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Abstract

A review of the state-of-the-art in short-term Solar Power Forecasting (SPF) methodolo-
gies is presented in this paper. Over the last few years, developing and improving solar
forecasting models has been the main focus of researchers, considering the need to effi-
ciently increase their forecasting accuracy. Forecasting models aim to be used as an efficient
tool to help with the stability and control of energy systems and electricity markets. Intend-
ing to further comprehend the factors affecting the quality of SPF models, this paper
focuses on short-term solar forecasting methodologies since they pose a crucial role in
the daily operation and scheduling of power systems, since they focus on forecasting hori-
zons typically ranging from 1 h to 1 day. The reviewed works are classified according to
the climatic conditions, technical characteristics, and the forecasting errors of the differ-
ent methodologies, providing readers with information over various different cases of SPF.
Considering the need to improve the SPF efficiency, such classifications allow for impor-
tant comparative conclusions to be drawn, depending on the location of each case and the
meteorological data available. Future directions in the field of short-term solar power fore-
casting are proposed considering the increasing development of SPF models’ architecture
and their field of focus.

1 INTRODUCTION

Two of the most important problems of the modern world
are the continuous change in the climatic conditions leading to
global warming, and the satisfaction of the constantly increasing
global energy needs. Using Renewable Energy Sources (RES)
efficiently has proven to be one of the solutions to those
problems. Because RES provide a ‘green’ alternative to power
generation for conventional sources of energy (coal, oil), it has
been the main focus of researchers in recent years to develop
methodologies and efficiently exploit them.

Solar power, thanks to sunlight being an abundant energy
source, is one of the most exploited and most important renew-
able sources of energy [1]. Due to the continuous research and
advance in the technology, solar power, via solar photovoltaic
(PV) systems, plays a crucial role in the global energy system
as well as the global energy markets. Therefore, such renewable
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sources tend to replace conventional energy resources in the
power generation process.

Despite the global economic difficulties caused by Covid-19,
the installed solar capacity in Europe was increased by 25.9 GW
in 2021, 34% more than 2020, reaching the total capacity of
164.9 GW. On a global level, by the end of 2021, the total
installed solar power capacity increased by 151 GW, reaching
approximately 942 GW compared to the wind power onshore
capacity that increased by 94.3 GW, meeting a 17% decline from
2020 [2]. China remains the country with the most installed solar
capacity, followed by the United States, Japan, European coun-
tries (like Germany, Italy and France), India, Australia and South
Korea [2].

Focusing on solar power as an important part of today’s
power generation systems, several problems may arise concern-
ing how to properly include solar energy into energy systems.
PV production is directly connected to the amount of the
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incident solar irradiation on photovoltaic panels. However,
solar irradiation is limited by various factors [3]. The first factor
is time itself, since solar energy can only be obtained during
day times. Furthermore, the distribution of the solar irradiance
cannot be uniform, not only on a global level but also on a local
level. Moreover, PV generation depends on various meteoro-
logical factors, such as the temperature on the atmosphere and
on the PV modules, the wind speed and direction, the humidity
and cloud coverage.

As a result, dealing with all the above problems is of crucial
importance in order to maintain the stability of the power grid
and the energy markets [4].

In order to tackle those problems, various Solar Power Fore-
casting (SPF) models have been developed. Over the last few
decades, numerous SPF methodologies have been researched,
in order to facilitate the control of the continuous increase
of the solar power penetration in the global energy systems.
Furthermore, such forecasting models aid in the scheduling of
power systems and in maintaining their stability and reliability
in order to further enhance the control of electricity markets.
Short-term SPF models have been in the centre of attention for
most researchers considering their importance in the planning
and operation of daily electricity markets and management of
energy systems. Accurate SPF can reduce the need for backup
generation, reduce electricity costs, and ensure that the power
grid is operated in a reliable and efficient manner. By integrating
short-term solar power forecasts into real-time adjustments to
power generation and grid management, system operators can
optimally schedule renewable energy resources, reduce the need
for fossil fuel-based power plants to meet peak demand, and
improve the reliability and stability of the power system.

SPF models developed for solar prediction have mainly
focused on creating deterministic forecasting models. Such
models have been proposed since the beginning of the pen-
etration of solar power in power systems. These models are
able to provide users with expected series of solar power out-
put data by using specific parameters as input data. The outputs
are presented as point values. Various deterministic SPF models
use different methodologies over the same forecasting problems
and thus provide users with different expected outputs, as well
as different prediction errors of the forecasted output. There-
fore, different methodologies focusing on similar problems can
be qualitatively compared.

The work [5] reviewed SPF models, focusing on machine
learning and metaheuristic methods, where it was found that
hybrid models provided the most accurate predictive results.
In [6], the main focus was the review of short-term direct
SPF models based on historical data and how the forecasting
accuracy is dependent on such data. Study [7] overviews the
specifications needed in order to execute an accurate forecast.
It further aimed to compare the definition of predictive hori-
zons between solar and wind power forecasting and compare
their performances. The work [8] reviewed different techniques
used for solar power forecasting and presented important infor-
mation needed for an accurate forecast. The vast focus on
day-ahead forecasting along with the increasing use of NWP was
further highlighted. Study [9] reviewed different solar forecast-

TABLE 1 Main focus of review papers on SPF

Review

paper Main focus

Year of

publication

[5] SPF focusing on machine learning and
metaheuristic methods.

2019

[6] Short-term SPF based on historical data. 2018

[7] Specifications for accurate SPF and
comparison between solar and wind power
forecasting predictive horizons.

2017

[8] Different techniques for solar power
forecasting and identification of important
input for accurate SPF.

2016

[9] Different SPF techniques and estimation of
input data that could improve their
forecasting accuracy.

2016

[10] Probabilistic solar power and load forecasting
models and identification of their
similarities.

2018

[11] Integration of probabilistic forecasting
methodologies into power systems.

2020

[12] PV mathematical models and case study of a
specific PV system.

2014

[13] Analysis of the major concerns of SPF models
in terms of focus, model architecture, and
evaluation.

2020

This paper Classification and estimation of the
forecasting accuracy of SPF models based
on the technical characteristics and climatic
classification of the forecasting error of the
reviewed models.

ing techniques and identified input data that could potentially
improve the forecasting accuracy, identifying solar irradiance,
temperature, wind speed and direction, humidity, cloud cover,
and aerosol index as the most important variables for SPF. In
[10], a review of probabilistic solar power and load forecasting
models was the main focus. It further aimed to identify simi-
larities between solar power and load forecasting models. The
work [11] focused on highlighting the use of probabilistic SPF
into power systems, pointing out the need for further devel-
opment evaluation and integration of probabilistic SPF into
real-life cases. The work [12] presented a review of PV mathe-
matical models and a case study that predicted the performance
of a specific PV system. Study [13] presented an in-depth review
in state-of-the art methodologies in terms of techniques and
optimization. The study further highlighted the importance of
the pre-processing of the forecasting process in order to con-
struct the appropriate forecasting model depending on the case
at hand, as well as the need of the evaluation process.

The above studies [5–13], published between 2014 and 2020,
focus on reviewing recent research efforts. As Table 1 shows,
the majority of the review works on SPF focus on presenting
state-of-the-art solar forecasting models and important input
data for the improvement of the forecasting accuracy.

This paper reviews recent SPF methodologies, published
from 2016 to date. As can be seen in Figure 1, the great majority
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BAZIONIS ET AL. 2413

FIGURE 1 Number of works, reviewed in this paper, categorized by year
of publication.

of the reviewed works has been published after 2018. Aiming to
comprehend the different factors affecting the outcome of the
prediction process, the review has further focused on the effect
of the different climatic conditions and the geographical loca-
tion of the reviewed datasets as well as technical characteristics
of the forecasting models.

Therefore, the researches being reviewed in this work
cover novel, state-of-the-art methodologies and present recent
advances in short-term solar power forecasting from the last
5 years. The review process intended to cover a variety of
different SPF methodologies and their behaviour towards the
forecasting result, considering specifically their climatic con-
ditions that derive from their geographical location, the type
of input variables, the capacity of the solar parks, and the
evaluation of each SPF methodology.

The contributions of this review paper are manifold:

a. It reviews studies published in the last 5 years, and, as a
result, is provides an overview of state-of-the-art models and
methodologies for short-term solar power forecasting.

b. It classifies the reviewed studies according to their forecast-
ing accuracy based on climatic and geographical conditions.
Given the great variety of meteorological conditions on a
global level, datasets from PV farms in different locations
could be affected by such conditions and thus could provide
different forecasting results.

c. It classifies the reviewed works depending on the type of data
used in order to define the most important data used in solar
power forecasting as well as to highlight the dependence of
the forecasting error values of specific data.

d. It serves as a guide to aid researchers in understanding and
identifying novel, state-of-the-art models of SPF.

e. It provides future research directions and presents real solar
forecasting challenges that need to be solved via further
developing existing SPF models.

The structure of the paper is as follows. Section 2 reviews
the state-of-the-art methodologies of short-term SPF. Section 3
presents the classification of the reviewed works based on the

technical characteristics and the data type used, as well as a cli-
matic classification of the reviewed models. Section 4 presents
the SPF models’ complexity and evaluation. Section 5 pro-
vides future research directions. Section 6 summarizes the main
findings and concludes the paper.

2 METHODS

2.1 Pre-processing of multiple data by data
fusion

Data fusion methodology aims to deal with multi-source data
combination. During the pre-processing of the input variables
on an SPF model, different raw data are fused in order to
enhance their adaptation to the training process of the SPF
model. For example, images from several sources (e.g. differ-
ent sky imagers located at several locations near to the plant)
can be merged into a combined image, which has richer and
more accurate content. This data fusion and pre-processing will
improve the image clarity and thus improve their understanding
and estimation [14].

Data fusion can be a complex process and the input variables
collected for the fusion process should be selected reasonable
and according to the specific problem at hand in order to avoid
data fusion failure.

The main objective of data fusion is to optimize the efficiency
of multi-source input variables and after the pre-processing part,
the enriched and optimized data are imported to another SPF
methodology.

2.2 Benchmark models

Such models are mainly used as a means of comparison for
advanced forecasting models in order to prove their validity and
efficiency. Such models are easy to construct and are fast thanks
to their low computational cost.

2.2.1 Persistence model

The persistence model is generally used as a default model that
is compared to novel methodologies in order to evaluate their
performance. In other words, the persistence model functions
as a benchmark model for advanced models [6]. During the
application of the persistence model, the predictive values of
the historical time series data are calculated, considering that
the conditions between time t and future time Δt do not change.
For cases where the power output time series are non-stationary
data, the persistence model is described as [15]

P̂ (t + Δt ) = P (t ) (1)

where P(t) is the expected power output in clear-sky and
P̂ (t + Δt ) is the forecasted value. The persistence forecast
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2414 BAZIONIS ET AL.

accuracy decreases with the increase of the forecasting horizon
[16].

2.2.2 Climatology model

The climatology model provides a simple solution to estimation
while lacking advanced tools. By using historical data and fol-
lowing the frequency of specific events, it offers the possibility
of estimations of such events in the future.

A climatological forecasting model is typically based on his-
torical data and more specifically the mean or average value of a
specific variable. The average is calculated from a valid data sam-
ple. Assuming that the said data sample is representative of the
total of the considered variable, the mean of the sample could
represent the mean of the total of the historical data. A simple
climatology model is described as

yi = x̄ (2)

where yi is the forecasted value and x̄ is the mean of the
historical variable xi and is described as

x̄ =
1
n

n∑
i = 1

xi (3)

The main disadvantage of this model is the fact that it is based
on averaging specific climatic conditions for specific periods of
time and thus it is not able to provide forecasting variations
simply by using these averages [17].

2.3 Statistical approaches

Statistical methodologies have been around for a long time
already and they have interesting properties which have made
them attractive for applications where probability distributions
are relevant. Such models surpass the benchmark models. They
are easier to interpret compared to other approaches, but they
are more difficult to train due to their dependence on explana-
tory variables. We provide a survey of the main approaches here,
without having the aim to be exhaustive.

2.3.1 Auto regressive moving average (ARMA)

The ARMA model has been widely used in SPF as an efficient
model in time series forecasting, thanks to its ability to extract
useful statistical information [18]. The ARMA model consists of
two elementary models, the AutoRegressive (AR) and the Mov-
ing Average (MA) models. The combination of the two models
is described as

Xt =

p∑
i=1

𝜑iXt−i +

q∑
j = 1

𝜃 j 𝜀t− j (4)

where Xt is the forecasted solar power at time t, p is the order
of the AR model, q is the order of the MA model, φi is the
ith AR coefficient, θi is the jth MA coefficient, and ε is white
noise, which functions as an independent variable [19]. ARMA
is expressed as ARMA(p, q), where p and q express the orders
of AR and MA, respectively. This model is usually applied to
auto-correlated time series data.

ARMA is a promising tool to understand and predict the
future values of specific time series due to its ability to extract
important statistical information during the prediction process.
Another important advantage of the ARMA models is their
flexibility. By using different orders of the AR and MA mod-
els, ARMA is able to constitute different types of time series.
However, the necessity of stationary time series is a major dis-
advantage of the ARMA model [20]. The contributions of the
works [21, 22] that propose ARMA-based SPF methodologies
are presented in Table 2.

2.3.2 ARIMA

The ARIMA functions as an extended version of the ARMA
model presented in Section 2.2.1 with an added Ιntegrated
element. The ARIMA model is very efficient in processing
nonstationary time series data [23]. The general equation of
successive differences at the dth difference of the forecasted
prediction Xt is

Δd Xt = (1 − B)d
Xt (5)

where d is the difference order and is usually 1 or 2, and B is the
backshift operator and is defined by

BXt = Xt−1 (6)

When the backshift operator is applied on a value Xt of the time
series, it is able to shift the data back one period.

For example, following the previous equation, the successive
difference at one time lag is

Δ1Xt = (1 − B) Xt = Xt − Xt−1 (7)

The contributions of the works [24–26] that propose ARIMA-
based SPF methodologies are presented in Table 2.

2.3.3 Regression

The regression method is a statistical method that is used to
provide information over the relationship between the depen-
dent variables and the explanatory variables. The explanatory
variables are essential in order to estimate the dependent vari-
ables. Considering solar power forecasting, PV power is the
dependent variable, while the explanatory variables can be the
meteorological parameters.
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BAZIONIS ET AL. 2415

TABLE 2 Main contributions of reviewed works

Work Publication date

Forecasting

methodology Main focus

[22] July 2016 ARMA A novel hybrid ARMA-based SPF model along with the wavelet transform was proposed in order to
provide accurate solar power predictions.

[48] September 2017 ANN A non-parametric ANN-based forecasting model was proposed for accurate day-ahead PV forecasting.

[61] September 2017 SVM The evaluation of a deep learning SPF model via NWP data was the main objective of this work, applied
to real life, high PV penetration scenario.

[30] October 2017 ANN A novel Long-Short Term Memory Recurrent NN (LSTM-RNN)-based model was proposed for PV
forecasting, considering the temporal changes in PV power in the architecture of the forecasting
model.

[67] November 2017 ELM An ELM-based methodology was proposed for accurate predictive results for three grid-connected
plants.

[77] November 2017 Image-based A sky-imager-based forecasting model was proposed for the error estimation and evaluation of a
nowcasting system.

[92] December 2017 Regression A quantile regression methodology was applied in order to provide information over the uncertainty of
the predictive results.

[68] June 2018 ELM An ELM-based methodology was proposed for SPF, focusing on defining the proper weights for the
parametrization of the forecasting model.

[88] June 2018 ELM An ELM-based methodology was proposed for probabilistic SPF, considering spatio-temporal data.

[47] September 2018 ANN ANN-based forecasting models were proposed for accurate hour-ahead solar power forecasting.

[62] September 2018 SVM The development and configuration of data-driven algorithms for PV power forecasting focused on
individual sites was the main focus of the work.

[49] December 2018 ANN Three different NWP-free deep learning-based PV power forecasting models were proposed for accurate
short-term SPF.

[27] December 2018 Regression A random regression forest model was proposed for the solar power forecasting process.

[31] January 2019 ANN ANN-based methodologies implementing different optimization algorithms were proposed in order to
estimate the best solar power forecasting accuracy.

[32] January 2019 ANN Three different solar power forecasting models were proposed to estimate and compare PV power
outputs.

[25] January 2019 ARIMA ARIMA and SARIMA SPF models were proposed to provide accurate solar power generation
predictions.

[90] June 2019 ANN An LSTM-based model was proposed for probabilistic SPF along with providing seasonal information.

[33] July 2019 ANN An RNN-based model was proposed for the PV forecasting process in order to estimate the correlation
between adjacent days and estimate non-linear information of inter- and intra-day power data.

[34] July 2019 ANN An adaptive predictor subset selection model was presented in order to efficiently estimate accurate
predictive forecasts.

[59] September 2019 SVM A hybrid ensemble power forecasting model was proposed for the prediction of changing weather
patterns.

[82] September 2019 Hybrid The work proposed a hybrid data-driven, recursive arithmetic average methodology in order to improve
the forecasting accuracy via improving the weights of the individual models.

[26] September 2019 ARIMA A hybrid forecasting SARIMA-based model was introduced in order to provide information over the
effect of the Wavelet Decomposition in solar power forecasting accuracy.

[44] September 2019 ANN An LSTM-based ensemble algorithm was proposed to improve the forecasting accuracy via combining
the weights of the different implemented LSTM models and by maintaining non-linear statistical
information of the time series database.

[59] September 2019 SVM An SVM-based model was proposed, focusing on the solar power forecasting based on the changing of
weather patterns.

[91] October 2019 ANN An improved Markov chain-based methodology was proposed in order to provide accurate predictions
of solar power. A rough ser theory was further applied in order to optimize the input variables.

[35] November 2019 ANN Different LSTM models were proposed along with the discrete grey model in order to estimate the solar
power forecasting accuracy.

[36] November 2019 ANN A convolutional NN (CNN)-based solar power forecasting model was proposed, using spatial historical
information as input for the prediction process.

(Continues)
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2416 BAZIONIS ET AL.

TABLE 2 (Continued)

Work Publication date

Forecasting

methodology Main focus

[87] November 2019 ANN A regime-switching process was introduced for solar power forecasting along with the computed cloud
regime.

[83] February 2020 Hybrid A hybrid deep-learning forecasting model was proposed for one-hour solar power forecasting in order to
improve the predictive accuracy.

[37] March 2020 ANN A novel solar power forecasting model based on self-attention mechanism was introduced for
ultra-short-term forecasting.

[38] April 2020 ANN The proposed methodology used a fine-tuned CNN avoiding a time-consuming trial and error process in
order to achieve accurate day-ahead forecasts.

[21] May 2020 ARMA A BI-LSTM-based model was proposed in order to estimate accurate solar power forecasts for large PV
parks.

[39] June 2020 ANN Two novel CNNs along with a new data pre-processing process were proposed for PV power forecasting.

[85] July 2020 Hybrid A hybrid regression-based model was proposed in order to improve the solar power forecasting accuracy.

[40] July 2020 ANN A single dendritic ANN was proposed for the forecasting process along with the wavelet transform for
the data decomposition.

[28] August 2020 Regression The random forest algorithm was proposed in order to estimate input data of higher importance and a
grey ideal value algorithm was used for the optimization process.

[41] August 2020 ANN An ANN-based methodology was proposed in order to improve the PV power forecasting accuracy.

[60] September 2020 SVM Estimating accurate day-ahead regional PV predictions in a high PV power penetration scenario was the
main objective of this work.

[75] September 2020 Image-based Accurate SPF results using satellite pictures were the main focus of this work.

[42] September 2020 ANN A two-step methodology based on the persistence model and LSTM was proposed to improve the PV
forecasting accuracy.

[84] September 2020 Hybrid A hybrid PV forecasting model was proposed considering the prior data of adjacent days when
constructing the prediction model.

[24] November 2020 ARIMA An SARIMA-based SPF model was proposed in order to improve the solar forecasting accuracy.

[72] July 2021 ANN A deep reinforcement learning approach was introduced, in order to make the predictive errors of the
forecast more compensable.

[50] February 2021 ANN A novel AlexNet-based SPF methodology based on CNN structure was proposed in order to provide
robust and accurate forecasts.

[43] September 2021 ANN An LSTM-based forecasting model was proposed for accurate power forecasts, which was applied in
different scenarios in order to estimate the accuracy’s dependence on different variables.

[45] September 2021 ANN A data-driven ensemble methodology was proposed for accurate hour-ahead PV power forecasting.

[46] September 2021 ANN Three different SPF models were applied and evaluated for two different cases in order to produce
accurate short-term forecasts.

[51] September 2021 ANN An LSTM-based forecasting model was proposed, along with a robust local mean decomposition that
explored different hidden properties of solar irradiance and allowed for the appropriate parameters to
be included as input, in order to improve the forecasting accuracy.

[63] September 2021 SVM Five different day-ahead PV forecasting models based on NWP were proposed and compared for
accurate SPF.

[74] September 2021 Image-based A segmentation algorithm was introduced for cloud detection and cloud classification via camera images,
which was later applied for solar forecasting.

[76] September 2021 Image-based Data pre-processing via curtailment detection methods as well as novel machine learning models were
proposed for the optimization of PV forecasts.

[52] October 2021 ANN A novel parallel pooling CNN-based SPF model was proposed in order to achieve robust and high
accuracy.

[71] January 2022 ANN An automated reinforcement learning algorithm based on prioritized experience replay was proposed to
support a multi-period single-step forecasting model for improving RES prediction accuracy.

[69] January 2022 ELM An ELM-based SPF model was proposed, in order to facilitate solar irradiance integration by reducing
the forecasting error and thus providing higher forecasting accuracy.

[78] January 2022 Image-based The spatio-temporal correlation of different power plants was the main focus of this work, which
developed an ultra-short-term SPF model based on the mapping relationship of the cloud
characteristics of neighbouring power plants.

(Continues)
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BAZIONIS ET AL. 2417

TABLE 2 (Continued)

Work Publication date

Forecasting

methodology Main focus

[54] February 2022 ANN Two different feedforward NN-based models were proposed and compared along with different
optimization methods in order to accurately forecast the photovoltaic power output.

[53] March 2022 ANN An LSTM-based forecasting model was proposed to achieve accurate SPF.

[55] March 2022 ANN A hybrid CNN-LSTM model was proposed in order to improve the SPF accuracy.

[56] April 2022 ANN A non-linear autoregressive with exogenous inputs model was proposed for accurate SPF and was
further optimized via a corrective vector multiplier technique.

[29] June 2022 Regression A regression-based methodology, specifically focused on random forest models, followed by LASSO and
Ridge regularizations was proposed in order to improve the forecasting accuracy.

The general form of a regression model is given by

Y = f (X, 𝛽) (8)

where Y is the vector of the dependent variable, X is the matrix
of the included independent explanatory variables and β is the
regression model’s parameters.

Various explanatory variables can be included to a regres-
sion model, creating a multiple regression model, which in
case of a solar power forecasting regression model can be rel-
evant to solar irradiance. However, simply selecting relevant
explanatory variables to the dependent variable could lead to
low accuracy and interpretability of the model. To deal with such
problems, appropriate selection of explanatory variables is of
core importance to improve the efficiency and accuracy of such
models.

The contributions of the works [27–29] that propose
regression-based SPF are presented in Table 2.

2.4 Artificial intelligence

Artificial intelligence methodologies have become very popu-
lar recently. Such methodologies are easy to train thanks to the
advanced technology and various open-source templates. On
the other hand, due to their complexity, they can be extremely
difficult to interpret. They provide better results and are more
accurate compared to the benchmark models. We provide a sur-
vey of the main approaches here, again without having the aim
to be exhaustive.

2.4.1 Artificial neural networks (ANN)

Artificial Neural Network methodologies have been developed
and researched over the past few years in order to achieve bet-
ter forecasting accuracy in terms of error metric results. Such
methodologies are able to deal with problems of non-stationary
data, false data or even incomplete data. The main advantage
of the ANN models is their continuous development as well
as the flexibility they offer due to their advanced mechanics
and the implemented optimization algorithms for their training.

However, due to using large number of different types of data,
such models are quite complex and difficult to construct in an
efficient way.

The standard feed-forward ANN consists of three main lay-
ers, the input layer, the hidden layer(s) and the output layer. As
its name implies, the input layer is given the input data that will
be used for the procedure of the forecasting process. The hid-
den layer, through the appropriate training of the ANN, analyses
the input information. It is possible that there is more than
one hidden layer in an ANN model. The output layer gives
the output predictive result based on the analysis of the hid-
den layers. The contributions of the works [30–56] that propose
ANN-based SPF are presented in Table 2.

2.4.2 Support vector machine (SVM)

SVM is a supervised learning technique used for classification by
maximizing the separation margin among different classes [57].
It is used to enhance its generalization capability by reducing the
empirical risk of the learning machine [58]. SVMs belong to the
class of kernel methods. The kernel functions are key features of
SVM, which map data into higher dimensional space. SVM has
a basic principle of applying non-linear data mapping in some
spaces and linear mapping in future space. The main advantage
of the SVM is the possibility of determining an error acceptable
for validation during the NN’s learning process.

The use of an SVM for time series prediction can be
expressed as

ˆ̄y (t + h) = vT 𝜑 (xt ) + b (9)

where b ∈ R is a bias term, v ∈ RM is the weight vector and
φ: RM•D → RM, (M≥ m•D) is a non-linear feature map, which
transforms the input vector xt ∈ RM•D to a higher-dimensional
vector φ(xt) ∈ RM.

The commonly used kernel functions include linear, polyno-
mial, and radial basis function kernels. The non-linear kernel
function is defined as

k = exp
(
−

1
𝜎2

‖X − 𝜒2
𝜄 ‖) (10)
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2418 BAZIONIS ET AL.

where X and Xi are the vectors in input space and the vector of
features computed from training or test samples, respectively.

The contributions of the works [59–63] that propose SPF
based on the SVM methodology are presented in Table 2.

2.4.3 Extreme learning machine (ELM)

The learning speed of Feed Forward Artificial Neural Networks
(FFANNs) decreases due to the slow training algorithms of the
ANNs that slow down the learning process of FFANNs [64].
ELM was proposed in [65] in order to increase the computa-
tional speed of FFANNs. For a single hidden layer feedforward
neural network (SLFNN), the selection procedure of the ELM
for the hidden nodes is completely random and determines the
SLFNN’s output layer’s weights. One of the main advantages of
the ELM methodology is the simple training process of the NN
[64].

Through avoiding specific limitations of conventional NNs,
like overtraining and the local minima, it simplifies the train-
ing process. As a result, the computational cost of the
ELM is greatly reduced and it provides higher generalization
capabilities.

For a single hidden layer of ELM, the ith node is defined by

hi (x ) = G (ai , bi , x ) (11)

where ai and bi represent the parameters of the ith node. The
output function of ELM for hidden layer L is

fL (x ) =
L∑

i=1

𝛽i hi (x ) (12)

where βi is the output of the ith hidden node h(x), where

h (x ) =
[
G (hi (x )… , hL (x ))] (13)

is the hidden layer of output mapping of the ELM.
For a training sample N, the output matrix H is

H =

⎡⎢⎢⎢⎢⎣

h (x1)

⋮

h (xN )

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

G (ai , bi , x1) ⋯ G (ai , bi , x1)

⋮ ⋮ ⋮

G (ai , bi , xN ) ⋯ G (ai , bi , xN )

⎤⎥⎥⎥⎥⎦
(14)

and the training data T of the target matrix is

T =
⎡⎢⎢⎣

t1
⋮

tN

⎤⎥⎥⎦ (15)

The contributions of the works [66–68] that propose ELM-
based SPF are presented in Table 2.

2.4.4 Deep reinforcement learning (DRL)

By combining deep learning with reinforcement learning (RL),
the resulting DRL methodologies offer solutions to the com-
plex systems’ perception and decision-making issues [69]. The
main advantage of DRL is its ability to process large amounts
of data, by taking into account complex relationships and
dependences between its input variables. However, being a
data-dependent approach, such models suffer from increased
computational cost, due to the need of many layers and multi-
ple iterations over the RL loop. Hence, this approach is difficult
to apply online on an embedded processing platform. In addi-
tion, input variables validity can be another main challenge
of models based on DRL. In [70], an automated reinforce-
ment learning algorithm based on prioritized experience replay
was proposed to support a multi-period single-step forecasting
model for improving RES prediction accuracy. A deep rein-
forcement learning approach was introduced in [71], in order to
make the predictive errors of the forecast more compensable.
The contributions of the works that propose DRL-based SPF
are presented in Table 2.

2.5 Physical and image-based forecasting
models

Clouds have a huge impact on solar surface irradiance and SPF.
As a result, estimating clouds appearance at a specific time is
of crucial importance in the forecasting process. Wind speed
and wind direction affect the cloud motion and strongly influ-
ence the cloud structures [72]. Recently, via satellites and ground
sky imagers, newly developed forecasting methodologies record
the cloud movement. Further processing of sky images allows
future cloud cover estimation, which in turn is used for SPF.
Such methodologies can be very difficult to train due to the
complexity of the data derived from the images as well as their
processing. On the other hand, in terms of interpretation, they
are really easy to understand and explain. They provide bet-
ter results than the benchmark models thanks to the novel
introduced improved models. The contributions of the studies
[73–77] that propose image-based SPF are presented in Table 2.

2.5.1 Satellite images

The use of satellite images requires the identification of spe-
cific stationary features of the clouds. Tracers within the images
being processed are selected, corresponding to cloud features
that can be easily traced. Convective clouds, which are char-
acterized by low temperatures, large cloud deformations and
transformations caused by the cloud motion as well as the cloud
movement due to wind speed, are tracers typically being anal-
ysed by satellite images. The consistency of those features is
being analysed throughout the pre-processing phase. In order
to efficiently track those tracers, pattern matching algorithms
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BAZIONIS ET AL. 2419

are used to estimate the future location of each tracker from
given images [78].

Satellite images and satellite-derived radiation data are often
used in SPF models especially in numerical weather mod-
els. However, because of errors in aerosol optical depth and
cloud detection problems, data from satellite images may have
uncertainties and often show systematic bias. In addition, their
resolution is typically in the km range, which is quite limited and
hence they are not well suited for very-short-term predictions.

2.5.2 Ground-based sky imagers

Ground-based sky imagers offer high spatio-temporal resolu-
tion. This is in contrast to the satellite images of Section 2.4.1.
As a result, such images are suitable for very-short-term and
short-term forecasting methodologies where high resolution is
required. Especially for intra-hour predictive results, ground-
based sky images are preferred, instead of satellite images and
Numerical Weather Prediction (NWP) models. Furthermore,
their high spatio-temporal resolution offers the ability to locate
ramp events that satellite images are unable to estimate.

It should be noted that ground-based imaging, through cloud
cover indices, cloud motion vectors and cloud classifications,
often lacks in spatial coverage and is thus limited to being used
for specific location forecasting applications [79].

2.5.3 Numerical weather prediction (NWP)
models

NWP models provide information of the atmospheric condi-
tions through physical equations. NWP are able to produce
forecasts for various types of input variables, i.e., solar irra-
diance. The forecasting process of NWP models, based on
collecting historical data, generates the potential future condi-
tions and error adjustment by processing the forecasts based
on past performance [80]. Such models give better results
for long-term forecasting than ultra-short and short-term
forecasting.

2.6 Hybrid methods

Hybrid methods refer to the combination of two or more exist-
ing methodologies for the forecasting process. The inclusion
of more than one methodology aims to tackle existing dis-
advantages of each method. The above process results in the
increase of the forecasting accuracy of the hybrid model and the
reliability of the predictive results.

The advantage of the hybrid methods is the improvement of
the forecasting accuracy via including the positive aspects of
each method as well as an optimization algorithm. However,
a major drawback of the hybrid models is the complexity of
the final forecasting model. The computational cost, and the
programming complexity of the hybrid models are issues that

should be taken into account in order to efficiently improve the
total forecasting accuracy.

It should be also noted that the forecasting accuracy of
the hybrid methodologies highly depends on the accuracy
of the individual models as well [6]. Therefore, if one of
the included models has low performance and provides low
accuracy, the final hybrid model will be affected as well. As
a result, hybrid models constitute a trade-off between the
optimization of the model’s accuracy and model’s function
cost.

The contributions of the works [81–84] that propose hybrid
SPF methodologies are presented in Table 2.

2.7 Ensemble methods

Ensemble methods are popular in machine learning and are
widely used in SPF. The ensemble methodology is based on
the use of multiple predictors in order to achieve an aggregated
result that is better than the other predictors [85], and thus com-
bine the advantages of multiple models of the same type in order
to provide more robust and accurate forecasts. Such models
often use NWP as input variables. The pre-processing process
of the input variables as well as the training process is really
important for such models. The results derive from averaging
the results of all the predictors. However, it should be noted that
evaluating the data at hand is of vital importance. Maintaining
each ensemble as a probability distribution could provide vital
information considering the pre-processing state of the fore-
casting methodology. It could also prove to be a useful aid in
the understanding and research of ramp events occurrence and
effect on the forecasting process.

2.8 Probabilistic forecasting

The great majority of real-life SPF problems have been dealt
with deterministic power forecasting models. However, deter-
ministic forecasting models lack the ability to deal with the
uncertainty parameters of the prediction process.

While deterministic forecasts provide a single time-series
view of the possible outcome of the prediction, probabilistic
forecasts provide a wider image of the possible outcomes of a
prediction, in a form of prediction intervals or distributions.

The contributions of the works [86–91] that focus on
probabilistic SPF methodologies are presented in Table 2.

2.9 Evaluation

The evaluation of the forecasting models is of major importance
to the forecasting process. The evaluation operation provides a
forecasting accuracy comparison between different methodolo-
gies as well as estimation over the efficiency of the forecasting
models. Considering that solar power forecasting plays a vital
role over the operation and stability of the power grid and the
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2420 BAZIONIS ET AL.

energy markets, the evaluation of existing forecasting models is
of crucial importance.

Several evaluation metrics exist that allow the compari-
son between different models, highlight possible problems in
the methodologies under comparison, and indicate possible
improvements. Such error metrics are the following:

a. Mean Absolute Error (MAE)
b. Mean Absolute Percentage Error (MAPE)
c. Mean Relative Error (MRE)
d. Mean Bias Error (MBE)
e. Mean Square Error (MSE)
f. Root Mean Square Error (RMSE)
g. normalized Root Mean Square Error (nRMSE)

A more analytical demonstration of the above metrics can be
found in the appendix. The above error metrics allow the eval-
uation of an SPF model as well as the comparison of different
SPF models and highlight possible developments. In Table 3,
the metrics used in the reviewed works are presented.

3 METHODOLOGIES AND DATA
ANALYSIS

3.1 Forecasting horizon

The continuous penetration of solar power into energy systems
has created major problems in terms of stability and control.
SPF has been widely used in order to tackle these problems
and achieve the stability of energy markets and power sys-
tems. It should be noted that different types of problems arise,
depending on the forecasting horizon of the models. Such prob-
lems vary from electricity markets optimization, management of
power systems, daily planning, energy trading and maintenance
scheduling.

This work is focused on short-term SPF methodologies
which, as can be seen in Table 4, can be further sub-classified
into ultra-short-term and short-term SPF models. Table 4 pro-
vides a better view of each reviewed work’s methodology via
classifying them according to the forecasting horizon.

3.1.1 Ultra-short-term forecasting

Ultra-short-term forecasting or nowcasting uses solar data to
estimate photovoltaic power predictive outputs with a forecast-
ing horizon typically ranging from a few seconds to 30 min [92].
Reviewed works [28, 33–40, 42, 46, 49, 71, 73, 76, 83, 84] pro-
pose different models and methodologies for ultra-short-term
SPF.

3.1.2 Short-term forecasting

Short-term forecasting provides predictive outputs related to
the daily electricity market and system management in terms

TABLE 3 Evaluation metrics used in the reviewed works

Reviewed

work Evaluation metrics

[27] RMSE, nRMSE, R2

[28] RMSE, MAPE, MAE, R2

[29] MAE, MRE, R2

[30] RMSE

[31] MAE, MAPE, R2

[32] MAE, RMSE

[33] MAE, MAPE, RMSE

[34] MAE, MAPE

[35] RMSE

[36] nRMSE, MAPE

[37] MSE, RMSE, MAE

[38] MAPE, MRE

[39] MAE, MSE

[40] RMSE, MAE, MAPE

[41] RMSE, MAE

[42] nRMSE, nMAE

[43] MAE, nRMSE, R2

[44] MAE, RMSE

[45] MAPE, nRMSE

[46] nRMSE

[47] MAE, MAPE, RMSE, nRMSE

[48] nRMSE

[49] MAE

[50] RMSE, MAE, MAPE

[51] MAE, RMSE

[52] MAE, RMSE

[53] RMSE, MAE, MAPE, R2

[54] nRMSE

[55] RMSE, MAE, MAPE, R2

[56] MSE, RMSE, R2

[59] RMSE, MAPE

[60] RMSE, MAE

[61] nRMSE, nMAE

[62] RMSE, MAE, MBE

[63] MAE, RMSE

[68] RMSE, MAE, MAPE

[74] nRMSE

[75] RMSE

[76] MAE, RMSE

[77] RMSE, MAE

[81] RMSE, MAE, MAPE

[82] MBE, MAPE, RMSE

[83] MAE, RMSE, R2

[84] MAE, MSE, RMSE, R2
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BAZIONIS ET AL. 2421

TABLE 4 Classification of the reviewed works based on the forecasting
horizon

Forecasting

horizon Reviewed works

Type of

forecasting

horizon

1 min [49] Ultra-short-term

5 min [28, 84] Ultra-short-term

10 min [31, 73, 84] Ultra-short-term

15 min [28, 33, 40, 42, 46, 76, 83] Ultra-short-term

30 min [33, 42, 73, 84] Ultra-short-term

1 h [30, 33, 42, 43, 45, 47, 50, 59, 61, 71,
81, 82, 84]

Short-term

2 h [30, 42, 43, 45, 50, 61, 75, 84] Short-term

5 h [30, 42, 43, 45, 61, 84] Short-term

6 h [27, 30, 36, 42, 43, 61, 84] Short-term

16 h [30, 42, 43, 60, 61, 84] Short-term

24 h [30, 32, 34, 38, 39, 41, 42, 43, 44, 48,
61, 62, 63, 84]

Short-term

48 h [35] Short-term

of planning and operation. The forecasting horizon typically
ranges from 1 h to 1 day [93]. Reviewed works [30, 32–36, 38,
39, 41–45, 47, 48, 59–63, 71, 75, 81, 82, 84] focus on short-term
SPF by using different models and methodologies.

3.2 Climatic conditions

Meteorological conditions play an important role in estimat-
ing the predictive error of SPF models. Cloud coverage, wind
speed and direction, precipitation or ambient temperature are
all climatic aspects that vary based on the location.

In countries closer to the earth’s equator higher tempera-
tures are encountered, while in countries closer to the poles,
the temperature can decrease even below 0◦C. In tropical cli-
mates, higher volumes of precipitation are encountered, while
in dry climates rainfall as well as wind speed may be limited to
extremely low levels.

In Figure 2, a classification of the Earth’s climate zones is
presented [94] based on the Köppen–Geiger system. It can be
seen that several climatic classifications and subclassifications
exist based on the location and meteorological conditions.

It should be noted that the Köppen–Geiger system was not
intended for PV. Instead, it was proposed in order to present the
climatic conditions as experienced by humans and other living
creatures across the globe through deep research of the climatic
conditions of the different locations. As a result, a complex but
life-oriented climatic classification system was proposed.

On the other hand, it was decided that proposing a cli-
matic classification from scratch should not be an appropriate
approach. Instead, it should be better to construct and propose
a climatic classification focused on PV, based on an existing and
widely acknowledged climatic model.

As a result, taking into consideration the importance of the
climatic aspect to the SPF process, the Köppen–Geiger climatic
subclassifications were clustered, split and combined anew into
the climatic zones presented below:

a. Equatorial Zone: this zone is limited to specific zones around
the Earth’s equator. This zone receives the highest level of
solar irradiance since the surface is perpendicular to the
incoming sunlight. Those regions are characterized by high
humidity levels and high, constant temperatures through-
out the year. Rain is an almost daily phenomenon. However,
there can exist distinctive drought periods.
∙ Humid subequatorial zone, which is characterized by high

humidity levels and regular rainfall.
∙ Dry subequatorial zone, which is characterized by dry

conditions.

From Figure 2, subsets Af and Am could be included in this
category that represent humid climates with extreme conditions,
such as rainforests and monsoons as well as Aw, representing
savanna conditions.

From Figure 2, subsets BWh and BWk could be included in
this category, representing dessert hot and dessert cold climates,
respectively.

b. Temperate Zone: compared to the tropical and subtropical
zones, the temperatures are lower and more stable, since
solar radiation reaches the Earth’s surface with a smaller
angle and the level of sun irradiance is significantly lower
than climate zones closer to the Earth’s equator. Extreme
climatic events are less frequent and precipitation is regu-
larly distributed in specific seasons. However, due to the fact
that the temperate zone covers vast areas in different coun-
tries and different continents, different subclassifications of
the temperate zone’s climate can be encountered, from partly
rainy to relatively dry.
∙ Humid subtemperate zone, that is mainly characterized by

rainfalls and generally humid meteorological conditions.
∙ Dry subtemperate zone, that is mainly characterized by

dry conditions with rare rainfall presence.

From Figure 2, all subsets from Csa to Cfc could be included
in this category, representing temperate climate conditions from
ones with dry hot summers (Csa) to ones with cold summers
with no dry conditions (Cfc). More specifically, Csa, Csb, Cwa,
Cwb, Cwc represent dry conditions and are included in the dry
subtemperate zone, while Cfa, Cfb and Cfc represent hot to cold
summer zones, without dry conditions and are included in the
humid subtemperate zone.

c. Subpolar Zone: this zone refers to regions with long and very
cold winters and low temperature summers. The cold winds
from this zone typically affect the climate of temperate zone
regions during winter.

From Figure 2, all subsets from Dsa to Dfd could be included
in this category, representing subpolar climatic conditions from
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2422 BAZIONIS ET AL.

FIGURE 2 Köppen–Geiger global climatic zones [94].

ones with dry summers (Dsa, Dsb, Dsc, Dsd), to ones with dry
climate throughout the year (Dwa, Dwb, Dwc, Dwd), to ones with
humid conditions (Dfa, Dsb, Dsc, Dsd).

d. Polar Zone: regions in polar zones receive the less solar radi-
ation intensity levels throughout the year. The daylight length
varies in those regions. It is characterized by extremely low
temperatures and the level of solar irradiance is the low-
est possible due to the small angle the sunlight reaches the
Earth’s surface.

From Figure 2, subsets ET and EF could be included in
this category, representing polar climates with tundra and frost
conditions, respectively.

Considering the different climatic conditions, datasets from
solar parks located in different countries, in different conti-
nents, could affect the forecasting error and thus the forecasting
accuracy of SPF models. A classification of the reviewed works
concerning the location of the input data used in their pro-
posed model can be found in Table 5 as well as Figure 3 which
graphically presents the locations of Table 5.

Tables 5 and 6 present classifications based on the climatic
zone on a global level and for European countries. Consider-
ing known locations of solar farms on a global level [96], the
locations reviewed in our paper align with them and thus are
logically included in this review paper. As a result, in order to
present the results on a smaller scale, European countries were
selected as an example due to the fact that they present a variety
in terms of climatic zone appearance.

To further provide information over the climatic conditions’
effect on the SPF results, Figures 4 and 5 provide further
information over the European continent.

FIGURE 3 Location of the datasets of the reviewed works.

FIGURE 4 European direct normal irradiation map (2021) [96].
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BAZIONIS ET AL. 2423

TABLE 5 Classification of the reviewed works based on the geographical
location of their datasets

Work Location City Climate zone

[27] Portugal Faro Temperate (dry)

[28] Canada Desert Gardens Temperate (humid)

[29] Taiwan Zhangbin Equatorial (humid)

[30] Egypt Aswan, Cairo Tropical

[31] Turkey – Subtropical

[32] South Korea Gumi Temperate (humid)

[33] Belgium Flanders Temperate (humid)

[34] Finland Espoo Temperate (humid)

[35] China Shandong Temperate (humid)

[36] USA
California,
New York, Alabama

Tropical, Temperate
(Humid),
Subtropical

[37] North America – Subtropical

[38] Taiwan (south) – Equatorial (humid)

[39] Australia Alice Springs Tropical

[40] China Gansu Temperate (dry)

[41] Jordan Amman Tropical

[42] Italy Cupertino, Catania Subtropical

[43] Greece (northern) – Temperate (humid)

[44] Australia Queensland Equatorial (dry)

[46] Switzerland Bern, Batterkinden Temperate (humid)

[47] Cyprus Nicosia Subtropical

[48] Cyprus Nicosia Subtropical

[49] Japan Kyoto Temperate (humid)

[50] Turkey Kilis Subtropical

[51] Vietnam – Equatorial (humid)

[52] Australia Alice Springs Tropical

[53] Malaysia Kuala Lumpur Equatorial (humid)

[54] Saudi Arabia Shaqra City Subtropical

[55] Abu Dhabi Sweihan Subtropical

[56] Mexico Temixco Temperate (humid)

[59] Australia Victoria Subtropical

[60] Japan Kyushu Temperate (humid)

[61] Japan Kyushu Temperate (humid)

[63] Germany
(southern)

– Temperate (humid)

[68] Australia Alice Springs Tropical

[70] China North China Temperate (dry)

[71] Belgium – Temperate (humid)

[74] Portugal – Subtropical

[75] China Qinghai Temperate (dry)

[77] China Jilin Province Temperate (dry)

[81] Australia Alice Springs Tropical

[82] Australia Alice Springs Tropical

(Continues)

TABLE 5 (Continued)

Work Location City Climate zone

[83] Austria Limburg Temperate (humid)

[86] USA California Tropical

[87] France – Subtropical

[88] USA Texas Subtropical

[89] Taiwan – Equatorial (humid)

[90] Australia Alice Springs Tropical

[91] Belgium Flanders, Limburg Temperate (humid)

TABLE 6 Classification of the reviewed works based on the climatic zone
for European countries

Forecasting horizon Reviewed works

Subtropical [42, 47, 48, 74, 87]

Temperate dry [27, 83]

Temperate humid [33, 34, 43, 46, 63, 71, 91]

FIGURE 5 European photovoltaic power production map (2021) [96].

Figure 4 presents a map of the Direct Normal Irradiance
(DNI) over Europe. DNI refers to the amount of solar radia-
tion being received per unit area of a surface in a continuously
vertical way from the Sun. Figure 5 presents the photovoltaic
power production capabilities of European countries. It can
be seen from the two figures that the levels of DNI are con-
sistent with the amount of photovoltaic power production.
These figures provide a detailed image of the distribution of
solar irradiance in Europe and thus clarify the more promis-
ing regions for solar power production. As a result, more
advanced SPF models are needed in such regions and it is
more likely for researches to be focused on datasets of specific
locations.

It can be derived from Figures 4 and 5, as well as Table 6, that
the majority of countries in need of most accurate SPF models
are countries of central and southern Europe that present the
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2424 BAZIONIS ET AL.

TABLE 7 Classification of the reviewed works based on the used input
data

General data type Reviewed work

Historical-
meteorological
data

[21, 22, 24–26, 28, 29, 30–34, 36–38, 40, 41,
43–45, 47, 49, 51–56, 59, 60, 67, 68, 70, 71, 73,
76, 77, 81–84, 86, 89–91]

NWP [27, 35, 39, 42, 46, 48, 50, 61–63, 66, 74, 75, 87, 88]

TABLE 8 Classification of the reviewed works based on the used input
data

Data type Reviewed works

Wind speed [28, 35, 36, 39, 41, 42, 47, 48, 50, 54, 81, 82, 87, 90]

Wind direction [28, 47, 48, 81, 87, 90]

Historical
power
output

[27, 36, 38, 40, 47, 59, 82, 83, 89]

Relative
humidity

[28, 32, 35, 39, 41, 42, 47, 48, 52, 81, 82, 87, 90]

Ambient
temperature

[28, 31, 32, 34, 35, 38–42, 47, 48, 50, 52, 53, 54, 59, 62, 82,
87, 89, 90]

Global solar
radiation

[27, 28, 29, 31, 32, 34–36, 39–42, 48, 50, 52, 53, 54, 59, 81,
82, 86, 89]

Zenith angle [42, 48, 62]

Cloud coverage [32, 34, 35, 38, 42, 77]

Snow depth [34]

Sunshine
duration

[34]

Panel
temperature

[27, 31, 40, 53]

Precipitation [28, 38, 39, 87]

Radiation [32, 47, 48, 62]

higher levels of radiation. These countries have higher poten-
tial of photovoltaic power production. This is connected to
their climatic conditions. Due to the abundance of solar irradi-
ance in such climates, those countries keep implementing solar
power more and more into their power systems. It should be
noted that stable meteorological conditions favour the photo-
voltaic efficiency. Continuous sunlight incidence, clear sky and
normal temperature conditions could optimize the photovoltaic
efficiency as well as aid in developing has proven to be the
common solution for efficient PV production. This results in
limited cases being focused in regions of said climatic zones and
thus representative studies for these climates are not found in
Table 6.

3.3 Data type—data dependency

A major aspect affecting the accuracy of solar power forecast-
ing models is the selection of proper input data. Different SPF
models consider different types of input data. Table 7 presents

FIGURE 6 Simplified image of Table 8.

the type of input variables selected in each of the reviewed
works in terms of historical data and NWP. SPF models have
been developed over the years and novel methodologies keep
improving their forecasting accuracy.

By their nature, SPF models are highly dependent on
the meteorological and climatic conditions. Historical data of
solar power and meteorological data have been used in SPF.
Meteorological data like wind speed, temperature and solar radi-
ation have been widely used in various SPF models. Recently,
image-based models, taking into account the cloud coverage
conditions, have been proposed over the past years and are still
being researched and developed. Developing such models has
helped in including cloud coverage as an important parameter
in the forecasting process and further improving the forecasting
accuracy of SPF models.

A classification of the reviewed works concerning the input
data used in their proposed model can be found in Table 8 as
well as in Figure 6.

3.4 Size of input data

A crucial aspect in the development of the forecasting mod-
els, as well as their efficiency and accuracy, is the number of
input data used. Apart from selecting the appropriate data for
each SPF case, the number of the selected data could also
affect the forecasting process. Estimating the appropriate size
of input data in each case could prove to be decisive in improv-
ing the accuracy of the proposed forecasting model. On the
other hand, the computational burden is an aspect that should
always be taken into account. Excessive use of input data could
greatly increase the computational cost of the forecasting pro-
cess and as a result decrease the proposed model’s forecasting
value.

A classification of the reviewed cases based on the number of
data used for their proposed model is presented in Table 9.

3.5 Capacity of PV farms

In order to further research the correlation between the cli-
matic location and forecasting error as well as the predictive
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BAZIONIS ET AL. 2425

TABLE 9 Classification of the reviewed works based on the size of input
data

Reviewed

work

Data

resolution

Number of

datasets

Number of data

per dataset

[61] 1 h 8 210,240

[49] 1 min 1 129,600

[27] 15 min 6 630,720

[32] 1 h 1 16,820

[33] 15 min 2 3072/2976

[81] 5 min 1 165,431

[44] 1 14,620

[59] 1 h 1 6672

[35] 15 min 1 34,560

[82] 5 min 1 210,816

[38] 1 h 1 8760

[84] 1 24,000

[40] 15 min 1 35,040

[28] 5 min 1 105,120

[60] 1 h 1 17,280

[71] 15 min 1

[74] 15 min 1 35,040

[42] 15 min 2 46,080/34,560

[88] 5 min 1 74,880

[83] 15 min 1 34,560

[46] 15 min 2 69,120/69,120

[75] 15 min 1 40,320

[68] 1 16,368

[89] 1 min 1

[51] 30 min 4

[56] 1 h 1 52,560

[54] 2 3566

[53] 5 min 1 2,102,400

[86] 15 min 1 70,080

[87] 15 min 1 48,960

[90] 15 min/60 min 2 105,120/17,520

[91] 15 min 1 35,040

accuracy of SPF models, further enrichment of Table 4 is
needed in terms of solar park capacity and SPF model evalu-
ation. The benefit of classifying the solar parks based on their
capacity could be twofold. Firstly, it could provide information
over solar parks of the same level and thus allow the compar-
ison of similar cases. Secondly, it could prove the correlation
of climatic location and forecasting error in smaller and larger
photovoltaic installations.

A classification of the reviewed cases based on the number
of data used for their proposed model is presented in Tables 5
and 6 for solar parks of smaller and higher capacity respectively.

TABLE 10 Classification of the reviewed works based on the solar park’s
capacity in kW

Reviewed

work

Capacity of solar

park (kW)

[34] 4.3

[38] 500

[39] 5

[41] 264

[42] 6.41 (Cupertino), 5.21
(Catania)

[43] 10

[49] 2.5

[52] 23.4

[53] 2, 1.875, 2.7

[59] 3

[62] 662

[82] 26.5

[86] 3.74

[87] 58

4 CLASSIFICATION

4.1 Relevant factors for SPF

The reviewed works [18–84] focus on providing accurate short-
term SPF models. Those models take into account specific
factors in order to achieve accurate forecasts. Such factors are

a. The forecasting horizon, which depends on the problem
each reviewed work aims to tackle.

b. The location of the datasets used in each case, which highly
affects the type of data, their quality and their complexity.

c. The range of the input data as well as the data resolution.
d. The capacity of the solar parks.
e. The error metrics used for the evaluation process.

Tables 6, 7, 8, 9, 10, and 11 aimed to classify factors a−d,
while Table 3 classifies factor e. By combining the information
of Table 2 with Tables 6–11, this paper can be efficiently used
as a useful guide for the reader through the literature. Possible
examples could be the following:

∙ If the reader is interested in SPF models with the following
features: i) focus on ultra-short-term forecasting of 15-min
forecasting resolution, ii) focus on subtropical climates, as
derived from Tables 4 and 5, the reader should study works
[40, 42], and [83].

∙ If the reader is interested in SPF models with the following
features: i) focus on high-capacity solar parks, ii) focus on
short-term SPF, as can be seen in Tables 4 and 11, the reader
should study works [31, 33, 35, 61, 63, 74, 75], and [83].
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2426 BAZIONIS ET AL.

TABLE 11 Classification of the reviewed works based on the solar park’s
capacity in MW

Reviewed

work

Capacity of solar

park (MW)

[29] 2

[31] 1

[33] 2140

[35] 10

[61] 15,695

[50] 1

[63] 1

[71] 100

[74] 10

[75] 800

[83] 451.82

[88] 100

4.2 Classification analysis

SPF keeps developing with the advance in modern methodolo-
gies. However, the more complex the novel forecasting systems
are, the more important becomes their proper parameteriza-
tion. Understanding the problem at hand, use of the appropriate
data, integration of appropriate optimization algorithms as well
as selecting the appropriate evaluation metrics are important in
order to improve the accuracy of the SPF models.

SPF models aim to solve real-life problems in order to facil-
itate the solar PV power penetration into energy systems. Each
of the reviewed studies is focused on a specific problem, devel-
oped over specific datasets, concerning specific meteorological
conditions. Moreover, considering the forecasting horizon, dif-
ferent problems may arise. However, it should be noted that
real-life SPF problems differ from research-focused SPF cases.
While in many research cases, the datasets are optimized and
the models are configured to process these datasets, in real-life
problems, this is not always the case. Data quality and quan-
tity, forecasting models’ architecture, and adaptation to different
cases are some of the major challenges to deal with real-life
cases. The above result in some SPF models dealing with more
complex problems than others and thus require more specific
parametrization and accurate optimization.

As can be seen in Table 9, works like [61] use a greater num-
ber of data in order to provide accurate forecasts, compared
to work [59], which requires a smaller number of data. Larger
datasets tend to require more pre-processing stages as well as
more time-consuming processing and training. As a result, SPF
models dealing with greater amounts of data could be more
complex with increased computational cost. Furthermore, as
presented in Table 8, cases [28, 35, 36, 39, 41, 42, 81], and
[82] use a larger number of input variables than other reviewed
works. In should be noted that in each SPF case, the appro-
priate types of data should be used based on the type of the
forecasting problem as well as the location. While using more

data could improve the forecasting accuracy, there are cases
where using more than the appropriate data could lead to higher
computational cost without any significant improvement in the
forecasting error. Evaluating the ideal number of input variables
as well as optimized pre-processing of the input variables is
of core importance. Such procedures could further aid in the
parametrization of the forecasting models, such as estimating
the ideal number of hidden neurons in cases of ANN-based SPF
models, which could improve significantly the forecasting error.

Several conclusions can be drawn from Tables 4 and 5 con-
cerning SPF. Either on a global or on a continental level, the
forecasting accuracy of those models is of crucial importance.
Considering the complexity of datasets representing non-stable
climatic conditions, SPF models focused on subtropical and
temperate zones could be more difficult to develop and opti-
mize. Cloud coverage plays a vital role in such conditions. Apart
from the appearance of clouds itself, factors like their optical
depth, thickness, position, movement, or humidity should also
be taken into account in an SPF model. Different wind patterns
and wind speed further complicate the forecasting process.
This could result in less accurate models and higher forecast-
ing errors. However, thanks to the continuous advance in SPF
modelling and the novel optimization algorithms, such prob-
lems have been overcome. In northern climates, under normal
conditions, PV power forecasting is easier due to normal levels
of radiation and temperature. SPF input datasets are less com-
plex and usually follow specific meteorological patterns. While
this allows for easy forecasting estimations, SPF models focused
on such datasets may not be as complex, or may have been
developed for specific problems and specific conditions with no
possibility of easily adapting to different climatic conditions, not
involving possible ramp events or random extreme conditions.

5 DISCUSSION AND FUTURE
RESEARCH

5.1 Improvement of the accuracy of existing
models

Over the last years, SPF has been in the centre of attention
for many researchers. Various SPF forecasting methodologies
have been developed, as presented in Section 2. Thanks to the
technological advance, those models have been further devel-
oped in recent years and have managed to reduce considerably
the predictive error of the forecasting process. It should be
also taken into account that the predictive error grows signifi-
cantly with the bigger forecasting horizons. Several aspects are
required to identify a well-constructed SPF model. More specif-
ically, accuracy, efficiency, versatility, and computational cost are
basic characteristics that determine an appropriate SPF model.
Many times, a trade-off between the accuracy and the other
aspects is required in order to produce accurate SPF models.
Thanks to artificial intelligence and deep learning models, such
trade-offs can be avoided.

Further improving the accuracy of existing SPF models is
of crucial importance [29, 32, 41]. Focusing on decreasing the
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BAZIONIS ET AL. 2427

predictive error via using comparative error metrics could be
achieved by further optimizing existing models. Thanks to such
error metrics, a measurable comparison of different forecasting
models is possible and thus further decreasing the forecasting
error of the models giving worse results can be more focused
on specific solutions.

Neural network-based models have been proposed, more and
more, over the years, improving the forecasting error of con-
ventional SPF models. Furthermore, novel hybrid models could
prove to be more efficient in dealing with data fluctuations
as well as further improve individual models’ efficiency [37].
Moreover, integration of novel optimization algorithms as well
as further data analysis and data pre-processing could further
improve the forecasting accuracy of SPF models [52, 53].

It should also be noted that forecasting accuracy could be fur-
ther enhanced and validated, not only through data analysis and
software development, but also via improvement of the hard-
ware features of PV power production. Over the last few years,
innovative parts have been included in PV modules in order to
improve the data recording process. Such parts include cheap
distributed temperature and wind speed monitors that allow
the in situ ‘capture’ of local data accompanied by competitive
costs, such innovations should be further included and devel-
oped since they could facilitate the pre-processing phase of SPF
and thus make the forecasting process less complex.

5.2 Cloud coverage classification

Recently, thanks to the development in technology and the
forecasting models, cloud coverage is being considered and
implemented as input into forecasting models. Various algo-
rithms have been proposed for cloud classification and have
been effectively used in order to improve the forecasting
accuracy. Furthermore, thanks to the implementation of sky
imagers, there has been further advance in estimating the fluc-
tuation of solar irradiance on the surface during cloudy weather
conditions. However, novel algorithms, constructed for the
calculation and quantification of clouds, could be developed
in the future [49, 51]. Furthermore, how each type of cloud
form affects SPF models should also be of interest for future
research. Taking into account the vast randomness of clouds,
factors like their movement speed, form, and cloud thickness
have a major impact on the forecasting accuracy and estimating
that impact should be in the centre of attention for researchers
in the future.

5.3 Investigation of ramp events

By its nature, SPF is mainly based on meteorological factors.
Therefore, the performance of the SPF models is highly depen-
dent on the quality of the datasets of such factors. However,
ramp events tend to occur in real-life problems that disturb the
uniformity of the data, causing stability and grid connection
problems. Ramp events are complex to define due to the dif-
ficulty in estimating their occurrence. Considering the increase

in the use of renewable sources of energy into power systems,
understanding and utilizing ramp events into SPF is of crucial
importance to further develop SPF models.

In order to define a ramp event more specifically for SPF,
if we take into account that in SPF, the most important aspect
is sunlight and solar irradiance, a ramp event could be consid-
ered a highly unexpected event that interrupts the incidence of
solar irradiance on the solar modules. For example, on a larger
scale, an unexpected rainfall during a very hot day during sum-
mer could be considered a ramp event. On a smaller scale, heavy
clouds during the noon hours, when the solar production is at
a daily peak, could also be considered a ramp event. Another
example of ramp event could be considered a technical failure
of the solar production ensemble.

As a result, developing methodologies that investigate the
appearance of ramp events as well as their appearance rate
should be further researched in the future. Moreover, depen-
dency between ramp events and specific input data of SPF
models should be further researched. To deal with this, we
would have to add the details about electricity grid connections
and the demand profile on that grid.

5.4 Versatility of SPF models

The majority of the SPF models focus on estimating the fore-
casting error based on a specific dataset that concerns a specific
problem [59]. SPF models developed by research institutes are
typically configured to provide predictive results for specific
regions in which they perform well. Such models, however,
are rarely tested in other regions, either with similar or dif-
ferent climatic conditions. Furthermore, due to limited access
on solar data, in various cases specific open access data are
being repeatedly used in SPF cases. Such limitations need to
be surpassed and the necessity to develop SPF models that
are efficient in spite of the input data and the climatic con-
ditions, as well as evaluate them in different regions needs
to be further researched. Moreover, it should be noted that
the variability of solar power generation is of major impor-
tance in estimating the forecasting skill. Better interpretation
of the information provided by such variability data could
further improve the adaptability of SPF models to different
conditions.

5.5 Probabilistic SPF

The majority of SPF methodologies are focused on develop-
ing deterministic forecasting models that provide users with
point-forecast output series that offer a specific outcome of
the prediction process. However, in recent years, researches
have started investigating probabilistic SPF. Contrary to point
forecasting models, probabilistic forecasting models offer a
wider view of the possible outcome of a prediction in the
form of quantiles, prediction intervals (PIs), or distributions.
Concerning the need of continuous integration of renewable
sources into power systems, probabilistic forecasts could be a
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2428 BAZIONIS ET AL.

valuable tool for the planning and operation of power sys-
tems and electricity markets. Furthermore, while deterministic
forecasts are widely used in decision-making problems where
probability distributions are very relevant, further testing and
application of probabilistic SPF models into decision-making
cases could provide useful information over such cases [38].

Probabilistic SPF can be classified into two main categories,
parametric and non-parametric. Parametric methods interpret
the relationship between weather conditions and the predictive
outcome of a forecast through historical data and data pat-
terns. On the other hand, non-parametric methods estimate the
predictive error without the need of pre-determining the dis-
tribution of the data [97] and that is an advantage. Regression
models, ensemble methods, deep learning models, or hierarchi-
cal models have been developed over the past few years and
are still being improved in order to provide accurate predic-
tive results of non-parametric methodologies. There are great
possibilities in interpreting probabilistic forecasting into power
systems in the future and therefore, further development of
probabilistic SPF models should be researched.

5.6 Input data selection and analysis

With the continuous increase of the penetration of solar power
into power systems, optimizing SPF models and improving
their accuracy is of major importance. Selection of appropriate
input data as well as proposing new pre-processing methodolo-
gies could play an important role in improving the predictive
error [61]. Further evaluating data fluctuations, noise or errors
from different input variables could also affect the forecasting
accuracy. Data analysis and pre-processing are of equal impor-
tance as constructing an SPF model due to the SPF models’
dependency on valid data. As a result, efficient ways to pro-
vide accurate and valid data should be further developed in the
future.

5.7 Focus on SPF applications

The need to use renewable sources of energy into power sys-
tems keeps increasing. Solar power is one of the most exploited
sources of energy. As a result, applying SPF models to real-
life problems and datasets is critical [33]. Such problems could
be connected to power systems’ planning and operation or
smart-grid utilities. Moreover, due to the increase in the use
of electric vehicles, applying SPF to electric vehicle charging
planning problems could also be useful for future research.

5.8 Data privacy protection

Due to the rapid and continuous improvement and develop-
ment of forecasting methodologies, acquiring data and more
specifically accurate data has become a great challenge. How-
ever, while data acquisition has been the main problem and
the core focus over the past years, data privacy has been quite

neglected. The term ‘data privacy’ refers to protecting sensitive
and confidential information of the forecasting process. Such
information may include personal or financial data that may
affect the forecasting process. As a result, in modern energy
systems, enhancing the security and achieving data privacy is
becoming a major challenge [98].

Common data privacy protection problems may include data
sharing between organizations, data retention into the forecast-
ing models, data breaches, and cyber-attacks [99], as well as no
compliance to the existing data protection laws. Therefore, data
privacy protection should be considered in the development and
construction of novel SPF models in the future.

5.9 Spatiotemporal correlation in SPF

Solar power has a high space and time dependence. Over the
past few years, more and more researchers have focused on
applying a spatiotemporal perspective into developed forecast-
ing models in order to improve their accuracy [100]. Aiming to
facilitate the control and reduce the operation cost of power
systems, implementation of spatiotemporal information into
forecasting models could further enhance this process [101].
Considering solar power, which is highly dependent on mete-
orological conditions, spatial correlation of data could be highly
applicable in probabilistic forecasting models [102]. Including
the uncertainty of the prediction into real-life problems and
into power systems is one of the most important challenges
of the future. Therefore, including spatiotemporal correlation
into probabilistic models could prove to highly improve the
forecasting accuracy of the uncertainty error.

6 CONCLUSION

Global energy needs have increased significantly over the last
few decades and keep increasing. Considering the environmen-
tal consequences of conventional sources of energy, power
systems have turned to RES. The penetration of RES plays a
vital role in the operation of power systems and energy markets.

Solar power is one of the most important RES due to its
abundance on a global level. However, due to its non-stable
nature and its increasing penetration into power systems, it has
created several problems in terms of stability. The development
of SPF models has played an important part in surpassing such
problems and efficiently implements solar power into energy
systems.

This paper aims to evaluate novel state-of-the-art ultra-short-
term and short-term solar power forecasting models. It further
classifies the reviewed works from a climatic point of view. Clas-
sifications based on the input data and technical characteristics
are also provided. Evading to focus specifically on the differ-
ent forecasting methodologies, this review is a useful guide that
provides information over the effect of the different climatic
conditions to the forecasting accuracy. Further comparison of
similar cases in terms of input variables or technical data offers
the possibility of evaluating the efficiency of each forecasting
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BAZIONIS ET AL. 2429

model and indicates the main limitations and directions for
further development.

This review work evaluates novel state-of-the-art SPF mod-
els. Considering the importance of planning of daily electricity
markets and optimized operation of energy systems, short-term
SPF models are the main focus. Furthermore, it provides use-
ful classifications over data that affect the accuracy of the SPF
models and points out the advantages of the different SPF
methodologies. Moreover, it classifies the reviewed works based
on different evaluation metrics and serves as a useful guide
to readers intending to research short-term SPF cases from
different perspectives.

This paper proposed important future possibilities on short-
term SPF. More specifically, the proposed future directions aim
to highlight the need to further improve the state of SPF in
order to deal with real-life problems. Technological advances
as well as innovative methodologies, along with proper data
selection and pre-processing, could further increase forecasting
accuracy, minimizing the forecasting error. In addition, creating
forecasting models that could be applied in different problems
and meteorological conditions is of vital importance, not only
to understand the behaviour of forecasting models in different
conditions, but also to compare different forecasting method-
ologies. In addition, further investing in probabilistic SPF could
solve various problems in the future, in terms of planning and
operation of power systems and electricity markets.

Despite the continuous advance of solar power forecasting
methodologies, the improvement of the forecasting outcome
does come with several challenges. The variability of weather
conditions remains a great challenge for researchers. Further-
more, availability of sufficient and useable data as well as data
security becomes a more and more important problem for
researchers, since access to open-source accurate and realistic
data is limited. Moreover, when it comes to small and distributed
solar power installations, forecasting techniques for solar power
frequently have trouble producing precise predictions with high
levels of spatial and temporal precision. It is also a phenomenon
of recent advanced forecasting models that they are character-
ized by high complexity and need a large amount of data in order
to provide accurate results.

It should be noted that, while the forecasting possibilities are
numerous, aiming to solve different every-day energy problems,
this paper focuses on very-short-term and short-term fore-
casting methodologies that are crucial for the daily electricity
market and short-term system scheduling and operation in
the smart grid context. Therefore, it does not include cases
of mid-term and long-term SPF that deal with maintenance
scheduling, power generation planning, and capacity expansion
cases. Furthermore, this review work aims to study forecast-
ing methodologies based on the climatic and geographical
conditions described in each case. As a result, other aspects
are less emphasized or even left out to not make the survey
overly long. For example, the important technological aspect
of the forecasting process, such as the equipment type or the
equipment age used for the photovoltaic power production,
while important for the quality of the forecasting output and
the predictive error, is out of the scope of this review paper.

NOMENCLATURE

ANN artificial neural network
ARIMA auto regressive integrated moving average
ARMA auto regressive moving average

DNI direct normal irradiance
DRL deep reinforcement learning
ELM extreme learning machine
NWP numerical weather predictions

PI prediction interval
PV photovoltaic

RES renewable source of energy
SPF solar power forecasting

SVM support vector machine
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APPENDIX

a. The MAE is the average value of the absolute error of the N

forecasted error values and is defined as [29]

MAE =
1
N

N∑
i=1

||ŷi − yi
|| (1)

where N is the total number of samples, ŷi is the forecasted
value and yi is the real value.

b. The MAPE represents the average value of absolute
percentage errors and is calculated by [29]

MAPE =
1
N

N∑
i=1

||ŷi − yi
||

yi
× 100% (2)

c. The MRE represents the ratio of the absolute error of a
variable to the variable’s range and is defined as [29]

MRE =
1
N

N∑
i=1

||ŷi − yi
||

ytotal
× 100% (3)

where ytotal is the range of the output power.
d. The MBE is used to capture the average bias in a prediction

and is calculated by [82]

MBE =
1
N

N∑
i=1

(
ŷi − yi

)
(4)

e. The MSE is the average value of the squared error, which
is the squared difference between the actual and predicted
values, and is defined as [56]

MSE =
1
N

N∑
i=1

(
ŷi − yi

)2
(5)

f. The RMSE represents the squared root of the quadratic
mean of the difference between the actual and predicted
values and is calculated by [56]

RMSE =

√√√√ 1
N

N∑
i=1

(
ŷi − yi

)2
(6)

g. The nRMSE relates the RMSE to the observed range of the
given variable and is defined by [36]

nRMSE =

⎛⎜⎜⎜⎝

√√√√√ 1
N

N∑
i=1

(
ŷi − yi

)2⎞⎟⎟⎟⎠
× 100%∕yi (max ) (7)

h. The R2 is used as a means of measurement of how well
the predictive outcome is reproduced by the forecasting
model, based on the proportion of the total variation of the
predictions [29]:

R2 = 1 −

∑n

i = 1
(ŷi − yi )

2

∑n

i = 1
(ȳi − yi )

2
(8)
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