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Purpose: To systematically review the techniques that address undersampling
artifacts in accelerated quantitative magnetic resonance imaging (qMRI).
Methods: A literature search was conducted using the Embase, Medline, Web
of Science Core Collection, Coherence Central Register of Controlled Trials,
and Google Scholar databases for studies, published before July 2022 proposing
reconstruction techniques for accelerated qMRI. Studies are reviewed accord-
ing to inclusion criteria, and included studies are categorized based on the
methodology used.
Results: A total of 292 studies included in the review are categorized. A techni-
cal overview of each category is provided, and the categories are described in a
unified mathematical framework. The distribution of the reviewed studies over
time, application domain, and parameters of interest is illustrated.
Conclusion: An increasing trend in the number of articles that propose new
techniques for accelerated qMRI reconstruction indicates the importance of
acceleration in qMRI. The techniques are mostly validated for relaxometry
parameters and brain scans. The categories of techniques are compared based on
theoretical grounds, highlighting existing trends and potential gaps in the field.

K E Y W O R D S

image reconstruction, MRI, parameter estimation, quantitative MRI

1 INTRODUCTION

Quantitative MRI (qMRI) measures tissue properties
such as diffusion, relaxation times, myelin water frac-
tion, and perfusion.1 qMRI produces maps of calibrated
physical parameters expressed in physical units that are
reproducible across the scanner.2 Conventionally, qMRI
reconstruction consists of a two-step procedure. The

first step reconstructs multiple images from the acquired
k-space data. For each image to be reconstructed, the cor-
responding k-space data is acquired with unique acqui-
sition settings such as echo time, repetition time, or
diffusion weightings. These different acquisition settings
lead to differently weighted reconstructed images, that
is, images with different contrasts. In what follows,
these images will be referred to as contrast images. The
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second step estimates the qMRI parameters by fitting a
signal model to the reconstructed contrast images.

Acquisition of multiple contrast images traditionally
requires a long scan time, which limits the clinical appli-
cation of qMRI. Reducing this time has been an important
research focus over recent years. Sampling only part of the
k-space for each of the contrast images to be reconstructed,
that is, undersampling, is one way to shorten the scan
time. However, substantial undersampling of the k-space
leads to ill-posed reconstruction problems for the individ-
ual contrast images, causing artifacts in the reconstructed
images.

Acquiring data from the same object with different
contrasts produces shared information across the contrasts
that can be exploited to improve the qMRI reconstruction
of the undersampled data. The different qMRI reconstruc-
tion techniques differ from each other in the way they
exploit shared information across the contrasts. The mul-
titude of reconstruction techniques and their respective
advantages and limitations give rise to the question of to
what extent they are different and whether some of these
techniques can be advantageously combined. Moreover,
as techniques are typically presented for specific appli-
cations, the suitability to different applications can be
hard to appreciate. Furthermore, the reconstruction tech-
niques are usually introduced using different terminolo-
gies, which complicates their comparison. Review studies
on qMRI reconstruction techniques are typically specific to
a class of techniques such as compressed sensing,3 MR fin-
gerprinting4-6 or deep-learning.7,8 Alternatively, they are
specific to a particular class of parameters of interest,
such as relaxometry,7,9-12 or diffusion13 parameters, or to
a particular application domain, such as the knee,14 or
cardiac and abdominal imaging.15 To facilitate the compar-
ison among different reconstruction techniques used for
accelerated qMRI, the current work presents a systematic
review that provides a technical overview of the existing
techniques, without confining to any specific parameter
or application domain, and categorizes them based on
methodology. Moreover, all categories are described in a
unified mathematical framework.

This systematic review was conducted following the
PRISMA 2020 guidelines.16 The methodology used for
the systematic review is introduced in Section 2. Next,
Section 3 describes the mathematical formulation of
conventional two-step qMRI. Section 4 provides the
mathematical formulation of the categorized reviewed
techniques and describes how each technique is adjusted
to address specific reconstruction issues. In Section 5, a
graphical representation of the categorized techniques is
provided. Finally, Section 6 provides a discussion of the
trends observed in the reviewed techniques, limitations of
this work, and directions for future research.

2 METHODS

The systematic review was performed in four phases,
which are discussed in the four subsections below and
depicted in Figure 1.

2.1 Identification

A literature search was conducted in the following
databases: Embase, Medline, Web of Science Core Col-
lection, Coherence Central Register of Controlled Trials,
and Google Scholar. The search query was compiled with
the help of a librarian specialized in performing system-
atic reviews. The study was registered in Prospero with
id CRD42021242450. The search query used was based
on a combination of four main segments, combined with
an AND statement. The first segment included words
related to “MRI,” “MR fingerprinting,” and “quantita-
tive MRI.” The second segment included words associ-
ated with different “reconstruction” techniques to select
the papers that deal with image reconstruction. The third
segment referred to the qMRI tissue parameters such as
T1, T2, and diffusion parameters. The last segment was
designed to select the works that deal with image recon-
struction and parameter estimation. The exact search
query for each database is provided in Table A2 in the
Appendix. For the search conducted in Google Scholar,
the first 200 results were initially selected. Among those
200 results, the ones that were not found previously were
added to the results of the other databases. The final
search was performed on July 7, 2022 and was confined
to articles published in English, without restriction on
the publication date. This led to the identification of
4190 papers.

2.2 Screening

The search results were examined based on their title
and abstracts by two authors (Banafshe Shafieizargar and
Riwaj Byanju) independently. Papers were selected when
meeting all of the following inclusion criteria:

1. Focusing on qMRI parameter estimation.
2. Accelerating data acquisition by undersampling the

k-space.
3. Exploiting the joint information between contrasts to

avoid undersampling artifacts.
4. Novel reconstruction and/or parameter estimation

technique or improvement of an existing technique
other than improvement based on better hardware, in
comparison to conventional qMRI reconstruction.
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SHAFIEIZARGAR et al. 3

F I G U R E 1 Flow chart showing the selection of articles.

F I G U R E 2 Categorization of the techniques reviewed in the current study.

5. Including a detailed description of the proposed image
reconstruction and/or parameter estimation technique.

If it was unclear whether a paper met a particular
criterion from the information in the abstract, then the
criterion was considered fulfilled. This phase led to the
selection of 391 papers.

2.3 Full-text reading

The full-text of each paper selected during the screening
phase was read by one of the two authors who also per-
formed the screening (Banafshe Shafieizargar and Riwaj
Byanju). If during or after full-text reading it was con-
cluded that not all criteria of Section 2.2 were met, the
paper was excluded. This led to the exclusion of 99 papers
so finally, 292 papers were selected for the current study.

2.4 Categorization

In this final phase, the selected works were categorized
based on the year of publication, parameter of inter-
est, methodology, application domain, and accessibility

(i.e., a public link to the implemented code and/or
acquired dataset).

The methodologies proposed in the selected papers
were categorized according to several properties, which
are listed in Figure 2. These properties will be further
defined in Sections 3 and 4.

3 CONVENTIONAL QMRI
RECONSTRUCTION

This section describes the mathematical formulation of
conventional qMRI, introducing a notation that will be
used throughout this work. qMRI reconstruction aims at
the estimation of parameter maps from measured k-space
data and is conventionally performed in two steps: “image
reconstruction” and “parameter estimation.” To facilitate
reading, a list of symbols used in this work is provided in
Table A1 in the Appendix.

3.1 Image reconstruction

In a multicontrast multichannel experiment with nc con-
trasts indexed by c ∈ {1, … ,nc} and ns coil sensitivity
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4 SHAFIEIZARGAR et al.

maps indexed by s ∈ {1, … ,ns}, the measured MRI sig-
nal Yc,s(v) at a point v ∈ Ω, where Ω ⊂ R3 denotes the
three-dimensional (3D) Fourier space, also known as
k-space, can be described as:

Ỹ c,s(v) = ∫̃
r

e−i2𝜋r̃vC̃s(r̃)Ĩc(r̃)dr̃ + Ñc,s(v), (1)

where Ĩ(r̃) represents the transverse magnetization at spa-
tial position r̃ ∈ R3 in image space, C̃s(r̃) is the coil sen-
sitivity of the sth coil at position r̃, and Ẽ is a zero-mean
complex-valued Gaussian noise contribution. Note that,
since the measurements Ỹ c,s(v) are made in discrete space,
the reconstruction of the continuous magnetization Ĩ(r̃) is
ill-posed. In practice, however, images of the transversal
magnetization are reconstructed on a finite 3D grid {r𝑗}

n
𝑗

1
with r𝑗 ∈ R3

,∀𝑗 ∈ {1, · · · ,n𝑗}where n𝑗 denotes the num-
ber of grid points. In this case, the relationship described
by Equation (1) can be approximated by a discrete Fourier
Transform:

Yc,s,v =
∑

𝑗

Cs,r
𝑗
Ic,r

𝑗
e−

i2𝜋
n𝑗

vT r
𝑗 + Nc,s,v. (2)

Y ∈ Cnc×ns×nk represents the acquired k-space points with
nk points sampled for each contrast and coil channel,
indexed by k ∈ {1, · · · ,nk}, C ∈ Cns×n𝑗 represents the coil
sensitivity maps, I ∈ Cnc×n𝑗 denotes the contrast images,
and N ∈ Cnc×ns×nk is a zero-mean, complex-valued Gaus-
sian noise contribution. For an undersampled acquisition,
the set of acquired k-space points does not satisfy the
Nyquist criteria. Note that Equation (2) can be written
using an encoding operator  that combines the coil sen-
sitivity maps and the (nonuniform) Fourier Transform for
the sampled points:

Y = I +N, (3)

where Y, I, and N are (implicitly) reshaped into vectors
when operators are applied. Note that the operator can be
applied to both Cartesian and non-Cartesian (such as spi-
ral or radial) sampling trajectories by only changing the set
of k-space locations (v).

Conventionally, for a fully sampled multichannel
acquisition, contrast images are reconstructed by apply-
ing an inverse discrete (or density compensated nonuni-
form) Fourier transform to the k-space data of each
coil channel, followed by a combination of images cor-
responding to each coil channel.17 Application of this
technique to undersampled k-space coil data may pro-
duce aliased images. However, for suitable undersampling
patterns, it is possible to reconstruct artifact-free images
using an iterative approach through parallel imaging (PI)

reconstruction. To ease the notation below, we use a
named index to select an element in the corresponding
dimension of an object, without explicitly listing the other
dimensions. So, Ic ∈ Cn𝑗 is a vector with the n𝑗 voxels in
the cth contrast. Assuming the image domain coil sensitiv-
ity maps are available, the PI image reconstruction, also
known as SENSE,18 can be formulated as follows:

Îc = arg min
Ic

||Yc − cIc||22. (4)

In case the explicit coil sensitivity maps are not avail-
able, auto-calibrating PI techniques such as GRAPPA19 are
performed to reconstruct individual contrast images. In
GRAPPA, the missing samples in undersampled k-space
data are predicted using a linear combination of the
acquired neighboring k-space data across all the coils. A
fully sampled patch of k-space data, also known as a cal-
ibration region, is used to learn the relationship between
the acquired and missing samples using reconstruction
weights, known as kernels. The fully sampled k-space is
then followed by the Fourier transform and a combina-
tion of images corresponding to each coil channel. The
image reconstruction approaches described in this section
are referred to as FTc.

3.2 Parameter estimation

The second step of the conventional qMRI reconstruc-
tion approach is parameter estimation using model fitting.
In this technique, nq tissue parameter maps, represented
by X ∈ Rnq×n𝑗 , are estimated from the contrast images.
Let X𝑗 ∈ Rnq represent the vector containing the tissue
parameters for the jth voxel and I𝑗 ∈ Cnc is a vector that
contains the values of the nc different contrast images,
referred to as signal evolution, in the 𝑗th voxel. Next,
let the relationship between the contrast images and the
underlying tissue parameters of interest in each voxel be
modeled as:

I =  (X), (5)

with  (X) ∶ Rnq×n𝑗 → Rnc×n𝑗 a parametric function that
represents a qMRI model such as a relaxometry, diffusion,
or perfusion model. Note that this function will not only
depend on X, but also on the image acquisition settings,
which are assumed to be known.

In the parameter estimation step, the tissue param-
eter maps X can be estimated by fitting the paramet-
ric model to the reconstructed contrast images using a
goodness-of-fit criterion, such as the sum of squared differ-
ences, least squares criterion, or the (penalized) likelihood
function.20-23 This process can be denoted by  −1. When
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SHAFIEIZARGAR et al. 5

 evaluates each voxel independently, the tissue parame-
ter maps can be estimated voxelwise:

X̂𝑗 =  −1(Î𝑗) = arg min
X
𝑗

||Î𝑗 − (X𝑗)||22, (6)

where Î refers to the reconstructed images obtained in
the image reconstruction step. Note that depending on
the application, the parameters can be estimated from
reconstructed complex-valued images (e.g., flow parame-
ter estimation24), or reconstructed magnitude images (e.g.,
conventional diffusion tensor imaging25).

4 RESULTS

The papers considered in this review aim at estimating
parameter maps X from undersampled k-space data Y.
These works either modify the conventional image recon-
struction step (Section 3.1), the conventional parameter
mapping step (Section 3.2), both, or directly estimate
qMRI parameters X from undersampled Y. Works that
include an intermediate image reconstruction step are cat-
egorized as indirect reconstruction, whereas techniques
that skip the image reconstruction step and estimate
parameters directly from k-space data are categorized as
direct reconstruction. Both indirect and direct reconstruc-
tion are further divided into different subcategories as
shown in Figure 2.

In the current section, for each subcategory, first, a the-
oretical overview is provided that describes the basic tech-
nique used in that subcategory. Next, the advancements
proposed in the reviewed papers within this subcategory
are described. Note that this is not necessarily a com-
plete literature review on such subcategory. The complete
list of the papers that were selected in the categorization
phase, in combination with the properties that describe
them, can be found in Table A3 in the Appendix and a
more detailed version of this table with additional infor-
mation on the acquisition sequence and trajectory, and
optimization solvers is available online.

4.1 Indirect reconstruction

This category presents techniques that follow a two-step
procedure of image reconstruction followed by parameter
estimation.

4.1.1 Image reconstruction

This section categorizes the techniques that jointly recon-
struct all the contrast images.

Multicontrast PI
The multicontrast PI subcategory includes PI techniques
that have been extended to include multicontrast redun-
dancy. Both image and k-space domain-based techniques
have been developed and are described below:

Image domain PI. In SENSE reconstruction, the coil
sensitivity maps can be estimated from a separate scan
or a calibration region. Alternatively, studies have been
performed to eliminate the need to acquire a calibra-
tion region by jointly estimating the coil sensitivity maps
with the contrast images.26,27 In this case, the iterative
reconstruction described by Equation (4) is formulated
as a nonlinear inverse problem with both Ic and C as
unknowns. This problem has then been solved by enforc-
ing smoothness of the coil sensitivities in a regularized
reconstruction,26 or using kernel calibration.27 Multi-
contrast SENSE reconstruction can be combined with
reconstruction techniques for other acceleration tech-
niques such as simultaneous multislice imaging (SMS),
where multiple slices in the field-of-view are acquired
simultaneously by using multi-band RF pulses28 or the
“UNFOLD” method that involves sampling of different
k-space points from contrast to contrast and applies filters
along the contrast dimension.29

k-space domain PI. K-space domain-based PI tech-
niques, such as GRAPPA, have been extended to include
the prediction of missing k-space samples from data
with different contrasts.30-37 Additionally, GRAPPA has
been applied in undersampled 3D acquisitions to recon-
struct the missing k-space points along the partition
encoding dimension.38 Furthermore, GRAPPA has been
extended to include SMS acquisitions. In this case,
GRAPPA is used to unwrap the intermixed signal of
the simultaneously acquired slices.39-45 Finally, GRAPPA
has been followed by an iterative reconstruction where
distortion and noise in the reconstructed images are
reduced.46

Regularized reconstruction
Techniques in the regularized reconstruction subcat-
egory use prior knowledge of the sparsity in specific
domains to improve image reconstruction. Regular-
ized reconstruction can be formulated based on Bayes’
theorem as a combination of the likelihood function
and prior knowledge in the form of regularizer terms.
Assuming the operator 𝜙 transforms the images to be
reconstructed to a desired sparse domain, then the recon-
struction problem with ni sparsifying transforms, indexed
by i, can be formulated as the following optimization
problem:

Î = arg min
I

||Y − I||22 +
ni∑

i
𝜆i||𝜙i(I)||l, (7)
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6 SHAFIEIZARGAR et al.

where 𝜆i is the regularization weight of the ith sparsify-
ing transform and l ∈ N defines the regularization norm.
Note that, the transform operator 𝜙 can be applied across
spatial as well as contrast dimensions.

Transform domain. Finding a suitable transform
domain where the signal is sparse has been one of the
challenges in performing regularized reconstruction. Dif-
ferent transform operators 𝜙 and priors have been pro-
posed to find a sparse representation of the images.
This includes the wavelet transform,27,47-52 the total vari-
ation transform,26,50,52-68 group sparsity where images are
divided into multiple sparse regions,69 weighted quadratic
prior that aims to suppress the noise and reconstruc-
tion artifacts based on the intensity differences between
neighboring voxels,56 gradient across the contrast dimen-
sion,53,70-74 second-order discrete derivative in the con-
trast dimension,75,76 principal component analysis-based
transform,75,77-80 image ratio constraints, where the ratio
between a low-resolution image and the reconstructed
image is used as a constraint,50 and learned sparsifying
transform 𝜙 from the measurements.81

Apart from these, alternative ways to use regulariz-
ers and transform domains have been proposed. First,
using a mixed l1 − l2 norm through distributed compressed
sensing has been proposed that promotes sparsity along
the contrast and spatial dimensions simultaneously.52,82,83

Secondly, priors based on the distribution of the con-
trast images, for example, a Gaussian process prior are
proposed.84 Finally, the reconstruction problem can be
constrained using a parametric model:59

Î = arg min
I

||Y − I||22 + 𝛾|| ( −1(I)
)

− I||1 + 𝜆||𝜙(I)||l, (8)

Low-rank priors. The matrix of contrast images I, in
which each row is a vectorized contrast image and each
column shows the signal evolution for one voxel, can be
assumed to be a low-rank matrix (referred to as Casorati
low-rankness). Such assumptions can be incorporated as
prior information by formulating the regularized recon-
struction in the form of a rank constraint:

Î = arg min
I

||Y − I||22 +
ni∑

i
𝜆i||𝜙i(I)||l + 𝛾rank(I), (9)

where 𝛾 defines the weight of the rank constraint. How-
ever, due to the rank constraint, the optimization problem
described by Equation (9) is not convex. Therefore, the
nuclear norm of the matrix of contrast images ||I||∗, that
is, the sum of its singular values, has been often used as
convex relaxation of the rank function,61,79,80,82,85-99 giving
the reconstruction problem:

Î = arg min
I

||Y − I||22 +
ni∑

i
𝜆i||𝜙i(I)||l + 𝛾||I||∗. (10)

The nuclear norm regularization can also be applied to
phase data in applications where phase correction needs
to be integrated into the image reconstruction.100 Instead
of the nuclear norm, a log-sum relaxation form of the rank
constraint based on the weighted nuclear norm minimiza-
tion has been proposed to simplify the optimization of
Equation (9).101

As another option, a patch-based low-rank constraint
can be used.52,102-106 Let 𝑗 be an operator that vectorizes
a patch of contrast images around voxel 𝑗, correspond-
ing to the selection of a set of columns of I, then the
reconstruction problem can be formulated as:

Î = arg min
I

||Y − I||22 + 𝛾
∑

𝑗

||𝑗I||∗. (11)

Combination with other techniques. Regularized recon-
struction has been used in the Generalized SLIce Dithered
Enhanced Resolution technique, which is a newly devel-
oped RF encoding technique.107 In this technique,
the reconstruction has an extra processing step where
the super-resolution reconstruction model relates the
acquired thick-slice RF-encoded volumes to the desired
thin-slice volumes. A joint regularized optimization is per-
formed on the images that are initially reconstructed using
k-space-based PI techniques.36,43,108 Different regularizers
have been used in the extra enhancement step, including
the Huber function that preserves the sharp edges of the
contrast images,108 the Tikhonov regularizer,36 and the
finite difference transform.43

Optimization algorithms. Solving the combined opti-
mization of data fidelity and regularizer terms can be
difficult and often a more relaxed version of the cost func-
tion has been used which is computationally easier to
optimize. One of the commonly used algorithms in opti-
mization of the regularized cost functions is the Alternate
Direction Method of Multipliers.52,53,57,69,93,95,100,101,103

Other techniques include the gradient descent
algorithm,72-74 the Fast Composite Splitting Algorithm61,82

and majorization–minimization-based algorithms such as
the fast iterative shrinkage-thresholding algorithm.106

Subspace constrained reconstruction
The central assumption behind papers in the
subspace-constrained reconstruction subcategory is
that the signal evolution across the contrasts lies in
a low-dimensional subspace.109 This differs from the
low-rank prior introduced in Section 4.1.1.2 by explic-
itly, and often a priori, specifying a rank for the signal
evolution subspace and often also a subspace basis. In
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SHAFIEIZARGAR et al. 7

this case, the matrix I can be approximated with a linear
relationship as I ≈ 𝝍𝝈, with 𝝍 ∈ Cnc×nb containing the nb

basis functions, and 𝝈 ∈ Cnb×n𝑗 their voxel-wise weights.
The image reconstruction problem can then be simplified
by estimating voxel-wise weights 𝝈 instead of contrast
images I as follows:

𝝈̂ = arg min
𝝈

||Y − 𝜓𝝈||22. (12)

Subspace computation. The subspace 𝝍 is typically
obtained by singular value decomposition of a dictionary
of possible signal evolutions.

Model-based dictionaries D ∈ Cnc×nd consist of nd dic-
tionary items, each with the expected signal evolution for
the given acquisition settings and specific qMRI parame-
ters.110-136 More details about the generation of the dictio-
naries are presented in Section 4.1.2.1.

It has been shown that using patches of I to create
subspace functions, improves the compression of the dic-
tionary by accounting for local similarities among signal
evolutions.137-142

Furthermore, the subspace initially generated using
the model-based dictionary, can be updated in an iterative
reconstruction. In each iteration of this reconstruction, the
subspace is updated using the reconstructed images.143-145

Additionally, to better represent the nonlinearity in the
signal evolution, it has been proposed to generate the sub-
space using kernel-based principal component analysis,
in which the subspace is learned from low-resolution
training data.146-148

Alternatively to dictionary generation, the subspace
basis functions 𝝍 can be estimated along with the
voxel-wise weights 𝝈 during the reconstruction step by
using the “blind compressed sensing” principle:149

{𝝍̂ , 𝝈̂} = arg min
𝜓,𝜎

||Y − 𝜓𝝈||2F + 𝜆||𝝈||1
such that ||𝝍||2F < 1, (13)

where ||𝝍||2F < 1 represents a unit Forbenius norm applied
to make the optimization problem well-posed. The opti-
mization (13) can be solved using a variable splitting and
augmented Lagrangian optimization scheme.149

Multiple subspace basis functions. During data acquisi-
tion, subject motion, including rigid, respiratory, and car-
diac motion, can influence the acquired signal. To account
for subject motion, some techniques based on partially
separable functions have been proposed. In these tech-
niques, different subspace basis functions related to the
contrasts and motion can be separately designed and used
during the reconstruction.145,150-156 Specifically, the con-
trast images I can be decomposed into multiple tensors
using a higher-order singular value decomposition, such

as the Tucker decomposition. For instance, I is separated
into components representing the signal evolution across
contrasts 𝝍̌ , and motion 𝚪 as:

Ic,m,𝑗 =
nb1∑

b1=1

nb2∑

b2=1
𝜓̌ c,b1

Γm,b2 𝜎̌b1,b2,𝑗 , (14)

where m is the index for the motion states, b1 and b2
indices the basis functions of 𝝍̌ ∈ Cnc×nb1 and 𝚪 ∈ Cnm×nb2 ,
respectively, and 𝝈̌ ∈ Cnb1×nb2×n𝑗 represents a tensor that
contains spatial weights for each basis.145,151,156,157 Dur-
ing the reconstruction the spatial weights 𝝈̌ are estimated.
Equation (14) is limited to two bases but this number
can be increased to include more aspects of the signal
evolution.130,152,158-161 By including SMS in the acquisition
protocol, the scan time for such techniques can be further
reduced.160 Along similar lines, it has been proposed to
separate the spatial weight 𝜎 into a magnitude and a unit
phase component that represents the phase variations.
These weights are then estimated using a block coordinate
descent method.162

Additional steps to address other aspects of the acqui-
sition. First, subspace constrained reconstruction has
been modified to correct for phase evolution across the
readout jointly with image subspace reconstruction.136,163

Secondly, it has been used for compensation of B0 inho-
mogeneities in echo planar time imaging sequences.116

Finally, it has been proposed to separate fat and water in
subspace constrained reconstruction.117,138

Additional prior in the form of a Regularizer. Regular-
izers can be introduced to add prior information, such
as sparsity,164 to the optimization problem defined in
Equation (12), yielding:

𝝈̂ = arg min
𝝈

||Y − 𝜓𝝈||22 +
∑

i
𝜆i||𝜙i (𝝈) ||l. (15)

Subspace constrained reconstruction has been used
jointly with a spatially sparse representation of 𝝈

using the wavelet transform,110-112,119,120,163 total vari-
ation,117,119,123,124,129,143,145,155,162,165 finite difference,164

Fourier representation of images in the temporal direc-
tion,165 low-rank priors,112,115,126,128,135-139,141,142,145,166-172

and deep learning priors.173

Alternative ways to exploit the low-rank nature of the
signal. The low-rank nature and sparsity of the signal evo-
lution can be exploited by assuming it can be decomposed
into its low-rank component L and sparse component S,
that is, I = L + S.60,174-178 This results in the reconstruction
problem:

L̂, Ŝ = arg min
L,S

||Y − (L + S)||22 + 𝜆||𝜙 (S) ||l + 𝛾||L||∗.

(16)
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8 SHAFIEIZARGAR et al.

The low-rank subspace of the signal has been used to
fill the missing k-space samples.113,179-185 Specifically, the
subspace Ψ constructed in the image domain can be used
to fill in missing k-space samples.113 The k-space data can
also be transformed into structured matrices, for example,
block-Hankel181,182,184-186 and Toeplitz,183,187 to exploit the
low-rank properties. In this case, the optimization problem
can be rewritten as:

Î = arg min
I

||Y − I||22 +
ni∑

i
𝜆i||𝜙i(I)||l + 𝛾||I||∗, (17)

where  is an operator that first converts the contrast
images into the Fourier domain and then into a structured
matrix such as block-Hankel, or Toeplitz. The reconstruc-
tion problem has been originally posed with a minimiza-
tion constraint on I, min rank[I], however, since this is
an NP-hard problem, it is replaced with a Schatten-p quasi
norm (0 ≤ l < 1)187 or the nuclear norm.181

It should be noted that reconstruction techniques
based on structured low-rank matrices are computation-
ally demanding due to the large size of the structured
matrices. To address this issue, a more computationally
efficient implementation of these techniques based on
modified iterative reweighted least squares has been pro-
posed.180 To improve the reconstruction further, after solv-
ing the reconstruction problem described in Equation (17),
a convolutional neural network with a U-NET architecture
has been used.181,188

Another way to exploit the low-rank nature of the con-
trast images is by adding a regularization term penalizing
the distance of the images to the subspace.47,62,63,189-194 In
this case, the optimization problem can be defined as:

{Î, 𝝈̂} = arg min
I,𝝈

||Y − I||22 + 𝛾||𝝍𝝈 − I||22

+
ni∑

i
𝜆i||𝜙i(I)||l. (18)

Optimization algorithms. Most of the works use alter-
nate direction method of multipliers with variable splitting
for solving subspace constrained reconstruction prob-
lems.112,115,116,118,121,122,126,128,130,139-142,144,149,162-166,169,183,187

Other solvers include the nonlinear conjugate gra-
dient descent with backtracking line search,120 the
orthogonal matching pursuit method,143,190 the linear
conjugate gradient algorithm123 and the fast iterative
shrinkage-thresholding algorithm.135

View-sharing reconstruction
Acquisition protocols have been proposed that cre-
ate densely sampled k-space frames by combining the
sampled points of different subsampled contrasts. While

reconstruction of the individual contrast images from their
corresponding subsampled k-space data results in aliased
or low-resolution images, a smart combination of the
multicontrast k-space data can reduce these issues.
However, combining k-space points of different contrasts
in one k-space may lead to artifacts in image space due to
the difference in contrast across the k-space. Thus, addi-
tional steps, such as filtering, may be required.195

View-sharing with shared high spatial frequency infor-
mation. The principle behind techniques in this subcate-
gory is that the changes in the acquisition of one contrast
to the other mainly affect the low spatial frequencies in
the central k-space regions. Therefore, while the central
regions are fully sampled for every contrast, the noncentral
regions, containing the high spatial frequencies, are under-
sampled. For each contrast, a k-space frame is formed
by complementing the fully sampled central region with
high-frequency data of multiple contrasts, after which
these k-space frames are reconstructed into images.196-202

The techniques in the view-sharing subcategory
have been further improved by applying additional fil-
ters to help maintaining the desired information. For
instance, “k-space weighted image contrast” filters are
used that help reducing streaking artifacts in radial sam-
pling acquisitions.199-202 Similarly, the application of
multiple radial mask filters is examined that exploit the
low spatial-frequency nature of image-to-image contrast
changes.195

View-sharing with information shared across similar
contrasts. Techniques in the view-sharing subcategory
can also assume a slow variation among the contrasts
such that the data from several similar contrasts can be
combined into a single k-space and reconstructed into
a single weighted image, thereby ignoring the contrast
variations.203-210 However, additional correction steps
are required to reduce the effect of the small differences
between the contrasts. Specifically, the trajectory or the
order in which the k-space is sampled can be crucial to
avoid artifacts..203 View-sharing can be combined with
other reconstruction techniques such as regularized
reconstruction,66 subspace constrained reconstruction,211

or PI reconstruction.41,206,210

Learning-based reconstruction
Techniques in the learning-based reconstruction sub-
category use neural networks that learn to reconstruct
artifact-free images. In this section, we focus on the
works that exploit the redundant information in contrast
images in the training process of the neural network.
Learning-based image reconstruction is often seen as an
artifact removal step where the input of the network is
the aliased images that are reconstructed using the FTc
techniques as described in Section 3.1 and the output
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SHAFIEIZARGAR et al. 9

is the artifact-free reconstructed contrast images. A neu-
ral network(Ž|𝜽), which is parameterized by 𝜽, is pro-
vided with aliased contrast images Ž as input, to provide
artifact-free contrast images Î as output:212-214

Î = (Ž|𝜽). (19)

The parameters of the network 𝜽 are defined in a train-
ing process, prior to image reconstruction, that can be
described as:

𝜽̂ = arg min
𝜽

∑

t
 (Wt,(Zt|𝜽)) , (20)

where denotes a suitable loss function, Wt and Zt denote
the training datasets indexed by t ∈ {1, 2, … ,nt} with nt

the number of training datasets, where Zt corresponds to
the aliased training images as input of the network and
Wt can correspond to both fully sampled training images
or fully sampled training k-space data, depending on the
application.215 As an example, a model-based loss function
based on the sum of squared differences where training
is performed using fully sampled k-space data215 can be
incorporated as follows:

𝜽̂ = arg min
𝜽

∑

t
||Wt − (Zt|𝜽)||22. (21)

The neural network can be included in an itera-
tive reconstruction.188,216-218 In this case, the optimization
problem described by Equation (7) is modified such that
the regularizer term includes a generative neural network
as follows:

Î = arg min
I

||Y − I||22 + 𝜆||(Ž|𝜽) − I||l. (22)

The neural network can be trained on previously
acquired datasets,219,220 on synthetic datasets,221 on a com-
bination of synthetic and real datasets,214 or on a dic-
tionary generated by a biophysical signal model.216,217

The training process can be performed on image patches
instead of full field-of-view images,222 which allows the
design of a good-performing neural network even with
a small amount of training data. Also, self-supervised
learning-based techniques that do not require fully sam-
pled data have been proposed.213

The input data are often comprised of magnitude
images.181,215,222,223 However, in applications where the
phase information is important for the subsequent param-
eter estimation step, complex neural networks have been
developed that exploit the correlation between the real and
imaginary parts of a complex image by processing the real
and imaginary images with complex convolutions inspired
by the multiplication of complex numbers.219

Various architectures have been investigated for the
neural network, including U-NET,215,224 fully connected
convolutional neural network,223,225 multiscale residual
network,222 deep cascade of residual dense network,221

and deep complex residual network.219

4.1.2 Parameter estimation

The second step of the indirect reconstruction is param-
eter estimation. Papers that target to improve this step
are categorized in this subsection. Apart from the con-
ventional model-based technique introduced in Section 3,
the parameter maps X can be estimated from the recon-
structed contrast images Î using dictionary matching and
learning-based estimation.

Dictionary matching
In techniques in the dictionary matching sub-category,
a model-based dictionary D ∈ Cnc×nd is generated that
relates parameter values for specific scan settings to the
signal evolution using the analytical model  . In a qMRI
experiment with nq parameters to be estimated, the range
of possible values for each parameter can be digitized
with a particular number of steps and step size. If the
parameters indexed by q ∈ {1, … ,nq} have ranges that
are divided into nd1 , … ,ndq steps, then the number of
steps for all the parameters included in the dictionary is
nd =

∏
q ndq . Note that nd is also the number of expected

signal evolutions defined in a dictionary. Dd is the sig-
nal evolution for one set of parameters and is referred
to as a dictionary atom. The size of the dictionary scales
exponentially with the number of qMRI parameters nq,
which affects the computational cost of generation and
usage of the dictionary. Hence, dictionaries are often gen-
erated with a small number of parameters, with a typical
maximum of four.226

Matching the qMRI parameters to the measured sig-
nal (pattern matching) can be performed by solving the
optimization problem described by:

d̂ = arg min
d

(Î𝑗 ,Dd), (23)

where  is a function that computes the difference
between the reconstructed signal and the simulated signal
in the dictionary in each voxel. The set of parameters cor-
responding with the d̂th column of the dictionary are the
estimated qMRI parameters in the jth voxel.

For dictionary matching,  only needs to be
evaluated once to create D for given acquisition set-
tings. Various advanced simulation techniques have
been used to implement  , such as Bloch sim-
ulations,40,66,119-121,137,141,144,226-236 extended phase
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10 SHAFIEIZARGAR et al.

graphs,65,102,103,112,142,167,184,196,197,205,208,211,237-239 and
methods using advanced biophysical models of the
tissue.138,192,207,240

Auxiliary parameter estimation. The estimation of
qMRI parameters can be improved if the effects of
scanner-related parameters, such as B0 and B1 field
inhomogeneities, are included in the dictionary gen-
eration. Such parameters are referred to as “auxiliary
parameters” in this work. To include auxiliary param-
eters in the dictionary generation, the dictionary
needs to be extended. Such extensions may include
slice profile effects,102,112,119,120,197,230 B1 inhomogene-
ity,36,66,165,197,228-230,241-243 receiver phase,230 B0 inhomo-
geneity,40,233,244 relaxation effects during the inversion and
preparation pulses,120 and partial volume effects.227

Dictionary compression. The precomputed dictionary
for dictionary matching often has a considerable size and
can be compressed to facilitate its implementation and
reduce the required number of comparisons. Such com-
pression has been performed using different techniques
and in different dimensions. For instance, singular value
decomposition,88,89,137,169,211,218,228,229,245 randomized sin-
gular value decomposition,231,244 and group matching246

are used to compress the dictionary in the contrast dimen-
sion. Similarly, the step size for generating different
parameters in the dictionary can be increased, resulting
in a coarser dictionary with lower computational costs.
This approach is often combined with interpolation tech-
niques, such as quadratic interpolation244 or B-spline
interpolation230 of dictionary entries to reduce possible
artifacts. Specifically, an automatic technique is proposed
to determine the dictionary resolution corresponding to a
specified interpolation error.230

Pattern matching. Some studies focus on improving the
efficiency of the dictionary matching step. For instance,
the iterative brute-force searches are replaced with fast
approximate nearest neighbor searches based on cover tree
structures.131 The gradient descent search algorithm,245

and a learned Mahalanobis distance233 are used for find-
ing the closest match with dictionary entries. The robust-
ness of results with respect to flow artifacts and intravoxel
dephasing is improved by applying matching in multiple
steps.228

Combination with other techniques. Further improve-
ments to techniques in the dictionary matching
subcategory include modifying the dictionary to make
it applicable in combination with other qMRI recon-
struction and acquisition techniques. For instance, a
combination of view-sharing reconstruction and dictio-
nary matching requires D to be modified to account for
the mixed contrast in the data.205

Dictionary matching is also used in conjunction
with SMS acquisition to cover a given volume faster.

Reconstruction from SMS data requires the signal of
each slice to be unfolded. Next, the unfolded signal
of each slice is matched to a precomputed dictio-
nary.40 However, if the acquisition settings vary across
slices, the dictionary needs to be modified accord-
ingly, and a separate dictionary for each slice needs to
be generated.232

Furthermore, dictionary matching can be followed by
application of a convolutional neural network to reduce
motion-induced artifacts.134

Learning-based estimation
Learning-based estimation techniques use neural net-
works that learn an approximation of the inverse of
the qMRI model function  described in Section 3.2
to reconstruct high-quality parameter maps from (often)
aliased and noisy contrast images that are reconstructed
in the image reconstruction step (cf. Section 3.1). A neu-
ral network (Ž|𝜽) is used where the estimated param-
eter maps are the output of the neural network: X̂ =
(Ž|𝜽).38,42,85,132,178,209,224,247-259

The network training procedure is similar to
Equation (20) but with Zt as the set of (aliased) train-
ing images and Wt denoting the artifact-free training
parameter maps.

Various loss functions have been proposed to improve
the performance of the neural network. For instance,
the loss function is defined as the squared error of each
estimate normalized by the corresponding Cramér–Rao
bound (CRB) before averaging all the estimated param-
eters and all the samples in the training data.170 Such a
loss function that includes the CRB allows the network to
account for variations in the noise propagation among the
parameters.170 Similarly, a total variation regularizer along
with the mean squared error is used as a loss function,258

which results in smooth reconstructed parameter maps.
Complex-valued contrast images have been used for

training and testing the neural network, showing a high
fidelity of parameter quantification.133,260 Learning-based
parameter estimation can be improved by joint estimation
of the B1 field map along with the relaxometry parame-
ters.223,261

Learning-based techniques relying on random-forest
regression45 and regression with kernels262 have been
proposed to estimate artifact-free quantitative parameter
maps from the reconstructed contrast images which can
have undersampling artifacts. Furthermore, deep learn-
ing frameworks have been applied to accelerate parameter
estimation, particularly when many parameters need to be
estimated.263 It has been proposed to use attention-based
neural networks to address the need for explainable
architectures in neural networks used for parameter
matching.264
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SHAFIEIZARGAR et al. 11

4.2 Direct reconstruction

Techniques in this category skip the image reconstruction
step and directly estimate X from undersampled Y, usually
through an iterative process. They can be categorized in
two subcategories.

4.2.1 Direct model-based reconstruction

The techniques in the direct model-based reconstruction
subcategory exploit the redundancies in the data by incor-
porating a physical signal model  in the reconstruc-
tion.265-269 The basic formulation for direct model-based
reconstruction is given by:

X̂ = arg min
X

||Y −  (X) ||22. (24)

Adjustment of the physical signal model. The signal
model  can be adjusted to improve parameter estima-
tion. The related studies are often focused on:

• Developing signal models that more accurately describe
the tissue characteristics and acquisition settings, such
as the inversion recovery Look-Locker model for T1
mapping,270 the variable flip angle model for T1 map-
ping,271 the chemical shift model for water-fat separa-
tion imaging,272 the echo-modulation curve model for
T2 mapping,267 the Kalman filter model for T2 map-
ping,273 the generating function formalism for T2 map-
ping,274 and models based on Bloch equations for direct
estimation of parameters from transient response sig-
nals.275-278

• Developing novel models that parameterize the model
jointly for auxiliary parameters. For instance: the joint
estimation of off-resonance frequency in T∗2 mapping,279

the joint estimation of T∗2 and field maps in water and
fat parameter estimation,272,280,281 the joint estimation
of flip angles and proton density maps in T2 mapping,282

the joint estimation of steady-state signal, equilibrium
signal, and effective relaxation rate in T1 mapping,283-285

the joint estimation of tracer kinetic model parame-
ters in T1 mapping,286 and the joint estimation of phase
parameters in multishot diffusion imaging.287,288

Regularized direct reconstruction. To improve the per-
formance of direct reconstruction, prior information about
the qMRI parameters to be estimated can be incorpo-
rated by adding regularization terms, such as Tikhonov
regularizer,274 l1 norm regularizer,289 and weighted l1
ball regularizer268,290 to the cost function described by
Equation (24). These priors can promote the sparsity

of the parameter maps in different transform domains,
such as total variation transform,269,286,291-294 the wavelet
transforms,281,283-285,295-298 the total generalized variation
transform,299 the fractional variation constraint,282 the sur-
facelet transform,300,301 patch-based difference operator,302

and the finite difference transform.303

In these cases, the optimization problem (24) is modi-
fied to include regularizer terms yielding

X̂ = arg min
X

||Y −  (X) ||22 +
nt∑

i
𝜆i||𝜙i(X)||l. (25)

Furthermore, it has been proposed to jointly estimate
the coil sensitivity maps along with the qMRI parameters
in direct reconstruction, where a Sobolev norm is applied
to these maps to enforce smoothness.284,285,296 Addition-
ally, to enforce phase smoothness in the joint reconstruc-
tion of phase and qMRI parameters, application of an l2
norm regularization on the spatial gradient of the phase
maps has been proposed.294

Joint image reconstruction and parameter estimation. In
some applications, parameter maps are estimated jointly
with the images:304,305

X̂, Î = arg min
X,I

||I − (X)||22 + ||Y −  (X) ||22 (26)

+𝜆1||𝜙1(I)||l + 𝜆2||𝜙2(X)||l .

Estimating both contrast images and parameter maps
allows the application of prior information in both the
parameter and image domains. To promote local coher-
ence of contrast images, it has been proposed to apply a
low-rank prior on contrast images using a nuclear norm
regularizer term in direct reconstruction.286

Combination with other techniques. Techniques in the
direct model-based reconstruction subcategory have been
combined with other qMRI reconstruction techniques.
High acceleration rates have been achieved by a combina-
tion of direct reconstruction of T2 maps with PI techniques
where the first echo in a multi-echo gradient echo scans
is used for GRAPPA calibration.306 The combination of
direct reconstruction and PI allows for exploiting the prior
knowledge from both local k-space dependencies and the
physical signal model, which has been investigated in
various organs in human body.306-308 Furthermore, direct
reconstruction has been combined with SMS acquisitions,
by incorporating the SMS encoding matrix into the encod-
ing operator  .285

Optimization algorithms. Minimizing the cost func-
tion of a direct model-based reconstruction problem
is often challenging as it involves a nonlinear opti-
mization problem. To solve this problem, exponential
models can be approximated with their Taylor series
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12 SHAFIEIZARGAR et al.

expansion281,302 or linearized in a small neighborhood
using the Gauss–Newton approach.299 Additionally,
the nonlinear optimization problem can be treated as
a tomography problem and solved using large-scale
nonlinear optimization routines.278,309 The computa-
tional time of techniques in direct reconstruction can
be decreased using block-wise decomposition of the cost
function in combination with a specific uniform under-
sampling pattern.310 In case multiparametric models
are used, advanced solvers such as Stochastic Gradient
Langevin dynamics,286 regularized trust region continua-
tion techniques,279 or alternating minimization288,295 have
been proposed to optimize the nonlinear cost-function
jointly for different parameters. Furthermore, it has
been proposed to automatically scale the unknown
parameters in the joint optimization, which numerically
balances the partial derivatives of the multiparametric
model to improve the conditioning and hence ease the
optimization.311

4.2.2 Direct learning-based reconstruction

Techniques in the direct learning-based reconstruction
subcategory aim to replace the direct model-based recon-
struction with a neural network to estimate qMRI parame-
ter maps directly from the acquired k-space data. The neu-
ral network  has undersampled k-space data as input,
that is, Ž = Y and estimated qMRI parameter maps as out-
put, that is, X̂ = (Ž|𝜽). The training process for optimiz-
ing network parameters 𝜃 is similar to Equation (20), with
Wt and Zt denoting the reference parameter maps and
undersampled k-space data of a training dataset, respec-
tively.

The computational costs of training a neural
network that performs direct estimation of parameter
maps from k-space data are high. Therefore, alternatively,
neural networks have been proposed to improve parts of
the techniques in the direct model-based reconstruction
approach.312-316 For instance, deep learning networks have
been designed to regularize the estimation of parameter
maps in Equation (24).312-314 Similarly, neural networks
have been proposed to estimate the initial parameter maps
of the direct model-based reconstruction from undersam-
pled k-space data.314 Further, it has been proposed to
predict the derivatives of a direct forward model using a
pretrained neural network, decreasing the computation
time for direct model-based reconstruction.315

Finally, a self-supervised learning-based approach has
been proposed to perform real-time parameter mapping
for transient imaging.316 In this approach, the Fourier
Transform of the parameter maps is computed from the
undersampled k-space data, after which parameter maps
are obtained by Fourier Transform.

5 RESULTS: GRAPHICAL
REPRESENTATION

The current section presents figures that visualize the
distribution of the 292 reviewed papers over different
categories. Figure 3A shows that 240 papers were cate-
gorized as indirect reconstruction, whereas the remain-
ing 52 papers were categorized as direct reconstruction.
Figure 3B shows a further subcategorization of the indi-
rect reconstruction category, classifying the papers based
on their image reconstruction step (top) and parameter
estimation step (bottom). Note that the subcategories FTc

F I G U R E 3 Distribution of articles
included in the review: (A) direct versus
indirect categories; (B) Image reconstruction
(top) and parameter estimation (bottom)
within the indirect category.
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SHAFIEIZARGAR et al. 13

F I G U R E 4 The distribution of articles included in this review
over the different classes of target quantitative magnetic resonance
imaging parameters. The letter J in front of the parameter indicates
joint estimation of multiple quantitative parameters.

(top) and model fitting (bottom) correspond with the con-
ventional image reconstruction and parameter estimation
step of a classical two-step approach, respectively. Obvi-
ously, no paper selected in this review classifies for both
these subcategories, since the inclusion criteria require
a modification of at least one step of the conventional
two-step approach.

Figure 4 shows the distribution of the articles over the
following classes of target qMRI parameters:

1. Relaxometry which includes T1, T1𝜌,T1H2O,T2,T∗2 ,
proton density, spin density, magnetization transfer,
myelin water fraction, quantitative susceptibility
mapping, fat fraction, and water fraction.

2. Diffusion which includes apparent diffusion
coefficients, mean diffusivity, fractional anisotropy,
and parameters of more advanced diffusion models
that are mentioned in the table available online.

3. Temperature based on proton resonance frequency
shift.

4. Perfusion which includes parameters of arterial
spin labeling and tracer-kinetic models.

5. Flow based on velocity mapping.
6. Others which consists of Hyperpolarized 13C, tissue

sodium concentration, and Paramagnetic fluorine-19
parameters.

Figure 4 shows that about 70% of the papers reviewed
in this work focus on relaxometry.

Figure 5 shows the number of papers reviewed in this
work that consider a specific category of target parame-
ters while presenting a novelty that can be categorized to
one of the image reconstruction subcategories (Figure 5A),
parameter estimation subcategories (Figure 5B) or direct
techniques subcategories (Figure 5B) that were described
in Section 3 and 4 and summarized in Figure 2.

Similarly, Figure 6 shows the number of papers that
target a specific application domain while presenting a
novelty that can be categorized to one of the image recon-
struction subcategories (Figure 6A), parameter estimation
subcategories (Figure 6B), or direct techniques subcate-
gories (Figure 6B). It can be observed from Figure 6 that
the main application domain is brain MRI, while lung MRI
(not specified, but included in the category “others”) is the
least covered.

Figure 7 demonstrates the distribution of articles over
the publication year. It can be seen that 167 out of the
292 reviewed papers were published from 2019 to 2022.
After 2012, the variety of targeted parameters (Figure 7A)
and the application domains (Figure 7B) increased. Fur-
thermore, it can be observed in Figure 7C,D that the
learning-based techniques started to be used in param-
eter estimation in 2017 and in image reconstruction in
2019. Figure7E shows the number of articles that included
a public link to the acquired datasets or the imple-
mented code, in different years. The individual links
are available in Table 3 and are summarized in this
GitBook page.

F I G U R E 5 The number
of articles that consider a
specific class of target
parameters, while presenting a
novelty that can be categorized
to one of the image
reconstruction subcategories
(A), parameter estimation
subcategories (B), or direct
reconstruction subcategories
(B). The letter J in front of the
parameter indicates joint
estimation of multiple
quantitative parameters.
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F I G U R E 6 The number of articles
that consider a specific application domain,
while presenting a novelty that can be
categorized to one of the image
reconstruction subcategories (A), parameter
estimation subcategories (B), or direct
reconstruction subcategories (B).

6 DISCUSSION

This work describes and categorizes the different recon-
struction techniques used for undersampled qMRI acqui-
sitions in a unified mathematical framework, focus-
ing on their methodological contribution while ignoring
case-specific variables. Accelerated qMRI methods have
enabled for example T1 and T2 mapping of the whole
brain with 1 mm3 resolution in just 3 min126,152 and car-
diac T1 and T2 mapping with a single breath-hold scan in
about 16 s.141

Accelerated qMRI is an active, fast-growing research
field, a trend supported by the observation that around half
of the papers included in this work were published in the
last 3 years. The growing number of publications and the
emergence of new methodologies, such as learning-based
techniques, indicate the interest of the research commu-
nity in further acceleration of qMRI as well as in more
accurate and trustworthy techniques. Figure 7E, shows
an increasing trend in the number of articles with pub-
licly available code or data, suggesting improvements in
transparent developments and collaborations.

The distribution of articles over the years suggests a
gradually increasing application of all techniques. How-
ever, a jump can be observed in 2016 for FTc and mul-
ticontrast PI subcategories in image reconstruction and
for dictionary matching subcategory in parameter estima-
tion. This jump can be related to the emergence of tran-
sient response multi-parametric imaging techniques236

that often reconstruct the contrast images using FTc
and PI techniques and remove the undersampling arti-
facts in the parameter estimation step using dictionar
y matching.

The distribution over target parameters that can be
observed in Figure 7A shows an inclination toward inves-
tigating relaxometry. The reasons contributing to this
could be the large variety and accessibility of relaxom-
etry imaging sequences, and the wider availability of

relaxation phantoms compared to other parameters. Other
modalities, such as diffusion MRI, result in contrast
images with lower signal-to-noise ratio values compared
to relaxometry imaging, which creates a need for more
data samples.317 In perfusion imaging, in addition to the
problem of low signal-to-noise ratio, there is a lack of a gold
standard for validating the results, as designing a perfusion
phantom is challenging.318 These reasons can contribute to
making relaxometry a better candidate for undersampled
acquisitions.

The brain is the most investigated application domain
for qMRI techniques. With the many properties that MRI
can measure, it is uniquely positioned to study the com-
plex composition and abnormalities in the brain. With the
relative absence of motion and other disturbing factors,
combined with strong interest from the neurological and
neuroscience communities, it is logical that many tech-
niques are first proposed for brain imaging. Next to the
brain, cardiac applications are highly investigated with
accelerated qMRI techniques. qMRI enhances the knowl-
edge of cardiac function, volume, and tissue characteriza-
tion. It allows for the spatial visualization of changes in
the myocardium based on changes in myocardial relax-
ation times and flows, enabling the evaluation of diffuse
changes within the myocardium. In this way, cardiac qMRI
facilitates exploring the link between biology and the clin-
ical manifestation of cardiac diseases and is an impor-
tant imaging modality. However, cardiac imaging is more
challenging than brain imaging due to substantial non-
rigid motion during the scan, which is unavoidable during
the long scan time of qMRI. Therefore, qMRI techniques
facilitated by simultaneous motion correction are of great
interest.153,212

Lung imaging is only one of the least investigated appli-
cation domains in the included studies. The reasons con-
tributing to this are the lung’s sparse soft tissue structures,
low proton density, and larger susceptibility variations due
to multiple interfaces between air and soft tissue, which
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F I G U R E 7 Distribution of articles in different
years: (A) the number of articles targeted on specific
classes of parameters in each year, (B) the number of
articles targeted on specific application domains in
each year, (C) the number of articles presenting a
novelty related to each subcategory of image
reconstruction in each year, (D) the number of
articles presenting a novelty related to each
subcategory of parameter estimation and direct
reconstruction in each year. (E) the number of papers
that shared code and data. The year 2022 includes the
articles that are published until July.

hinder MRI signal generation. The lack of multiple con-
trasts in lung tissue limits the clinical application of qMRI
for this organ.319

Most of the techniques discussed in this work are
applied to data acquired with MR sequence settings, such
as echo time and flip angles, optimized for a fully sampled
scan. Additionally optimizing the undersampling pattern
along with MR sequence settings can further improve the
results.320 However, given the many possible combina-
tions of acquisition settings and undersampling patterns,

empirical optimization of in vivo precision is impractical.
Hence, efforts for in-silico evaluation, such as predict-
ing time efficiency,12,266,320-325 or accuracy,118 are relevant.
Recently, automated learning-based methodologies have
been proposed to select an optimal sampling strategy inde-
pendent of the model.326 Similarly, owing to the develop-
ment of modern data science tools such as auto differen-
tiation ability, it is possible to develop neural networks to
estimate parameter maps by minimizing a nonlinear loss
function based on the Bloch equations.327
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The present study has some limitations. Although we
report on the theoretical principle behind each technique,
we do not report on implementation details as this was
considered beyond the scope of this work. The implemen-
tation not only affects the computational cost and run time
of each technique, but the choice of solver also affects
the finding of the optimal solution. We neither aim to
rank techniques because comparing performance in terms
of reported acceleration factor, scan time, resolution, and
signal-to-noise ratio is complicated by the significant dif-
ferences in anatomical locations, hardware, and param-
eters with which the techniques have been presented. It
should be noted that recent techniques for qMRI have been
proposed that directly estimate qMRI maps from a single
contrast image, using data-driven strategies.328-330 These
techniques are not included in this study.

qMRI is a promising field, but scan time reduction is
only one of the main obstacles to its clinical application.
In addition to the long scan time, accurate estimation of
parameters is a fundamental challenge in qMRI,331 which
becomes even more prominent in accelerated qMRI. The
reconstruction techniques often introduce some regular-
ization and impose assumptions on parameter values that
may be invalid and bias the estimated parameters. This cre-
ates a trade-off between acceleration and accuracy, which
needs to be studied prior to introducing a technique. More-
over, it is crucial to account for variabilities introduced by
hardware and acquisition settings.332

To implement qMRI in clinical routines, further
research on clinical interpretation of the biomarkers
extracted from qMRI maps is necessary, since these
biomarkers are conventionally defined on the weighted
images. Synthetic weighted images produced from qMRI
could bridge the direct use of quantitative maps and the
current scheme where weighted images are used.133 Clin-
ical routines are often a combination of various sequences
for different weighted images. A single qMRI scan from
which synthetic weighted images are produced could
reduce the repetitive acquisition of information shared
among the weighted images, which can save scan time.

The unified mathematical framework presented in this
work facilitates comparing accelerated qMRI techniques
on theoretical grounds, such as the type of prior assump-
tions made. It highlights the essential aspects critical to the
state-of-the-art qMRI reconstruction techniques, which
may guide future studies. Furthermore, this review study
provides an overview of the distribution of reviewed recon-
struction techniques over the application domains, param-
eters of interest, and the years of publication, which facili-
tates exploring existing trends and gaps in current studies.
We hope that this information helps researchers to propose
new combinations of techniques or find new applications
for promising techniques.
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APPENDIX

T A B L E A1 List of the symbols and mathematical notations.

Symbol Description

(□) Functional dependency

|□| Number of elements

||□||l Denotes lth norm

□̃ Defines continuous space or parameters

□̂ Estimated parameter

{□} Concatenation

bold letters Vectors

n□ Number of elements in dimension □

C ∈ Cns×n𝑗 Coil sensitivity maps

D ∈ Cnc×nd Dictionary of signal evolutions

dq Index for digitization step for each parameter in the dictionary

 ∈ Cnsncnk×ncn𝑗 Encoding operator that maps images to k-space

 Neural network

I ∈ Cnc×n𝑗 Matrix of contrast images

 Loss function

L ∈ Cnc×n𝑗 The low-rank component of I when I is separated into its sparse and low-rank component

 Function that computes the difference between the simulated signal and the reconstructed signal

m Index for motion states

N ∈ Cnc×ns×nk Array of complex valued, zero-mean Gaussian noise

nb Number of basis functions selected in low-rank reconstruction (indexed by b)

nc Number of contrasts (indexed by c)

nd Product of the digitization steps for each parameter in the dictionary, indexed by d (nd =
∏

q ndq )

ni Number of sparsifying transforms in a regularized reconstruction (indexed by i)

n𝑗 Number of voxels in each contrast image (indexed by 𝑗)

nk Number of k-space samples per contrast state (indexed by k)

nq Number of qMRI parameters estimated in a scan (indexed by q)

ns Number of coil sensitivity maps (indexed by s)

nt Number of training datasets in deep learning approaches (indexed by t)

𝑗 Patch selection operator

r𝑗 ∈ R3 3D image space coordinate

 Operator that converts the Fourier representation of images into defined structured matrices

S ∈ Cnc×n𝑗 The sparse component of I when I is separated into its sparse and low-rank component

 ∶ Rnq×n𝑗 → Rnc×n𝑗 Function representing a signal model

v ∈ R3 3D Fourier space coordinate

W Output of a neural network

Wt Training dataset for a neural network (reference)

X ∈ Rn𝑗×nq Matrix of parameters

Y ∈ Cnc×ns×nk Array of acquired k-space points
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28 SHAFIEIZARGAR et al.

T A B L E A1 (Continued)

Symbol Description

Ž Input of a neural network

Zt Training dataset for a neural network (undersampled)

𝚪 ∈ Cnc×nb2 Motion basis function

𝛾 Low-rank regularizer weight

𝜽 Trainable parameters of a neural network

𝜆 Sparsity-based regularizer weight

𝝈 ∈ Cnb×n𝑗 Spatial weight

𝝈̌ ∈ Cnb1×nb2×n𝑗 Tensor representing spatial weights for two basis functions with nb1 and nb2 basis functions selected

𝜙 Sparsifying operator

𝝍 ∈ Cnc×nb Subspace basis function matrix with nb basis functions

𝝍̌ ∈ Cnc×nb1 Subspace basis function matrix with nb1 basis functions

Ω ⊂ R3 3D Fourier space

T A B L E A2 The search query used for each database.

Database Query

Embase.com (’imaging’/exp OR ’nuclear magnetic resonance imaging’/exp OR (fingerprint* OR MRF OR
MR OR magnetic-resonan* OR qMRI OR CPMG-sequence* OR MRI OR imaging):ab,ti,kw)
AND (’acceleration’/de OR ’deep learning’/de OR (under-sampl* OR undersampl* OR accel-
erat* OR low-rank* OR compress*-sens* OR constrain* OR sub-space* OR subspace* OR
deep-learning*):ab,ti,kw) AND (’diffusion tensor imaging’/de OR ’diffusion weighted imag-
ing’/de OR ’magnetic resonance thermometry’/exp OR (diffus*-weight* OR T1 OR T2
OR T2STAR OR T-1 OR T-2 OR T-2STAR OR relaxometr* OR myelin-water* -fract* OR
diffusion*-kurtos* OR (diffusion* NEAR/3 (imag* OR MRI OR MR)) OR R1 OR R2 OR
R2STAR OR DTI OR DWI OR DKI OR (quanti* NEAR/3 (magn*-reson* OR MRI OR
MR)) OR ((MR OR magnetic-resonan*) NEAR/3 (thermo* OR temperature*)) OR IVIM OR
intravoxel-incoherent-motion*):ab,ti,kw) AND (’image reconstruction’/de OR (reconstruct*
OR mapping* OR estimat*):ab,ti,kw)

Medline (exp Magnetic Resonance Imaging/ OR (fingerprint* OR MRF OR MR OR magnetic-resonan*OR
qMRI OR CPMG-sequence* OR MRI OR imaging).ab,ti,kf.) AND (Acceleration/ OR
Deep Learning/ OR (under-sampl* OR undersampl* OR accelerat* OR low-rank* OR
compress*-sens* OR constrain* OR sub-space* OR subspace* OR deep-learning*). ab,ti,kf.)
AND (Multiparametric Magnetic Resonance Imaging/ OR exp Diffusion Magnetic Resonance
Imaging/ OR (diffus*-weight* OR T1 OR T2 OR T2STAR OR T-1 OR T-2 OR T-2STAR OR
relaxometr* OR myelin-water*-fract* OR diffusion*-kurtos* OR (diffusion* ADJ3 (imag* OR
MRI OR MR)) OR R1 OR R2 OR R2STAR OR DTI OR DWI OR DKI OR (quanti* ADJ3
(magn*-reson* OR MRI OR MR)) OR ((MR OR magnetic-resonan*) ADJ3 (thermo* OR tem-
perature*)) OR IVIM OR intravoxel-incoherent-motion*).ab,ti,kf.) AND (Image Processing,
Computer-Assisted/ OR (reconstruct* OR mapping* OR estimat*).ab,ti,kf.)

Cochrane Central ((fingerprint* OR MRF OR MR OR magnetic NEXT resonan* OR qMRI OR CPMG NEXT
sequence* OR MRI OR imaging):ab,ti,kw) AND ((under NEXT sampl* OR undersampl* OR
accelerat* OR low NEXT rank* OR compress* NEXT sens* OR constrain* OR sub NEXT space*
OR subspace* OR deep NEXT learning*):ab,ti,kw) AND ((diffus* NEXT weight* OR T1 OR T2
OR T2STAR OR T NEXT 1 OR T NEXT 2 OR T NEXT 2STAR OR relaxometr* OR myelin NEXT
water* NEXT fract* OR diffusion* NEXT kurtos* OR (diffusion* NEAR/3 (imag* OR MRI OR
MR)) OR R1 OR R2 OR R2STAR OR DTI OR DWI OR DKI OR (quanti* NEAR/3 (magn*
NEXT reson* OR MRI OR MR)) OR ((MR OR magnetic NEXT resonan*) NEAR/3 (thermo*
OR temperature*)) OR IVIM OR intravoxel NEXT incoherent NEXT motion*):ab,ti,kw) AND
((reconstruct* OR mapping *OR estimat*):ab,ti,kw)
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SHAFIEIZARGAR et al. 29

T A B L E A2 (Continued)

Database Query

Web of Science (TI=(fingerprint* OR MRF OR MR OR magnetic-resonan* OR qMRI OR CPMG-sequence*OR
MRI OR imaging) OR AB=(fingerprint* OR MRF OR MR OR magnetic-resonan* OR qMRI
OR CPMG-sequence* OR MRI OR imaging)) AND (TI=(under-sampl* OR undersampl*OR
accelerat* OR low-rank* OR compress*-sens* OR constrain* OR sub-space* OR subspace*
OR deep-learning*) OR AB=(under-sampl* OR undersampl* OR accelerat* OR low-rank*
OR compress*-sens* OR constrain* OR sub-space* OR subspace* OR deep-learning*)) AND
(TI=(diffus*-weight* OR T1 OR T2 OR T2STAR OR T-1 OR T-2 OR T-2STAR OR relax-
ometr* OR myelin-water*-fract* OR diffusion*-kurtos* OR (diffusion* NEAR/2 (imag* OR
MRI OR MR)) OR R1 OR R2 OR R2STAR OR DTI OR DWI OR DKI OR (quanti* NEAR/2
(magn*-reson*OR MRI OR MR)) OR ((MR OR magnetic-resonan*) NEAR/2 (thermo* OR
temperature*)) OR IVIM OR intravoxel-incoherent-motion*) OR AB=(diffus*-weight* OR
T1 OR T2 OR T2STAR OR T-1 OR T-2 OR T-2STAR OR relaxometr* OR myelin-water
*-fract* OR diffusion*-kurtos* OR (diffusion* NEAR/2 (imag* OR MRI OR MR)) OR R1 OR
R2 OR R2STAR OR DTI OR DWI OR DKI OR (quanti*NEAR/2 (magn*-reson* OR MRI
OR MR)) OR ((MR OR magnetic-resonan*) NEAR/2 (thermo* OR temperature*)) OR IVIM
OR intravoxel-incoherent-motion*)) AND (TI=(reconstruct* OR mapping* OR estimat*) OR
AB=(reconstruct* OR mapping* OR estimat*))

Google Scholar "under-sampling"|undersampling|acceleration|model-based|low-rank|"low rank"|"deep learn-
ing" "q| quantitative MRI"|"diffusion imaging| MRI|weighted" T1|T2|R1|R2|DTI|DWI|DKI
reconstructed|reconstruction|mapping|map|mapped| estimation|estimated

T A B L E A3 List of the reviewed papers labeled with first authors’ last names (Author) along with the year of the publication (year),
reference number in this paper (Ref), focused qMRI parameter (Parameter), qMRI reconstruction categories that are proposed considering
indirect and direct techniques (category) and the subcategories used for image reconstruction (Recon) and parameter estimation (Param) in
indirect categories, application domain with respect to the type of the study (App) and the organ that is studied (Organ), and finally the
accessibility of the study regarding the links to data or code that are provided (Data/Code).

Author Year References Parameter Category Recon Param App Organ Data/code

Ben-Eliezer 2014 238 Rel Indirect FTc DM Human Brain L1

Boyacioglu 2021 244 Rel Indirect FTc DM Human Brain NA

Amthor 2017 237 Rel Indirect FTc DM Human Brain NA

Deshmane 2018 227 Rel Indirect FTc DM Human Brain NA

Jiang 2017 232 Rel Indirect FTc DM Human Brain NA

Korzdorfer 2018 228 Rel Indirect FTc DM Human Brain, Abdomen NA

Korzdorfer 2019 243 Rel Indirect FTc DM Human Brain NA

Lattanzi 2018 226 Rel Indirect FTc DM Human Leg L1

Ma 2018 229 Rel Indirect FTc DM Human Brain NA

Pierre 2016 235 Rel Indirect FTc DM Human Brain NA

Valenberg 2019 230 Rel Indirect FTc DM Human Brain L1

Yang 2018 231 Rel Indirect FTc DM Human Brain NA

Gu 2022 242 Rel Indirect FTc DM Human Brain NA

MacAskill 2021 234 Rel Indirect FTc DM Human Kidney NA

Marriott 2021 239 Rel Indirect FTc DM In vitro In vitro NA

Marty 2020 246 Rel Indirect FTc DM Human Leg, MSK L1

Shpringer 2022 245 Rel Indirect FTc DM Human Brain, Calf NA
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30 SHAFIEIZARGAR et al.

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Nagtegaal 2020 240 Rel Indirect FTc DM Human Brain L1

Balsiger 2020 333 Rel Indirect FTc LB Human Leg L1

Fang 2020 249 Rel Indirect FTc LB Human Brain NA

Fang 2017 247 Rel Indirect FTc LB Human Brain L1

Fang 2019 248 Rel Indirect FTc LB Human Brain NA

Hamilton 2021 253 Rel Indirect FTc LB Human Cardiac NA

Hermann 2021 251 Rel Indirect FTc LB Human Brain NA

Cao 2020 260 Rel Indirect FTc LB Human Brain NA

Hoppe 2019 254 Rel Indirect FTc LB Human Brain NA

Ulas 2018 255 Per Indirect FTc LB Human Brain NA

Zhang 2019 261 Rel Indirect FTc LB Human Brain NA

Barbieri 2022 263 Rel Indirect FTc LB Simulation Simulation NA

Li 2022 258 Rel Indirect FTc LB Rat Brain NA

Ouyang 2022 259 Rel Indirect FTc LB Human Brain NA

Soyak 2022 264 Rel Indirect FTc LB Human Brain NA

Chen 2016 33 Rel Indirect PI MF Human Abdomen NA

Bruce 2017 28 Diff Indirect PI MF Human Brain NA

Chen 2015 30 Temp Indirect PI MF Human Breast NA

Liu 2011 31 Rel Indirect PI MF Human Cardiac NA

Manhard 2019 32 PR Indirect PI MF Human Brain NA

Mei 2011 29 Temp Indirect PI MF Ex vivo Muscle NA

Senegas 2010 34 Rel Indirect PI MF Human Brain NA

Wang 2016 334 Temp Indirect PI MF Human Liver, Spine NA

Wang 2019 35 Rel Indirect PI MF Human Brain NA

Dai 2022 46 DR Indirect PI MF Human Brain NA

Ma 2021 44 Diff Indirect PI MF Human Brain NA

Yu 2022 37 Rel Indirect PI MF Human Brain NA

Rieger 2017 241 Rel Indirect PI DM Human Brain NA

Ye 2017 39 Rel Indirect PI DM Human Brain NA

Ye 2016 40 Rel Indirect PI DM Human Brain NA

Chen 2020 38 Rel Indirect PI LB Human Brain NA

Cohen 2018 252 Rel Indirect PI LB Human Brain NA

Gibbons 2019 42 Diff Indirect PI LB Human Brain NA

Gupta 2019 45 Diff Indirect PI LB Human Brain NA

Zhang 2020 250 Per Indirect PI LB Human Brain NA

Hong 2022 256 Rel Indirect PI LB Human Brain NA

Khajehim 2021 257 Rel Indirect PI LB Human Brain L1

Abascal 2018 53 Diff Indirect RR MF Human Lung L1

Chen 2014 49 Rel Indirect RR MF Rat Spine NA
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SHAFIEIZARGAR et al. 31

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Chen 2016 54 Diff Indirect RR MF Human Brain NA

Cao 2019 60 Temp Indirect RR MF Human Leg NA

Frahm 2019 26 Rel Indirect RR MF Human Brain NA

Gao 2014 100 Diff Indirect RR MF Human Brain NA

Haldar 2020 108 Diff Indirect RR MF Human Brain NA

Hu 2021 94 Diff Indirect RR MF Human Breast L1

Hu 2020 93 Diff Indirect RR MF Human Brain L1

Huang 2016 82 Diff Indirect RR MF Human Cardiac NA

Huang 2019 61 Diff Indirect RR MF Human Cardiac L1

Lee 2014 171 Rel Indirect RR MF Human Brain NA

Liao 2017 90 Diff Indirect RR MF Human Brain NA

Lugauer 2017 52 Rel Indirect RR MF Human Abdomen NA

Mani 2015 55 Diff Indirect RR MF Human Brain NA

Mani 2019 91 Diff Indirect RR MF Human Brain NA

Mehranian 2020 56 Per Indirect RR MF Human Brain L1

Mehta 2015 86 Rel Indirect RR MF Human Cardiac NA

Mehta 2015 87 Rel Indirect RR MF Human Cardiac NA

Odeen 2014 73 Temp Indirect RR MF Lamb Brain NA

Odeen 2014 74 Temp Indirect RR MF Phantom Phantom NA

Peng 2014 79 Rel Indirect RR MF Human Brain NA

Peng 2016 80 Rel Indirect RR MF Human Brain, Knee NA

Prakash 2015 72 Temp Indirect RR MF Ex vivo Ex vivo NA

Ramos Llorden 2020 43 Diff Indirect RR MF Human Brain NA

Saucedo 2017 106 Rel Indirect RR MF Human Brain,
Abdomen

NA

Shi 2015 27 Diff Indirect RR MF Human Brain NA

Spann 2020 68 Per Indirect RR MF Human Brain NA

Spinner 2018 78 Diff Indirect RR MF Human Brain NA

Tamada 2018 64 Rel Indirect RR MF Human Liver NA

Todd 2014 71 Temp Indirect RR MF Ex vivo Ex vivo NA

Todd 2012 70 Temp Indirect RR MF Human Brain, Muscle NA

Velikina 2013 76 Rel Indirect RR MF Human Brain NA

Velikina 2016 75 Rel Indirect RR MF Human Brain NA

Wu 2019 84 Diff Indirect RR MF Human Brain NA

Wu 2019 50 Diff Indirect RR MF Human Brain NA

Wu 2014 83 Diff Indirect RR MF Rat Cardiac NA

Zhang 2014 335 Rel Indirect RR MF Human Brain NA

Zi 2020 59 Rel Indirect RR MF Human Brain NA

Zibetti 2019 96 Rel Indirect RR MF Human Knee NA
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32 SHAFIEIZARGAR et al.

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Zimmermann 2017 95 Rel Indirect RR MF Human Brain NA

Beaumont 2021 48 Rel Indirect RR MF Human Brain L1

Burns 2014 69 Spec Indirect RR MF Human Brain NA

Chen 2022 58 F-19 Indirect RR MF Mouse Dendritic
cell

NA

Kim 2022 51 Flow Indirect RR MF Human Brain NA

Pandey 2021 57 Rel Indirect RR MF Mouse Body NA

Tourais 2022 98 Per Indirect RR MF Human Cardiac NA

Vaish 2020 67 Diff Indirect RR MF Human Brain NA

Vaish 2022 81 Diff Indirect RR MF Human Brain NA

Zong 2021 77 Diff Indirect RR MF Human Brain NA

Bustin 2019 102 Rel Indirect RR DM Human Brain, Spine L1

Bustin 2020 103 Rel Indirect RR DM Human Cardiac NA

Chen 2021 101 Rel Indirect RR DM Human Brain NA

Liao 2020 36 Diff Indirect RR DM Human Brain NA

Mazor 2018 92 Rel Indirect RR DM Human Brain L1

Milotta 2020 104 Rel Indirect RR DM Human Cardiac NA

Milotta 2020 105 Rel Indirect RR DM Human Cardiac NA

Qi 2019 88 Rel Indirect RR DM Human Cardiac NA

Qi 2019 89 Rel Indirect RR DM Human Cardiac NA

Roccia 2018 65 Rel Indirect RR DM Human Prostate NA

Wang 2016 233 Rel Indirect RR DM Simulation Brain NA

Dikaios 2021 99 Rel Indirect RR DM Human Brain NA

Song 2019 85 Rel Indirect RR LB Human Brain NA

Bhave 2016 149 Rel Indirect SCR MF Human Brain NA

Dong 2021 115 Rel Indirect SCR MF Human Brain L1, L2

Dong 2020 116 Rel Indirect SCR MF Human Brain L1

Feng 2021 117 Rel Indirect SCR MF Human Brain, Liver NA

Feng 2011 336 Rel Indirect SCR MF Human Cardiac NA

Gutjahr 2015 113 Per Indirect SCR MF Rat Cardiac NA

Bilgic 2013 181 DR Indirect SCR MF Human Brain L1

Baltes 2005 337 Flow Indirect SCR MF Human Cardiac NA

Cheng 2015 162 Diff Indirect SCR MF Human Brain NA

Doneva 2010 47 Rel Indirect SCR MF Human Brain NA

Hagio 2015 114 Rel Indirect SCR MF Human Cardiac NA

Han 2019 151 Rel Indirect SCR MF Human Cardiac NA

Huang 2012 111 Rel Indirect SCR MF Human Brain, Liver,
Cardiac

NA

Huang 2012 110 Rel Indirect SCR MF Human Brain, Liver,
Cartilage

NA
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SHAFIEIZARGAR et al. 33

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Keerthivasan 2018 122 Rel Indirect SCR MF Human Brain, Knee,
Carotid

NA

Lam 2020 123 Rel Indirect SCR MF Human Brain NA

Lee 2016 182 Rel Indirect SCR MF Human Brain L1

Li 2012 189 Rel Indirect SCR MF Mouse Cardiac NA

Zhitao 2019 129 Rel Indirect SCR MF Human Brain,
Abdomen

NA

Ma 2018 163 Diff Indirect SCR MF Human Cardiac NA

Ma 2020 159 DR Indirect SCR MF Human Brain NA

Ma 2021 130 Rel Indirect SCR MF Human Brain NA

Mandava 2018 140 Rel Indirect SCR MF Human Brain NA

Mandava 2021 166 Rel Indirect SCR MF Human Brain, Knee NA

Mani 2020 180 Diff Indirect SCR MF Human Brain NA

Mani 2015 338 Diff Indirect SCR MF Human Brain NA

McClymont 2016 63 Diff Indirect SCR MF Rat Cardiac NA

Meng 2021 173 Rel Indirect SCR MF Human Brain NA

Milshteyn 2018 174 Rel Indirect SCR MF Rat Body L1

Petzschner 2011 339 Rel Indirect SCR MF Human Brain NA

Roeloffs 2020 135 Rel Indirect SCR MF Human Brain L1

Utzschneider 2020 190 TSC Indirect SCR MF Human Calf NA

Utzschneider 2021 62 TSC Indirect SCR MF Human Calf NA

Wang 2019 155 Per Indirect SCR MF Human Carotid NA

Yaman 2020 156 Rel Indirect SCR MF Human Cardiac NA

Zhang 2020 146 Diff Indirect SCR MF Mouse Abdomen NA

Zhao 2015 164 Rel Indirect SCR MF Human Brain NA

Zhou 2021 191 Rel Indirect SCR MF Human Cardiac,
Brain

NA

Zhou 2015 340 Rel Indirect SCR MF Human Cartilage L1

Zhou 2015 148 Rel Indirect SCR MF Human Brain NA

Zhu 2018 175 Rel Indirect SCR MF Human Brain NA

Zhu 2020 176 Rel Indirect SCR MF Human Brain NA

Cao 2021 145 Rel Indirect SCR MF Human Brain NA

Cao 2022 152 Rel Indirect SCR MF Human Cardiac NA

Dong 2022 136 DR Indirect SCR MF Human Brain NA

kargas 2017 150 Rel Indirect SCR MF Human Cardiac NA

Keerthivasan 2022 168 Rel Indirect SCR MF Human Liver NA

Li 2021 124 Rel Indirect SCR MF Human Brain,
Prostate

NA

Li 2022 125 Rel Indirect SCR MF Human Brain NA

Liao 2021 185 Diff Indirect SCR MF Human Brain NA
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34 SHAFIEIZARGAR et al.

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Liu 2021 177 Rel Indirect SCR MF Human Cartilage NA

Mao 2022 160 Rel Indirect SCR MF Human Cardiac NA

Wang 2022 161 Rel Indirect SCR MF Human Liver NA

Zhang 2022 186 Rel Indirect SCR MF Human Brain L1

Zhou 2022 147 Rel Indirect SCR MF Human Brain NA

Mani 2017 179 Diff Indirect SCR MF Human Brain NA

Wen 2020 172 Diff Indirect SCR MF Human Brain NA

Asslander 2018 144 Rel Indirect SCR DM Human Brain L1

Hamilton 2020 119 Rel Indirect SCR DM Human Cardiac NA

Hamilton 2019 120 Rel Indirect SCR DM Human Cardiac NA

Zhao 2017 121 Rel Indirect SCR DM Simulation Brain NA

Bermen 2015 143 Rel Indirect SCR DM Human Brain NA

Golbabaee 2019 131 Rel Indirect SCR DM Human Brain L1

Jaubert 2020 137 Rel Indirect SCR DM Human Cardiac NA

Jaubert 2019 138 Rel Indirect SCR DM Human Cardiac NA

Cruz 2019 112 Rel Indirect SCR DM Human Brain NA

Liu 2016 192 Rel Indirect SCR DM Human Gastric NA

Tang 2018 97 Rel Indirect SCR DM Phantom Phantom NA

Zhao 2018 118 Rel Indirect SCR DM Human Brain NA

Zhao 2020 154 Rel Indirect SCR DM Human Brain NA

Zhu 2015 194 Rel Indirect SCR DM Human Brain, Spine NA

Zhu 2018 193 Rel Indirect SCR DM Human Cardiac NA

Cao 2022 167 Rel Indirect SCR DM Human Brain NA

Cao 2021 184 Rel Indirect SCR DM Human Brain NA

Cruz 2022 141 Rel Indirect SCR DM Human Cardiac,
Liver

NA

Han 2022 165 Rel Indirect SCR DM Human Heart NA

Hu 2022 183 Rel Indirect SCR DM Human Brain NA

Li 2021 187 Rel Indirect SCR DM Human Brain NA

Cruz 2022 142 Rel Indirect SCR DM Human Cardiac NA

Sen 2021 153 Rel Indirect SCR DM Human Brain NA

Mickevicius 2022 128 Rel Indirect SCR DM Human Brain, Pelvic L1

Mickevicius 2021 127 Rel Indirect SCR DM Human Brain, Pelvic NA

Pirkl 2022 134 Rel Indirect SCR DM Human Brain NA

Velasco 2021 139 Rel Indirect SCR DM Human Cardiac NA

Wang 2022 126 Rel Indirect SCR DM Human Brain L1, L2

West 2022 169 Rel Indirect SCR DM Human Brain L1

Golbabaee 2021 132 Rel Indirect SCR LB Human Brain L1

Li 2020 178 Rel Indirect SCR LB Human Brain NA

Pirkl 2021 133 Rel Indirect SCR LB Human Brain NA
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SHAFIEIZARGAR et al. 35

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Zhang 2022 170 Rel Indirect SCR LB Human Brain L1

Chan 2019 204 Rel Indirect VS MF Human Prostate NA

Darcot 2019 199 Rel Indirect VS MF Human Cardiac NA

Hilbert 2019 41 Rel Indirect VS MF Human Brain NA

Jiang 2005 195 Diff Indirect VS MF Sheep Cardiac NA

Nagtegaal 2020 207 Rel Indirect VS MF Human Brain NA

Svedin 2019 200 Temp Indirect VS MF Phantom Phantom NA

Todd 2010 198 Temp Indirect VS MF Ex vivo Ex vivo NA

Wen 2018 206 Diff Indirect VS MF Human Brain NA

Fan 2022 201 Per Indirect VS MF Human Cardiac NA

Lugand 2015 202 Rel Indirect VS MF Human Cardiac NA

Piredda 2021 210 Rel Indirect VS MF Human Brain NA

Buonincontri 2016 197 Rel Indirect VS DM Rat Brain NA

Cao 2017 205 Rel Indirect VS DM Human Brain NA

Cruz 2018 196 Rel Indirect VS DM Human Brain L1

Liao 2017 208 Rel Indirect VS DM Human Brain NA

Marty 2017 66 Rel Indirect VS DM Human Cardiac NA

Cao 2022 211 Rel Indirect VS DM Human Liver NA

Pirk 2020 209 DR Indirect VS LB Human Brain NA

Fu 2020 222 Rel Indirect LB MF Human Brain, Knee,
Abdomen

NA

Gong 2022 215 Per Indirect LB MF Human Brain NA

Yang 2019 225 Rel Indirect LB MF Human Cartilage NA

Duan 2022 221 Diff Indirect LB MF Human Lung NA

Gao 2021 219 Rel Indirect LB MF Human Brain L1

Aggarwal 2020 188 Diff Indirect LB MF Human Brain L1, L2

Hu 2021 212 Diff Indirect LB MF Human Brain, Breast L1

Mani 2020 213 Diff Indirect LB MF Human Brain NA

Zibetti 2020 214 Rel Indirect LB MF Human Knee NA

Ji 2021 220 Rel Indirect LB MF Human Brain NA

Mani 2021 217 Diff Indirect LB MF Human Brain NA

Mani 2022 216 Diff Indirect LB MF Human Brain NA

Fatania 2022 218 Rel Indirect LB DM Human Brain NA

Wu 2020 223 Rel Indirect LB LB Human Cartilage NA

Shih 2021 224 Rel Indirect LB LB Human Liver NA

Ben-Eliezer 2016 267 Rel Direct MB MB Human Brain, Spine L1

Dikaios 2020 286 PR Direct MB MB Human Liver L1

Gaur 2015 289 Temp Direct MB MB Human Brain L1

Guo 2017 298 Per Direct MB MB Human Brain L1
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36 SHAFIEIZARGAR et al.

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Hu 2019 310 Rel Direct MB MB Human Cardiac, Brain NA

Dong 2018 292 Diff Direct MB MB Human Brain NA

Awate 2013 305 Diff Direct MB MB Simulation Brain NA

Dong 2019 275 Rel Direct MB MB Simulation Brain NA

Eliasi 2014 304 Rel Direct MB MB Human Cardiac NA

Hilbert 2018 306 Rel Direct MB MB Human Brain, Knee,
Prostate, Liver

NA

Hu 2015 279 Rel Direct MB MB Phantom Brain NA

Knoll 2015 291 Diff Direct MB MB Human Brain, Knee NA

Lankford 2014 282 Rel Direct MB MB Human Brain NA

Maier 2019 299 Rel Direct MB MB Human Brain L1

Olafsson 2008 302 Rel Direct MB MB Human Brain NA

Peng 2014 295 Rel Direct MB MB Human Brain NA

Pesce 2019 268 Diff Direct MB MB Human Brain NA

Raudner 2020 307 Rel Direct MB MB Human Spine NA

Raudner 2021 308 Rel Direct MB MB Human Spine NA

Roeloffs 2016 341 Rel Direct MB MB Human Brain, Liver NA

Sbrizzi 2018 309 Rel Direct MB MB Human Brain NA

Schneider 2020 280 Rel Direct MB MB Human Liver NA

Sharma 2013 281 Rel Direct MB MB Human Liver NA

Sumpf 2014 274 Rel Direct MB MB Human Brain L1

Sumpf 2011 265 Rel Direct MB MB Human Brain NA

Sun 2019 301 Diff Direct MB MB Human Brain NA

Sun 2015 300 Diff Direct MB MB Human Brain NA

Tan 2017 311 Flow Direct MB MB Human Carotid NA

Tran-Gia 2015 270 Rel Direct MB MB Human Brain L1

Van der Heide 2020 278 Rel Direct MB MB Human Brain NA

Wang 2019 284 Rel Direct MB MB Human Cardiac L1

Wang 2017 283 Rel Direct MB MB Human Brain,
Abdomen

NA

Wang 2020 285 Rel Direct MB MB Human Brain,
Abdomen

L1, L2

Wang 2018 296 Rel Direct MB MB Human Brain,
Abdomen

NA

Welsh 2013 269 Diff Direct MB MB Human Brain NA

Welsh 2011 266 Diff Direct MB MB Human Brain NA

Wiens 2013 272 Rel Direct MB MB Human Leg, Knee,
Liver, Cardiac

NA

Zhao 2015 276 Rel Direct MB MB Human Brain NA

Zhao 2014 297 Rel Direct MB MB Human Brain NA
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SHAFIEIZARGAR et al. 37

T A B L E A3 (Continued)

Author Year References Parameter Category Recon Param App Organ Data/code

Zhao 2016 277 Rel Direct MB MB Human Brain NA

Zhao 2016 273 Rel Direct MB MB Human Brain NA

Zhu 2012 303 Diff Direct MB MB Rat Brain NA

Hanhela 2022 294 Rel Direct MB MB Mouse Kidney L1

Hufken 2022 293 Diff Direct MB MB Human MSK NA

Pesce 2021 290 Diff Direct MB MB Human Brain NA

Shafieizargar 2021 287 Diff Direct MB MB Mouse Brain NA

Zhu 2021 271 Rel Direct MB MB Human Brain L1

Jun 2021 314 Rel Direct LB LB Human Brain NA

Liu 2019 312 Rel Direct LB LB Human Knee NA

Liu 2020 313 Rel Direct LB LB Human Brain, Knee NA

Liu 2022 315 Rel Direct LB LB Human Brain NA

Liu 2021 316 Rel Direct LB LB Human Brain NA

Abbreviations: Diff, diffusion; DM, dictionary matching; LB, learning-based; MB, model-based; MF, model fitting; Per, perfusion; PI, multicontrast PI; Rel,
relaxometry; RR, regularized reconstruction; SCR, subspace constrained reconstruction; Spec, spectroscopy; Temp, temperature; TSC, tissue sodium
concentration; VS, view-sharing.
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