratio and the
compactness. The small difference in distributions can be attribu-
ted to different pore widths across the laser parameters. Fig. 10a
shows the distributions of these pore widths. Notice a clear
increase in pore width for the lack-of-fusion zone 14 compared
to zone 11 in the cobalt-chrome sample and the increase from
zones 10 to 13 in the titanium sample. Due to the smaller pore
widths in the lower zones, the denominator in Eq. (3) decreases,
and thus increasing the aspect ratio. Similarly, the denominator
of Eq. (1) will decrease fast with decreasing pore widths, increasing
the compactness values. Both increases for the aspect ratio and
compactness can indeed be observed on Fig. 9a and c (middle
and right). Nonetheless, the influence of the laser parameters
remains small.



Fig. 9. Feature distributions across the different zones as defined in Table 1 for the stainless steel (left), cobalt-chrome (middle) and titanium (right) sample for the (a) aspect
ratio, (b) relative mean intensity and (c) compactness.

Table 2
Coefficients of determination as determined by linear regression analysis for the (a)
stainless steel sample, (b) cobalt-chrome sample and (c) titanium sample.

Feature Keyhole R2 Lack-of-fusion R2

(a) 316L stainless steel
Aspect Ratio 0:00542 –
Relative Mean Intensity 0:05100 –
Compactness 0:00064 –

(b) Cobalt-chrome
Aspect Ratio 0:01750 0:09180
Relative Mean Intensity 0:01940 0:00870
Compactness 0:01890 0:19200

(c) Titanium
Aspect Ratio 0:00110 0:07580
Relative Mean Intensity 0:01810 0:01950
Compactness 0:01670 0:07750
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5.2. Material agnosticism

To confirm that the features are material-agnostic, it is neces-
sary that their distributions do not change considerably across
materials. Fig. 11 shows the feature distributions of both materials.
Similarly, a linear regression model can be fitted: Y ¼ w1X1þ
w2X2 þw3X3 þ b, where X1;X2 and X3 now denote the three test
materials, each as a binary variable. Here, the R2 values indicate
how much of an influence the material type has on the feature val-
ues. The values are given in Table 3.
10
The largest influence of the material type is observed on the
aspect ratio and relative mean intensity features. In particular,
the aspect ratio values for the cobalt-chrome lack-of-fusion pores
have increased while for the keyhole pores, they have decreased,
shifting the distributions closer together compared to the steel
sample. For the titanium sample, the keyhole aspect ratio distribu-
tion seems to overlap better with the steel distribution, albeit with
less variance. The lack-of-fusion distribution overlaps better with
cobalt-chrome. However, from a classification perspective, an opti-
mal decision boundary to discern between the two classes would
be at approximately the same position for all materials, suggesting
that these distribution shifts may have limited influence on the
classification results. For the relative mean intensity, the steel
and cobalt-chrome distribution mostly overlap, the only difference
is perhaps a bit more variance on the keyhole distribution of stain-
less steel. The larger R2 value for lack-of-fusion can mostly be
attributed to the shift of the titanium distribution. This shift causes
a slight overlap with keyhole distributions of the other materials,
which might have some influence on the cross-material
classification.

Meanwhile, there are some less distinctive influences of the
material on the compactness distributions. Mainly, it appears that
the stainless steel keyhole feature distribution has a larger variance
compared to the cobalt-chrome and titanium sample. For the lack-
of-fusion, the titanium shows slightly more variance. Again, these
changes are minimal and should have very little effect on the clas-
sifications results.



Fig. 10. Pore width distributions across the different zones as defined in Table 1 for
the (a) cobalt-chrome and (b) titanium sample.
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5.3. Inner-material classification

To show the improved effectiveness of our proposed set of fea-
tures compared to the state-of-the-art, we compared classification
results with our features to the classification results using the fea-
tures used by Snell et al.: pore sphericity, aspect ratio, and pore
length [41]. The work of Snell et al. is the most comparable to
our methods as it uses the same type of image data (i.e. X-ray
CT) and has the same pore classes as ours.

Table 4 shows quantified classification results between the two
feature sets on all three materials (note: lack-of-fusion is abbrevi-
ated as l.o.f., keyhole as KH). The shown values have been averaged
across the 5 folds and also show the standard deviation. Fig. 12
shows a ROC-curve comparison. The lack-of-fusion is considered
to be the positive class here. To compute the ROC-curve across
the 5 folds, all the validation outputs were combined.

The table shows a notable improvement on all the performance
metrics for both samples. On average, a 9% increase is observed
compared to the features as leveraged by Snell et al. For the stain-
less steel sample, the ROC-curve of our feature set outperforms
across the entire range. For the cobalt-chrome and titanium sam-
ples, we observed a better performance by the features by Snell
et al. for small false positive rates. However, our method comes
closer to the theoretical perfect classifier (upper left corner).

We believe this improvement is due to three reasons. First, the
use of our new pore feature, the relative mean intensity, seems to
have a positive impact. From the distribution analysis, it is clear
that this feature is informative for the classification between key-
11
hole and lack-of-fusion pores. Additionally, it is robust to laser
parameter and material changes. Second, the use of the pore length
feature by Snell et al. may have decreased their classification accu-
racy. Although it has been noted in many studies that keyhole
pores tend to be smaller than lack-of-fusion pores, this only seems
to be the case for small deviations from the optimal conditions. In
our experiments, we observe significant overlap in the keyhole
pore length distributions and lack-of-fusion distributions, as seen
on Fig. 13. These overlaps were detrimental to the classification.

Third, the compactness feature is more robust to changes in
laser parameters than the sphericity feature as used by Snell
et al. The R2 values from the sphericity feature by laser parameter
regression were 0:01030;0:02860;0:28800;0:0000 and 0:18500 for
the stainless steel keyhole, cobalt-chrome keyhole, cobalt-chrome
lack-of-fusion, titanium keyhole and titanium lack-of-fusion distri-
butions respectively. These results are higher than what we
observed with the compactness feature, which had R2 values of
0:00064;0:01890;0:19200;0:01670 and 0:07750 respectively.
5.4. Cross-material classification

Finally, we test the feature material agnosticism by cross-
material classification. For this, a classification model is trained
with pore data of one material and then validated on the pore data
of the other materials. If the features satisfy this property, we
expect similar performance metrics as seen in the inner-material
classification. A comparison of the performance metrics between
the cross- and inner-material classification can be seen in Table 5.
The ROC-curve comparison can be seen in Fig. 14.

We can observe a small decrease on the performance metrics
compared to the inner-material classification for steel and
cobalt-chrome when training on the other. For the stainless steel
sample, there is an average performance decrease of 2.8% and for
the cobalt-chrome sample, 4.5%. The ROC-curves, Fig. 14a and b,
tell the same story: a slight decrease that is a bit more noticeable
for the cobalt-chrome sample.

The decrease in performance is not unexpected. Even though
we have shown the influence of material type to be small, it is
not negligible. Consequently, the optimal decision boundaries in
the feature space are slightly different across materials, inevitably
leading to more misclassifications. However, the drop in accuracy
is relatively small. In fact, if we compare our cross-material classi-
fication to the inner-material classification results using the fea-
tures of Snell et al. [41], as seen on Fig. 15a and b, we can
conclude that it is still outperforming the inner-material classifica-
tion with the features of Snell et al.

The cross-material classification results on the titanium sample
show a bigger drop in performance. Using titanium as a training set
an average performance drop of 14.8% and 16.5% is observed for
steel and cobalt-chrome respectively. Using the steel and cobalt-
chrome as training set and validating on titanium, a drop of
17.0% is observed for steel and 12.9% for cobalt-chrome. This drop
in accuracy can most likely be attributed to the shift of the relative
mean intensity feature distribution, as seen of Fig. 11c. This shift
causes a significant overlap of the titanium lack-of-fusion distribu-
tions with the keyhole distributions of steel and cobalt-chrome,
leading to misclassifications.

However, the ROC-curves in Fig. 14 tell a different story: using
titanium as training set seems to perform better compared to using
cobalt-chrome (Fig. 14a) and steel (Fig. 14b) as training set. Addi-
tionally, Fig. 14c shows that there is only a very small degradation
in performance. This contrast between what is observed on the
tables and the ROC-curves is due to the different approach to
selecting the most probable class given the classification output.
For each sample, the Naive Bayes classifier outputs a probability



Fig. 11. Histograms of the keyhole and lack-of-fusion pores for each material of the (a) aspect ratio, (b) relative mean intensity and (c) compactness features.

Table 3
Coefficients of determination as determined by linear regression analysis for the
feature distributions across materials.

Feature Keyhole R2 Lack-of-fusion R2

Aspect Ratio 0:06740 0:05510
Relative Mean Intensity 0:03780 0:14360
Compactness 0:02300 0:03090

Table 4
Comparison of the inner-material classification results between our features and the
features of Snell et al. [41] for (a) the stainless steel sample, (b) the cobalt-chrome
sampleand (c) the titanium sample.

Metric Ours Snell et al.

(a) 316L stainless steel
Accuracy 0:930� 0:010 0:873� 0:027
KH F-score 0:928� 0:008 0:881� 0:026
L.o.f. F-score 0:932� 0:012 0:864� 0:029

(b) Cobalt-chrome
Accuracy 0:922� 0:032 0:839� 0:045
KH F-score 0:917� 0:040 0:848� 0:052
L.o.f. F-score 0:925� 0:027 0:827� 0:039

(c) Titanium
Accuracy 0:912� 0:044 0:785� 0:046
KH F-score 0:910� 0:044 0:799� 0:042
L.o.f. F-score 0:911� 0:048 0:766� 0:058
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of each class, for example 0:3;0:7½ �. The easiest approach is to take
whatever class has the highest probability as the classification out-
put, 0:7 in this case. This is equivalent to setting a threshold value
at 0:5: if the probability for a given class is larger than the thresh-
old, choose it as the output class. This approach was taken for cal-
culating the performance metrics seen in the tables. A ROC-curve,
however, sweeps through a range of different threshold values, and
calculates the true positive and false positive rate for each of these
12
values. Seeing that the ROC-curves show better results, this implies
that for the titanium sample, better threshold values exist than the
0:5 used for reporting the performance metrics in the tables.

Using Titanium as a training set, the classification model is
biased towards outputting the lack-of-fusion label with an almost
100% precision, and high output probability scores > 99:9%. Thus
setting the label threshold at 0:999 instead of 0:5 gives 91:8% accu-
racy, a 91:7% keyhole F1 score and a 91:9% lack-of-fusion F1 score
for stainless steel. Similarly, accuracies of 91:3%;91:1% and 91:4%
were achieved for cobalt-chrome. When using stainless steel and
cobalt-chrome as training sets, the classification model is biased
towards keyhole pores if validating on titanium. A threshold set
at 0:999 for keyhole pores produces again much higher perfor-
mance metrics: 84:5%;85:2% and 83:8% for steel, and
89:1%;89:3% and 88:9% for cobalt-chrome. These numbers indeed
correspond better to what is seen on the ROC-curves, and are sim-
ilar to what we see for the other materials.

Despite achieving better results by accounting for the bias in
the model, it is hard to argue that this can be leveraged in real
use cases. In reality, if classifying unseen data and no labeled sam-
ples are available, there is no way to know how the model is biased
and thus how to adjust the threshold value for better performance.
It does however indicate that higher accuracy is achievable, by per-
haps designing classification algorithms that better deal with these
biases and take uncertainty of prediction into account.
5.5. Kernel density estimation

Our Bayes classifier assumes a normal (Gaussian) distribution
for the density estimations. However, the plots of the feature dis-
tributions show that some of these distributions are not normal.
As such, there is an opportunity to (potentially) improve the results
by choosing distributions that better fit the data for the density
estimations.



Fig. 12. ROC curve comparison of the inner-material classification results between our features and the feature of Snell et al. [41] for the (a) stainless steel sample, (b) cobalt-
chrome sample and (c) titanium sample.

Fig. 13. Pore length distributions across the different zones as defined in Table 1 for the (a) stainless steel sample, (b) cobalt-chrome sample and (c) titanium sample.

Table 5
Comparison of the cross-material classification compared to the inner-material
classification for (a) the stainless steel sample, (b) the cobalt-chrome sample and (c)
the titanium sample.

Metric Training Material

(a) 316L stainless steel
CoCr Ti Steel

Accuracy 0:902 0:788 0:930� 0:010
KH F-score 0:898 0:734 0:928� 0:008
L.o.f. F-score 0:906 0:824 0:932� 0:012

(b) Cobalt-chrome
Steel Ti CoCr

Accuracy 0:877 0:765 0:922� 0:032
KH F-score 0:877 0:695 0:917� 0:040
L.o.f. F-score 0:876 0:809 0:925� 0:027

(c) Titanium
Steel CoCr Ti

Accuracy 0:745 0:786 0:912� 0:044
KH F-score 0:781 0:819 0:910� 0:044
L.o.f. F-score 0:696 0:740 0:911� 0:048
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Table 6 shows a comparison of the inner-material classification
results using a Gaussian distribution (previous results) compared
to using a kernel density estimator. A kernel density estimator is
non-parametric and is able to more closely represent the underly-

ing distributions. It is given by: f̂ h xð Þ ¼ 1
nh

Pn
i¼1K

x�xi
h

� �
, where n is

the sample size, K �ð Þ the kernel smoothing function, h the band-
width and x1; x2; . . . ; xn are the samples from the underlying distri-
bution. Here, the kernel smoothing function is a Gaussian. Note
that the kernel function determines how much weight is given to
neighboring observations, which in this case follows a Gaussian
distribution. The resulting density however, is not Gaussian. The
13
bandwidths are calculated for each combination of class and fea-
ture by a ‘‘rule-of-thumb” formula as formulated in [70] for Gaus-
sian kernels.

A slight improvement is observed for the steel sample, whilst a
slight decrease is observed for the cobalt-chrome and Titanium
samples. The decrease for cobalt-chrome and titanium can proba-
bly be attributed to having more variance in the distributions
across laser parameters. However, performing a paired t-test on
the performance metrics between the two methods reveals that
the changes are not statistically significant for an a < 0:05 signifi-
cance level. Considering this result, it could be argued that it is bet-
ter to work with the standard Gaussian density estimation, as it is
likely to have better generalization. With the kernel density esti-
mation, overfitting could occur due to deviations in the feature
distributions.

Table 7 shows the results of performing the same experiment
on the cross-material classification, but using kernel density esti-
mation to model the feature distributions. Some small improve-
ment for the stainless steel sample was observed if training on
cobalt-chrome but overall it seems that using a Gaussian general-
izes better. A paired t-test to test for statistical significance is not
possible here, but seeing that a similar outcome is observed as with
the inner-material classification, we can probably make the same
conclusion.
6. Discussion

The main purpose of this work was to investigate the possibility
of a general purpose pore type classifier usable across different
print process conditions and printing materials. If such a classifier
can be established, pore type information can be learned from pre-



Fig. 14. ROC curve comparison of the cross-material classification compared to the inner-material classification for the (a) stainless steel sample, (b) cobalt-chrome sample
and (c) titanium sample.

Fig. 15. ROC curve comparison of our cross-material classification compared to the inner-material classification using the features by Snell et al. [41] for the (a) stainless steel
sample, (b) the cobalt-chrome sample and (c) titanium sample.

Table 6
Comparison of the inner-material classification results of using different density
estimation techniques for (a) the stainless steel sample, (b) the cobalt-chrome sample
and (c) the titanium sample.

Metric Gaussian Kernel

(a) 316L stainless steel
Accuracy 0:930� 0:010 0:933� 0:013
KH F-score 0:928� 0:008 0:932� 0:012
L.o.f. F-score 0:932� 0:012 0:934� 0:015

(b) cobalt-chrome
Accuracy 0:922� 0:032 0:915� 0:033
KH F-score 0:917� 0:040 0:911� 0:040
L.o.f. F-score 0:925� 0:027 0:918� 0:027

(c) Titanium
Accuracy 0:912� 0:044 0:896� 0:050
KH F-score 0:910� 0:044 0:896� 0:046
L.o.f. F-score 0:911� 0:048 0:894� 0:060
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vious experiments and applied to unseen cases, easing the diffi-
culty of process optimization. We hypothesized that such a classi-
fier is possible and that there must exist some pore features that
show minimal variance across materials and process parameters.
Our first contribution in this work presents evidence that such fea-
tures exist. By producing samples in three different materials with
porosity introduced using a variety of non-optimal laser parame-
ters, we show that compactness, relative mean intensity, and
aspect ratio features are robust to these printing process changes.
14
This result follows from analyzing coefficients of determination
(R2) between the pore features and the laser parameters. The R2

values are shown to be small, with an average of 0:087, with the
largest values attributed to changing pore volumes. Across materi-
als, the average R2 value was 0:060, with the highest outlier on the
relative mean intensity feature, which was attributed to the distri-
bution shift of the titanium sample. This kind of analyses, one that
investigates the stability of the chosen features across different
printing scenarios, has largely been missing in similar works on
pore classification [40–44]. However, we believe it is a necessary
step to evaluate the generalisability of a pore type classification
method.

For our second contribution, we leveraged our chosen features
in a Naive Bayes classifier and evaluated the performance on
inner-material classification (i.e. training and validation of pores
in single materials) and cross-material classification (i.e. training
on pores of one material and validating on another). Accuracies
and F-scores of over 90% are achieved for the inner-material classi-
fication, which showed 9% improved performance compared to the
features used in [41], the most closely related work to ours. Addi-
tionally, our results are comparable to other recent works, such as:
accuracies above 97% in [43] and a average accuracy of 92.1% in
[44]. These numbers demonstrate that state of the art accuracies
can be achieved, but with the novelty of doing so under a wider
range of printing process conditions, despite the increased variabil-
ity in pore appearance in these varying conditions, which compli-
cates classification. For the cross-material classification, small



Table 7
Comparison of the cross-material classification results of using different density
estimation techniques for (a) the stainless steel sample, (b) the cobalt-chrome sample
and (c) the titanium sample.

Metric CoCr Titanium

Gauss. Kern. Gauss. Kern.

(a) 316L stainless steel
Accuracy 0:902 0:906 0:788 0:786
KH F-score 0:898 0:903 0:734 0:730
L.o.f. F-score 0:906 0:909 0:824 0:823

Steel Titanium

Gauss. Kern. Gauss. Kern.

(b) Cobalt-chrome
Accuracy 0:877 0:864 0:765 0:748
KH F-score 0:877 0:866 0:695 0:668
L.o.f. F-score 0:876 0:862 0:809 0:797

Steel CoCr

Gauss. Kern. Gauss. Kern.

(c) Titanium
Accuracy 0:745 0:741 0:786 0:759
KH F-score 0:781 0:782 0:819 0:800
L.o.f. F-score 0:696 0:682 0:740 0:697
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performance drops of 2:8% and 4:5% were observed compared to
inner-material classification for the steel and cobalt-chrome sam-
ples respectively. This drop is not unexpected, as there were minor
distribution shifts across the metals. Nevertheless, the cross-
material classification still outperformed the inner-material classi-
fication with the features as used in [41]. The drop in performance
was higher for the titanium sample but was attributed to the bias
in the Naive Bayes model. Adjusting for this bias achieved compa-
rable results. Some studies have investigated pore type classifica-
tion in multiple materials [41,44], however, they trained different
classifiers for each material and validated it only on that same
material. To the best of our knowledge, this work is the first to
investigate true material agnosticism in pore type classification.

We believe that the reproducibility of the proposed features
across the different process conditions and materials can mainly
be attributed to the use of only relative measurements (e.g. ratios
of geometric measurements), as opposed to absolute measure-
ments (e.g. pore length, pore volume, etc.) Absolute measurements,
albeit informative in some scenarios, are heavily influenced by the
physical process of pore creation, which in turn can be altered by
material characteristics and process conditions. This became
apparent by analysing the pore width and length (Fig. 10a and
13), as it shows that keyhole pores created by high energy densities
can easily be as large as lack-of-fusion pores. The low variance of
our pore features, together with our high classification perfor-
mance metrics, indeed support our hypothesis that a general pur-
pose pore type classifier is possible by finding the right features
that stay consistent throughout all possible scenarios. This con-
cludes our third and final contribution.

Although we show small variance of feature distributions across
materials, we acknowledge that this study only looked at three dif-
ferent types of materials. Future work should include more mate-
rials to further investigate the material-agnosticism of the chosen
features. On a related note, the same could be said about the
robustness to changes in process conditions. As a consequence of
not having prior knowledge on the ideal zone of laser parameters
for the three materials, some chosen configurations of laser param-
eters did not provide pores, resulting in only a limited amount of
defect zones to study the effect of the laser parameters on the pore
features. Future work should look at more configurations of laser
parameters that generate porosity for a more conclusive analysis.
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Another limitation of this work is the labeling of the pores. We
assumed that all pores generated beneath either a keyhole or lack-
of-fusion defect zone share that same label. In practice, this might
be challenging assumption to validate. There is no guarantee that
porosity is not created in the optimally-printed layers. Indeed,
we observed a large number of pores at the cylinder contour and
side protrusions (Fig. 8). Most of these pores were attributed to
geometric and turn-point effects, and we avoided them by only
considering pores within a 2 mm radius from the center. Still, there
is a possibility of the occasional pore of one type appeared within
layers that were considered to only consist pores of a different
type. Nevertheless, we suspect that, based on our classification
results, the amount of mislabeled pores were likely small enough
as not to significantly impact the classification.

The classification of keyhole and lack-of-fusion pores is impor-
tant because they link to either inserting too much or not enough
energy into the powder-bed, respectively. However, these two sit-
uations may arise due to a large number of reasons. It could be
argued that classification between keyhole and lack-of-fusion
pores is not informative enough. After keyhole and lack-of-
fusion classification, it might be valuable to further determine
the exact cause of the porosity (e.g. powder contamination, build
chamber humidity, part geometry). This additional analysis could
ease the process of planning a mitigation strategy. Some possible
approaches to this additional analysis include relating the pore
to its position within the part, or looking into co-occurrence of
pores within small regions. The former would identify turn-point
effects near the object border, or the need of extra supports for
overhanging structures. In the latter case, a large number of
nearby pores may suggest environmental problems within the
build chamber.

Finally, we acknowledge that this study is not comprehensive.
First, as there are still misclassifications, it is obvious that there
is room for improvement. Looking at some misclassifications in
Fig. 16, it appears that some keyhole pores have a low aspect ratio
and do not have this rounded structure. On the other hand, for
lack-of-fusion pores, it appears that some have a higher aspect
ratio and appear to be more rounded. These outliers might arise
due to numerous reasons, including the remelting of consecutive
layers, pore coalescence, or other types of physical interactions.
There might be other types of features that are less dependent
on pore morphology that can also deal with these outliers. For
example, future work might look at incorporating scan path infor-
mation. Keyhole pores are known to be formed below a scan path
[71], whilst lack-of-fusion pores are formed in between scan paths
[72]. Incorporating this information could be valuable, though it is
important to note that this extension would require additional
processing and, more importantly, requires alignment of the X-
ray CT data with the scan path data. Second, it is clear from the
analysis on the feature distributions that laser parameters have
an influence, albeit small, on some of the features. Most notable,
the compactness and aspect ratio change with pore width, and this
pore width changes with laser parameters. More thought and
work could be put into designing these features to be even more
robust. Third, it also evident that the material type has some influ-
ence on the feature distributions, most notably on the aspect ratio
and relative mean intensity. Future work might involve more
materials and analysis to determine what kind of latent variables
influence these distributions. If these latent variables can be
uncovered, it might be possible to include these variables as fea-
tures, or at least adjust for them in the feature computations.
Lastly, we leveraged a simple classification algorithm in this work.
More analysis could be put into finding the optimal classification
scheme for this problem. Nevertheless, with this work, we signal
a shift towards a more general-purpose approach to the classifica-
tion of pore types by demonstrating generalization across multiple



Fig. 16. 3D rendered examples of misclassifications of (a) keyhole pores and (b) lack-of-fusion pores.
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materials and process conditions whilst still achieving high
accuracy.
7. Conclusions

In this work, we proposed the use of material and process
agnostic pore features for the classification between keyhole
and lack-of-fusion pores, with the intention of creating a general
purpose classifier that works across materials and process condi-
tions. We introduced three pore features: the aspect ratio, relative
mean intensity, and compactness. We verified the material agnos-
ticism of these features, and their robustness to process condi-
tions, by printing three test samples with known porosities in
different materials, then analysing the feature distributions. Sec-
ond, we trained and validated a classifier for classification of pore
types within a single material and across multiple materials
(where we trained on pores of a single material and validated
on another). The results showed a classification accuracy up to
93.0% of pores within a single material and a accuracy up to
90.2% for the classification across materials, showing that the pro-
posed pore features provide a good basis for a general-purpose
pore type classifier.
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Appendix A. Microscopy comparison study

The 316L stainless steel sample was first cut into half via EDM
wire cutting and then prepared for metallography. The cut-plane
was along the build direction. The sample was mounted in resin
and later grinding and polishing was performed manually along
the cross-section. The metallography was performed to reveal 2D
images of porosities using an optical microscopy with a magnifica-
tion factor of 200. A careful alignment of the metallographic cross-
section with the X-CT scan was performed. To match the porosity
as seen in the microscopy data with the porosity in the X-ray
tomography data, an exhaustive search was done by going through
a large range of X-ray slices to visually match pore patterns. An
example of such a match is given in Fig. A.1, that shows a good



Fig. A.1. An example of a good visual match between the microscopy data (left) and the X-ray tomography data (right) for a group of keyhole pores.

Fig. A.2. Results of the exhaustive search to match pores in the microscopy image with the pores in the X-ray data. For each matching pattern, the binary segmentation, X-ray
image and microscopy is shown in more detail. The group of pores labeled E belongs to a lack-of-fusion defect layer. The remaining groups of pores belong to keyhole defect
layers.
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visual correlation between the microscopy and X-ray for a group of
keyhole pores. Fig. A.2 show the results of the exhaustive search for
most of the pores that are present in the microscopy data. For each
matching pattern, the binary segmentation is also given, as seg-
mented by the technique covered in the Methods section. The
Table B.1
Laser parameters used and corresponding energy density and relative energy density (com

Zone ID Laser Power (W) Laser Speed (mm/s)

0 215 900
1 215 720
2 215 600
3 215 450
4 215 360
5 215 300
6 215 225
7 322.5 900
8 430 900
9 500 837
10 215 1200
11 215 1800
12 161.25 900
13 107.5 900
14 53.75 900

Table B.2
Laser parameters used and corresponding energy density and relative energy density (com

Zone ID Laser Power (W) Point Distance (lm) Expos

0 200 50 55
1 200 50 68.75
2 200 50 82.50
3 200 50 110
4 200 25 68.75
5 200 25 82.50
6 200 25 110
7 200 33.33 55
8 200 25 55
9 200 21.50 59.14
10 200 50 41.25
11 200 50 27.50
12 200 62.50 55.00
13 200 75 55
14 200 100 55

Table B.3
Laser parameters used and corresponding energy density and relative energy density (com

Zone ID Laser Power (W) Laser Speed (mm/s)

0 100 375
1 100 300
2 100 250
3 100 187.5
4 100 150
5 100 125
6 100 93.75
7 150 375
8 200 375
9 200 375
10 100 500
11 100 750
12 75 375
13 50 375
14 25 375
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group of pores labeled E belongs to a lack-of-fusion defect layer.
The remaining groups of pores belong to keyhole defect layers.
Appendix B. Exact laser parameters used in each experiment
pared to nominal) for each defect zone of the 316L stainless steel sample.

Energy Density (J/mm3) Rel. Energy Density

79.63 1
99.53 1.25
119.44 1.5
159.26 2
199.07 2.5
238.89 3
318.52 4
119.44 1.5
159.26 2
199.12 2.5
59.72 0.75
39.81 0.5
59.72 0.75
39.81 0.5
19.91 0.25

pared to nominal) for each defect zone of the 316L cobalt-chrome sample.

ure Time (ls) Energy Density (J/mm3) Rel. Energy Density

55.00 1
68.75 1.25
82.50 1.5
110.00 2
137.50 2.5
165.00 3
220.00 4
82.50 1.5
110.00 2
137.53 2.5
41.25 0.75
27.50 0.5
44.00 0.8
36.67 0.66
27.50 0.5

pared to nominal) for each defect zone of the titanium sample.

Energy Density (J/mm3) Rel. Energy Density

68.38 1
85.47 1.25
102.56 1.5
136.75 2
170.94 2.5
205.13 3
273.50 4
102.56 1.5
136.75 2
136.75 2
51.28 0.75
34.19 0.5
51.28 0.75
34.19 0.5
17.09 0.25
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