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In silico screening for As/Se-free ovonic threshold switching
materials
Sergiu Clima 1✉, Daisuke Matsubayashi 2, Taras Ravsher 1,3, Daniele Garbin 1, Romain Delhougne1, Gouri Sankar Kar1 and
Geoffrey Pourtois 1

Restricted use of hazardous environmental chemicals is one important challenge that the semiconductor industry needs to face to
improve its sustainability. Ovonic threshold switching (OTS) ternary compound materials used in memory selector devices contain
As and Se. Engineering these elements out of these materials requires significant research effort. To facilitate this process, we
performed systematic material screening for As/Se-free ternary materials, based on ab-initio simulations. To limit the large amount
of possible chemical compositions to fewer promising candidates, we used physics-based material parameter filters like material
stability, electronic properties, or change in polarizability. The OTS gauge concept is introduced as a computed parameter to
estimate the probability of a material to show an OTS behavior. As a result, we identified 35 As/Se-free ternary alloy compositions
for stand-alone OTS memory applications, as well as 12 compositions for RRAM selector applications. This work aims seeding the
development of As/Se-free OTS materials.
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INTRODUCTION
Cross-point array with non-volatile resistive random-access-
memories (RRAM) such as phase change memories (PCM) is a
key technology to achieve high memory capacity and cost
efficiency. The performance of this architecture depends upon
2-terminal selector devices set in series with the RRAM cells. It
filters the parasitic leakage current on half-biased low-resistance-
state memory cells, while allowing the correct reading of a high-
resistance-state memory cell. To facilitate its integration with IC
systems, the selector materials require to be robust under back-
end-of-line (BEOL) integration and the electrical cyclic stress.
Several amorphous chalcogenide materials show ovonic threshold
switching (OTS)1. This is one of the suitable physical mechanisms
that can deliver the desired selector properties such that the
leakage current through the device is orders of magnitude lower
at half of threshold voltage, i.e., leading to high non-linearity2.
The mainstream OTS materials are generally based on As and

Se3–11, whereas using the materials containing such hazardous
chemicals should be avoided as much as possible to minimize
their impact on our environment. In this sense, it is crucial to
search for As/Se-free OTS materials that meet the performance
demands. Extensive device studies have already proposed a set of
possible alternative alloys based on Te (B-Te, C-Te, Zn-Te, Ge-Te,
Si-Te, Ag-Si-Te, Mg-Te, Ge-C-Te, and Hf-O-Te)12–22 and S-based
system Ge-S23–25. However, most of these are facing reliability
challenges26–29 hence more robust materials are needed. Initial
results of the ab-initio systematic screening for As/Se-free alloys
with good OTS electrical behavior and material stability were
presented recently30. In this work, we extended and generalized
the study to identify OTS material candidates with two target
applications in mind, namely “RRAM selector” and “OTS memory”.
The latter was recently proposed as a stand-alone self-rectified
memory concept31,32. More specifically, we focus on identifying
ternary compounds and downselect potentially-promising OTS
materials using eight screening filters: undesirable/ toxic element

exclusion, OTS-compatible electronic configuration (5 valence-
electron rule33,34), phase stability of the amorphous alloys at BEOL
temperatures (high glass-transition temperature), high chemical
stability (low formation enthalpy), low leakage current (open trap
gap), immunity to phase demixing (low spinodal temperature35),
application-compatible trap/ mobility gaps, and OTS behavior
indicator (OTS gauge). Starting from more than 13,000 candidates,
the filtering process yielded 12 material compositions for RRAM
selectors and 35 ones for OTS memory applications. In this work,
we detail the computational material screening methodology and
report the found promising materials. As such, we hope that this
will seed works around the design of As/Se-free OTS materials.

RESULTS AND DISCUSSIONS
Material preselection
The motivation in this work is to identify As/Se-free OTS materials
from a vast number of chemical compositions by using ab-initio
simulations. We proceed by generating multiple amorphous
models with relatively large size (300 atoms, ~2 × 2 × 2 nm) and
computing the electronic structure with density functional theory
(DFT). Because DFT simulations are rather time-consuming, it is
impractical to simulate all possible combinations of ternary alloys.
For that reason, we reduce the number of compositions to be
simulated to a smaller subset of materials that complies with
certain known OTS criteria, by applying the three-step screening
filters illustrated in Fig. 1a.
The first filter consists in excluding elements to narrow down

the number of combinations to be considered (Fig. 1b). We
excluded As, Se and Cd since they are known to be toxic. We
hence focused on the following 14 elements: B, C, N, Al, Si, P, S, Zn,
Ga, Ge, In, Sn, Sb, and Te. All possible ternary combinations of the
14 elements using a 10% atomic fraction step generate 13,104
compositions.

1imec, Kapeldreef 75, B-3001 Leuven, Belgium. 2Device Technology Research & Development Center, Future Memory Development Department, KIOXIA Corporation, Shin-sugita-
cho 8, Isogo-ku, Yokohama, Japan. 3KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium. ✉email: Sergiu.Clima@imec.be

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01043-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01043-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01043-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01043-2&domain=pdf
http://orcid.org/0000-0002-4044-9975
http://orcid.org/0000-0002-4044-9975
http://orcid.org/0000-0002-4044-9975
http://orcid.org/0000-0002-4044-9975
http://orcid.org/0000-0002-4044-9975
http://orcid.org/0000-0002-2332-2569
http://orcid.org/0000-0002-2332-2569
http://orcid.org/0000-0002-2332-2569
http://orcid.org/0000-0002-2332-2569
http://orcid.org/0000-0002-2332-2569
http://orcid.org/0000-0001-7862-5973
http://orcid.org/0000-0001-7862-5973
http://orcid.org/0000-0001-7862-5973
http://orcid.org/0000-0001-7862-5973
http://orcid.org/0000-0001-7862-5973
http://orcid.org/0000-0002-5884-1043
http://orcid.org/0000-0002-5884-1043
http://orcid.org/0000-0002-5884-1043
http://orcid.org/0000-0002-5884-1043
http://orcid.org/0000-0002-5884-1043
http://orcid.org/0000-0003-2597-8534
http://orcid.org/0000-0003-2597-8534
http://orcid.org/0000-0003-2597-8534
http://orcid.org/0000-0003-2597-8534
http://orcid.org/0000-0003-2597-8534
https://doi.org/10.1038/s41524-023-01043-2
mailto:Sergiu.Clima@imec.be
www.nature.com/npjcompumats


For a second screening filter, the 5 valence-electron rule was
used33,34. Five valence electrons per atom in amorphous
chalcogenides result in populating localized antibonding states,
which makes bonding in some regions of the material unstable.
This local instability is the key to activate the OTS mechanism,
which reflects the transition from insulator to conductor of the
material. We found that the mean number of valence electrons
per atom (Nve) in the conventional OTS materials, Si-Ge-As-Se, Ge-
As-Se, and Si-Ge-As-Te with Nve ~ 5.0–5.3 has a good correlation
with experimental holding voltage in the metal-OTS-metal
devices30,36. Accounting for the condition of Nve= 5.0 ± 0.3
extracts 2370 compositions out of the 13,104 ones.
The third filter ensures that the glass-transition temperature (Tg)

is higher than 600 K. This condition is expected to distinguish OTS
materials from Phase Chance Materials (PCM), since the glass
transition temperature is a lower limit of the crystallization
temperature. In our understanding, the OTS material should keep
its amorphous character during the BEOL processing steps, where

a temperature of ~400 °C (673.15 K) is typically applied. However,
for the screening condition we applied a larger margin, since the
Tg was estimated with the semi-empirical Lankhorst model37. This
model is applicable to covalent amorphous materials with Nve ≥ 4
and is expected to be inaccurate for compositions with lower Nve.
In the range of interest, Nve= 5.0 ± 0.3, Tg is expected to be more
accurate, though it was found to overestimate the Tg for SiGeTe
compositions38. Figure 1c describes the first, second and third
screening steps in terms of Nve and Tg. For the condition of
Tg > 600 K, 1490 compositions out of the 2370 ones were
downselected. As a result, the initial 13,104 compositions were
reduced to 1490, which are to be simulated with DFT.

Ab-initio simulations
Our atomistic simulations are divided into two stages as shown in
Fig. 1a. The first stage is the generation of 10 different amorphous
300-atom models (Fig. 1d) per composition. In the second stage,
we computed accurate electronic structures (Fig. 1e). The process
of composition reduction through the ab-initio simulations is
summarized in Table 1. For further screening, we applied
additional filters to the computed DFT parameters for the 1167
compositions and focused on the median values of 7–10
amorphous models to gain a statistically relevant sampling
(Fig. 1f).
Figure 2 shows the element occupancy, which indicates the

percentage of the screened compositions containing each
element, for each pre-selection step, up to the ab-initio
simulations. In the first step of the element exclusion filter, all
elements are represented with the same probability. The
application of the second filter makes 6 valence electrons
elements (S and Te) dominant and the dominance of elements
with fewer valence electrons is lowered. There are nine elements
with less than 5 valence electrons, whereas there are only two
elements with more than 5. As a result, S and Te are appearing

Fig. 1 Material preselection criteria and ab initio simulated electronic structure parameters. a Preselection flowchart for the materials to
be simulated with ab-initio. b Element and composition selection. c Mean number of valence electrons per atom Nve and glass-transition
temperature Tg of the compositions on the first, second and third screening steps. d Amorphous atomistic model example, generated with ab-
initio simulations. e Ab-initio gap parameters (mobility gap Eμ, electron / hole trap levels Ee/Eh, and trap gap ΔEt) extracted using inverse
participation ratio (IPR) denoted by discrete lines. f Statistics of the gap parameters from 10 amorphous models (boxplots show the quartiles
and the median, the whiskers show the range of the data, outliers indicated outside whiskers).

Table 1. Composition reduction in ab-initio simulations.

# of compositions Description

1490 D&R tried

312 D&R fail

1178 D&R pass → DFT tried

11 ≤6 models converged

1167 ≥7 models converged

1157 10 models converged

8 9 models converged

1 8 models converged

1 7 models converged
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more frequently than the other elements to satisfy the 5 valence-
electrons-rule. The third filter (Tg > 600 K) enhances the contribu-
tion of the N element and reduces the Te one. This can be
ascribed to stronger, more rigid N, C or Si bonds with higher
breaking kinetic barriers4. As a result, the contribution of these
elements increases, and S and N become the dominant species.
This trend is maintained after the ab-initio simulations, and almost
half of the 1167 alloys contain S and N.
Figure 3a describes the flowchart of the material screening

procedure based on the ab-initio parameters. Applying the
remaining 4 filters reduces the initial 1167 candidates to only 35
or 12 ones, for the “OTS memory” or “RRAM selector” target
applications, respectively. The details are explained in the
following.

Thermodynamic stability and open electronic gap
We introduce two more screening filters to assess the quality of
amorphous structures in terms of Eform and ΔEt, which are plotted
in Fig. 3b. The fourth filter reflects the negative formation enthalpy
(Eform < 0 eV/atom), which assures the thermodynamic stability of
the amorphous structure. In contrast, the amorphous structure
with positive Eform is thermodynamically unfavorable. Even if such
amorphous materials were deposited, they have a high risk of
atomic diffusion under thermal or electrical stress39, leading to
reliability issues during the device switching40. Therefore, we
imposed the condition of Eform < 0 eV/atom for each composition,
which narrowed down the list of candidates to 424 stable ones.
Figure 4 shows the element occupancy for the screening steps
after the ab-initio simulations. The alloys containing Te, N, Sb, and
C tend to be screened out: N-rich materials are not thermo-
dynamically stable (decomposing as N2 is energetically very
favorable) but also their electronic properties indicate higher
leakage potential and high potential for phase demixing. Te and
Sb are mainly excluded because of their thermodynamic (fourth
filter) and demixing (sixth filter) instability. C compounds also have
higher preference for C-C bonds4, which are detrimental to the
OFF state of the selector. As a result, S-containing alloys dominate
the distribution with a 96.5% occurrence after this filtering step.

The fifth filter relies on the positive trap gap ΔEt > 0 eV as a
proxy indicator for low leakage current. In amorphous materials,
although trap levels essentially exist in the mobility gap, the
opening of a finite ΔEt is required, to suppress the leakage current
mediated by gap states and therefore to switch-off the OTS
device. Otherwise, the overlapping electron-hole traps will show
high probability for the electrons to hop or tunnel and result in
high leakage current41. The condition of ΔEt > 0 eV further
downselected only 360 compositions out of the 424 ones. The
element occupancy is almost unchanged except for a slight
decrease of the N case, as illustrated in Fig. 4.

Phase stability
To assess the dynamic phase stability against demixing into more
stable constituent components of the remaining 360 composi-
tions, we estimated the spinodal temperature Tspinodal35. This
concept implies that if a given-temperature T is higher than the
Tspinodal one, the resulting mixing entropy will stabilize the alloy
structure. However, if T < Tspinodal, the stability brought by the
mixing entropy would not be large enough to stabilize the alloy,
which can subsequently demix into more stable sub-
compositions. Therefore, Tspinodal is desired to be as low as
possible to promote the alloying stability. For example,
S0.5Ge0.1Sn0.4, one of the candidate compositions, is surrounded
by SnS, SnGeS3, and Ge on the computed (crystalline) phase
diagram of the S-Ge-Sn42. This indicates that S0.5Ge0.1Sn0.4 could
demix into these three phase-stable compositions at T < Tspinodal.
To estimate Tspinodal of this alloy, we calculated the second

derivative (curvature) of the Gibbs free energy Gmix (or Eform)
around the composition on the phase diagram, as formalized in
Supplementary Note 1. Since the data points (generated
compositions) on the phase diagram were insufficient to calculate
properly the curvature, we trained a machine learning (ML)
prediction model of amorphous Eform for any arbitrary composi-
tions. For that, we mapped each composition to a 14-dimensional
vector (e.g. S0.5Ge0.1Sn0.4 to [0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0.1, 0, 0.4, 0, 0])
and used support vector regression with cubic poly-nominal using
scikit-learn43,44. The ML Eform dataset contained 12,357 datapoints
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Fig. 2 Element occupancy of the screened compositions for each screening step up to the ab-initio simulations. Note that the maximum
of each element occupancy is normalized to 100% and the total of all the element occupancies are 300% due to the ternary nature of the
alloys.
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consisting of 1167 ternary screened compositions (11,657
amorphous models), 28 ternary/binary convex-hull compositions
originally not included in the screening set (28 × 10 different
amorphous models) and 14 single-element materials (with

formation enthalpy set to zero). 90% of the dataset was used for
the training step and 10% for testing. As a result, the Eform
prediction model reproduced the original data very well:
R2= 0.9784 for testing data and a mean absolute error of

Fig. 3 Material selection criteria on ab-initio simulated data. a Flowchart of the screening process based on the results of the DFT
simulations. b Formation enthalpy Eform and trap gap ΔEt of the compositions on the fourth and fifth screening steps. The symbol of each
ternary composition is depicted as a pie chart whose occupation reflects the element fractions. The compositions within the shaded region
are selected. c Eform and spinodal temperature Tspinodal of the compositions on the sixth screening step. d Mobility gap Eμ and ΔEt of the
compositions on the seventh screening step. The upper x-axis maps the threshold voltage from the correlation between the ab-initio Eμ and
the experimental data of the existing 20 nm thick OTS materials with As/Se, denoted by cross markers. The closed triangle marker depicts the
centroid of the cross markers. e Eμ and OTS gauge gOTS of the compositions on the eighth screening step. #1–12 are the compositions suitable
for RRAM selectors.
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Fig. 4 Element occupancy of the screened compositions for the screening steps after the ab-initio simulations. Note that the maximum of
each element occupancy is normalized to 100% and the total of all the element occupancies are 300% due to the ternary nature of the alloys.
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0.034 eV/atom, only slightly higher than the variation
(std= 0.022 eV/atom) of the Eform of the amorphous models.
We evaluated Tspinodal of the 366 compositions using the Eform

prediction model (Fig. 3c). Many of the compositions including
S0.5Ge0.1Sn0.4 were predicted to have Tspinodal= 0 K, i.e., they are
expected to be stable against demixing at any temperature. Since
typically the deposition temperature of OTS materials is higher
than the room temperature, we imposed Tspinodal < 0 °C (273.15 K)
as the sixth screening filter, which downselected 153 phase-stable
compositions out of the 360 ones. According to Fig. 4, P and Si-
occupancies remarkably increase and N-occupancy further
decreases. In addition, Ga-containing compositions disappear at
this point.

Target gap-trap window
For the seventh screening filter, we tuned the expectation
windows of Eμ and ΔEt based on the targeted applications for
the OTS materials. In As/Se-based OTS materials, we identified
strong correlations between the computed Eμ and experimental
electrical parameters such as threshold voltage Vth, first-fire
voltage Vff, and leakage current Ileak30,36. Besides, charge excitation
from a hole trap level to an electron one induced by an external
electric field is a precursor step to switch-on OTS devices45,46. In
line with this observation, ΔEt has a correlation with the
experimental parameters as well as Eμ15. This means that large
Eμ or ΔEt induces high Vth and low Ileak. Therefore, an optimal
range of Eμ and ΔEt should be defined based on the targeted
application.
In this work, we considered two types of applications, “OTS

memory” and “RRAM Selector”, as shown in Fig. 3d. In line with the
stand-alone OTS memory that was recently proposed32, we took a
relatively large target window for the operation of the “OTS
memory”: Eμ ~ 0.8–1.5 eV/ΔEt ~ 0.1–0.6 eV, corresponding to
Vth ~ 1–5 V as mapped from the correlation in the existing OTS
materials with As/Se. This window filter yields 40 S-based
compositions out of the 153 ones. Aside from S, they mainly consist
of P, Si, Ge, Sn or Te, and can include small amounts of N, Sb, C, B, Al,
or In. No Zn-containing compositions are included (Fig. 4).
A second, smaller target window was defined for “RRAM

selector” as Eμ ~ 1.05–1.3 eV/ΔEt ~ 0.4–0.6 eV, corresponding to
Vth ~ 2.5–3.8 V. This window isolated 13 S-based compositions
out of the previous 35 and excludes the alloys with C, B, Al, In
and Zn.

OTS gauge
The final (eighth) screening filter that we used (the OTS gauge),
consists of assessing the probability of the material candidate to
exhibit good OTS behavior. We defined the OTS gauge based on the
Born effective charges Z*, which are also known as dynamic charges
and describe the electrical polarization induced by a small
displacement of each atom. It has been shown that in amorphous
OTS materials, electronic excitation largely increases the number of
Z* at the atoms with a conductive bonding structure45. In this work,
we used an electronic charge injection in an atomic model instead
of an electronic excitation and defined the OTS gauge gOTS as being
the “change induced in the total Born effective charges by unit
system charge injection” as formulated in Supplementary Note 2.
In a previous report30, we calculated the OTS gauges for a set of

existing OTS materials (Si-Ge-As-Se with 2 different compositions,
Ge-As-Se with 3 different compositions, GeSe, Si-Ge-As-Te with 4
different compositions, and SiTe) and non-OTS insulator materials
as reference (c-AlN, c-Al2O3, c-HfO2, c-SiO2). The existing OTS
materials had relatively large values (17–62) compared to the non-
OTS ones (1–2)30. In addition, the OTS gauges had a strong
positive correlation with the experimental holding currents30,36,
which corresponds to the minimum value of the on-state currents
in the OTS devices. This finding indicates that the Z*-based OTS

gauge can reasonably reflects the physics of the on-state in the
OTS device, even though the Z* are typically a property reflecting
the insulative character of the system.
With the validity of the OTS gauge as a quantitative OTS

indicator being confirmed on non-OTS materials, we applied it as a
funneling parameter to the remaining 40 OTS candidates for the
OTS memory (Fig. 3e). The computed OTS gauges spanned in the
5–58 range and only 6 compositions had smaller values than
gOTS= 17, the lower limit of known OTS materials36. Therefore, we
set the eighth screening filter at gOTS > 17, which yields 35
compositions out of 41 as suitable OTS memory materials. For
RRAM selector materials, only 12 compositions out of 13 have
suitable OTS gauge (#1–12 in Fig. 3e) and only the Sb-containing
composition was excluded.

Analysis of the identified candidates
The screened As/Se-free ternary compositions for OTS memory
after the eighth screening filter are summarized in Table 2. The
numbers (#1–12) in the RRAM column denote the 12 RRAM
selector candidates ordered by the OTS gauge values. Remarkably,
all the 35 compositions contain S.
Figure 5 shows the spinodal temperature profiles of the 12

S-based ternary systems including the 35 candidates. In general,
S > ~40% composition regions tend to be phase-stable
(Tspinodal < 0 °C), except (b) C-S-Sb and (c) N-S-Sn systems where
C or N > ~20% regions tend to be unstable. On the profiles, we also
plotted the compositions either within or outside the target
windows of “RRAM selector” and “OTS memory”. It is worth
mentioning that for the (a) B-P-S, (b) C-N-Sb, (c) N-S-Sn, (h) Si-S-Sb,
and (k) P-S-In systems, there are few stable compositions. However,
these fall out of the defined windows for RRAM selector / OTS
memory. Within the selected windows, the compositions satisfy
Tspinodal < 0 °C and OTS gauge > 17, with an optimal ratio of S that
ranges from 30% to 60%.
From these profiles, we evaluated the robustness of each

candidate against phase demixing by calculating the minimum
composition change to the line of Tspinodal= 0 °C, which was
defined as a “composition change margin” in the Table 2. Some
of the OTS memory candidates (B0.2P0.5S0.3, C0.2S0.5Sb0.3,
Si0.3P0.4S0.3, Si0.1S0.4Ge0.5, P0.2S0.3Ge0.5, P0.5S0.4In0.1, and
S0.6Ge0.3Sn0.1) have a margin lower than 5.0%. For the 12 RRAM
selector candidates, the margins of Si0.4S0.3Te0.3 (#5) and
N0.1S0.6Sn0.3 (#12) raise slightly to 8.6% and 6.3%, respectively.
The other 10 alloys have a 10.0% (or more) and are promising.
Out of these, 4 materials (#1, 6, 10, and 11) contain a
combination of P and S. Unfortunately, they would turn out
to be challenging to use in a mass-production product, since
the P-S compounds are known as easily flammable solids47 and
H2S is generated by reacting with water. Considering the
aforementioned, the remaining 6 compositions (#2, 3, 4, 7, 8,
and 9) can be considered as interesting OTS candidates to be
developed experimentally.
To summarize, we performed an ab-initio systematic screening for

As/Se-free OTS materials, applying eight physics-based OTS screen-
ing filters: element exclusions, Nve= 5.0 ± 0.3 valence-electron rule,
Tg > 600 K, Eform < 0 eV/atom, ΔEt > 0 eV, Tspinodal < 0 °C, Eμ - ΔEt target
windows, and gOTS > 17. Through these filters, we identified 35
S-based ternary compositions suitable for OTS memory, out of which
only 12 compositions are expected to deliver good properties for a
RRAM selector. Taking the manufacturability aspects into account,
our simulations suggest that only the materials Si0.3S0.5Ge0.2 (#3),
Si0.3-0.2S0.5Sn0.2-0.3 (#2,7), Si0.5-0.4S0.4Te0.1-0.2 (#8,9), and S0.5Ge0.1Sn0.4
(#4) would be interesting to be experimentally investigated.
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METHODS
Ab-initio simulations
The initial amorphous models were generated by a decorate-and-
relax (D&R) algorithm48. Each model is a 300-atom system with a
~2 × 2 × 2-nm unit cell (Fig. 1d). The D&R was applied to the pre-
selected 1490 compositions. However, the amorphous generations
of 312 compositions failed. Starting from the 10 × 1178 initial
models obtained by the D&R, we performed geometrical optimiza-
tion based on density functional theory (DFT) using CP2K software49.
We used GGA-PBE exchange-correlation functional50, GTH pseudo-
potentials51 to describe the core electrons, a double-zeta-valence-
polarization (DZVP) localized basis sets for the valence electrons and
planewaves with a cutoff of 500 Ry and a relative cutoff of 40 Ry
were used for the real space integration grid. The Brillouin zone
sampling was limited to the Γ-point only. The atomic forces were
relaxed with a convergence criterium of 1E-4 Ha/bohr, whereas the
pressure was considered converged when below 100 bar. Few
compositions faced numerical convergence issues and had less than

six atomic models converged, which were excluded from our
analysis. As a result, we neglected 11 compositions and used the
remaining 1167 ones in the following analysis to consider the
statistical behavior of the amorphous models.
The accurate electronic structures were computed using the

hybrid exchange-correlation functional (HSE06) in combination
with the auxiliary density matrix method (ADMM)52. The hybrid
functional and large enough atomic model size will ensure a
better detection of the traps in the gap and quantitative accuracy
of the mobility gaps53. For the mobility gap estimation, we used
the inverse participation ratio (IPR53) to identify the mobility edges
of the amorphous models shown in Fig. 1e. The mobility gap (Eμ)
was taken as the energy difference between the conduction and
valence mobility edges (EC and EV). The electron and hole trap
levels (Ee and Eh) were extracted as the deepest levels with respect
to conduction and valence bands, respectively. The trap gap ΔEt
was taken as the energy difference of Ee and Eh. The formation
enthalpy per atom (Eform) of each amorphous model was

Table 2. As/Se-free OTS candidate compositions.

Composition Composition
system

OTS
gauge

Tspinodal (K) Composition change
margin (%)

Eµ (eV) ΔEt (eV) Eform
(eV/atom)

Tg (K) Nve RRAM

1 B0.2P0.5S0.3 B-P-S 34 195 3.8 1.50 0.25 −0.33 752 4.9

2 C0.2S0.5Sb0.3 C-S-Sb 22 0 4.2 1.46 0.38 −0.05 695 5.3

3 N0.1S0.6Sn0.3 N-S-Sn 18 0 6.3 1.05 0.43 −0.49 800 5.3 #12

4 Al0.3P0.4S0.3 Al-P-S 47 0 11.3 1.50 0.33 −0.59 685 4.7

5 Si0.3P0.4S0.3 Si-P-S 33 0 10.2 1.30 0.11 −0.37 874 5.0

6 Si0.3P0.5S0.2 ↑ 20 66 2.9 0.81 0.37 −0.22 878 4.9

7 Si0.4P0.3S0.3 ↑ 20 0 11.5 1.05 0.46 −0.34 913 4.9 #11

8 Si0.4P0.4S0.2 ↑ 27 0 8.2 0.85 0.37 −0.20 920 4.8

9 Si0.5P0.1S0.4 ↑ 38 0 11.0 1.27 0.37 −0.48 930 4.9

10 Si0.5P0.2S0.3 ↑ 45 0 6.1 0.98 0.47 −0.34 936 4.8

11 Si0.1S0.4Ge0.5 Si-S-Ge 32 158 1.2 0.93 0.47 −0.36 800 4.8

12 Si0.2S0.6Ge0.2 ↑ 47 0 20.0 1.44 0.60 −0.61 823 5.2

13 Si0.3S0.5Ge0.2 ↑ 44 0 12.7 1.26 0.56 −0.57 871 5.0 #3

14 Si0.5S0.4Ge0.1 ↑ 28 0 7.7 0.86 0.37 −0.45 927 4.8

15 Si0.2S0.5Sn0.3 Si-S-Sn 32 0 10.3 1.19 0.59 −0.67 768 5.0 #7

16 Si0.3S0.5Sn0.2 ↑ 45 0 12.5 1.08 0.61 −0.68 823 5.0 #2

17 Si0.4S0.4Sb0.2 Si-S-Sb 31 0 10.0 0.83 0.36 −0.51 828 5.0

18 Si0.4S0.3Te0.3 Si-S-Te 34 0 8.6 1.17 0.45 −0.37 728 5.2 #5

19 Si0.4S0.4Te0.2 ↑ 31 0 17.7 1.27 0.48 −0.53 784 5.2 #8

20 Si0.5S0.2Te0.3 ↑ 37 0 6.8 0.91 0.42 −0.21 757 5.0

21 Si0.5S0.4Te0.1 ↑ 26 0 12.6 1.14 0.60 −0.52 868 5.0 #9

22 P0.1S0.4Ge0.5 P-S-Ge 32 0 10.9 1.14 0.58 −0.38 734 4.9 #6

23 P0.1S0.5Ge0.4 ↑ 44 0 20.8 1.39 0.56 −0.52 722 5.1

24 P0.2S0.3Ge0.5 ↑ 32 0 4.6 0.87 0.43 −0.28 724 4.8

25 P0.2S0.4Ge0.4 ↑ 58 0 14.5 1.05 0.59 −0.41 712 5.0 #1

26 P0.3S0.4Ge0.3 ↑ 26 0 15.2 1.11 0.60 −0.40 698 5.1 #10

27 P0.3S0.5Ge0.2 ↑ 35 0 18.5 1.44 0.22 −0.46 680 5.3

28 P0.4S0.3Ge0.3 ↑ 33 0 5.2 0.91 0.43 −0.28 722 5.0

29 P0.4S0.4Ge0.2 ↑ 20 0 9.8 1.19 0.24 −0.36 697 5.2

30 P0.5S0.4In0.1 P-S-In 19 49 3.7 1.50 0.31 −0.44 603 5.2

31 S0.5Ge0.1Sn0.4 S-Ge-Sn 37 0 19.2 1.12 0.54 −0.62 662 5.0 #4

32 S0.5Ge0.2Sn0.3 ↑ 27 0 16.0 0.91 0.54 −0.58 677 5.0

33 S0.5Ge0.3Sn0.2 ↑ 30 82 13.0 0.88 0.48 −0.52 697 5.0

34 S0.5Ge0.4Sn0.1 ↑ 34 142 12.2 0.85 0.51 −0.46 721 5.0

35 S0.6Ge0.3Sn0.1 ↑ 38 183 4.4 1.43 0.50 −0.54 709 5.2
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predicted with the materials graph network (MEGNet) model54,
which is based on machine learning trained on the Materials
Projects dataset55.
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