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Abstract
Quantum transport simulations based on the non-equilibrium Green’s function formalism require accurate integration of the 
charges in the system. We demonstrate our implementation of a full charge integration scheme, which automatically incor-
porates electronic screening effects and is predicted to incorporate interface charges more correctly than the simpler excess 
charge approach. We first show that under certain conditions the two approaches are equivalent, e.g., for single doping type 
purely semiconducting devices. We then demonstrate that for devices containing metals, the two approaches may sometimes 
demonstrate significantly different behavior.
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1  Introduction

Two-dimensional (2D) materials are interesting candidates 
for next-generation ultra-scaled devices. They are predicted 
to provide excellent electrostatic control, which reduces 
short channel effects [1, 2], and to be more resilient against 
device variation due to surface defects and roughness [3, 
4]. ATOMOS [5], our quantum transport solver combining 
density functional theory (DFT) and the non-equilibrium 
Green’s function formalism (NEGF), has been shown to be 
effective at screening material choices and device designs 
for devices based on 2D materials.

One of the major limitations of 2D materials is the dif-
ficulty in achieving high performing metallic contacts [1]. 
Top-contacted metals often result in high contact resist-
ances due the emergence of a van der Waals gap related to 

no out-of-plane dangling bonds in the 2D material, while 
side-contacted metals suffer from limited contact area and 
difficulties in device fabrication [6]. To not only screen the 
intrinsic properties of 2D materials but also their interac-
tions with metals, accurate simulations of metal-2D material 
interfaces are highly desirable.

In previous work, ATOMOS relied on an excess charge 
approach (ECA), which only assigns charge to electrons 
(holes) in the conduction (valence) band. It is presently 
unclear whether this approach can accurately simulate the 
behavior at metallic interfaces, where there is no clear con-
duction band or valence band. Previous work [7] has shown 
that a full charge approach (FCA), where charge is assigned 
to all electronic states, can be important for the correct simu-
lation of nanodevices based on conventional 3D materials, 
especially at certain interfaces.

In Sect. 2, we recapitulate the NEGF formalism and dis-
cuss the two models, i.e., the ECA and FCA. In Sect. 3, 
we demonstrate some of the intricacies in employing the 
FCA. This is done using a WS2 metal-oxide-semiconductor 
field-effect transistor (MOSFET) as a test case, as the two 
approaches are expected to be largely equivalent for prob-
lems without interfaces. In Sect. 4, we employ a 2D material 
HfTe2 contacted HfS2 transistor to evaluate the pros and cons 
of both models for the accurate simulation of semiconduct-
ing metallic interfaces.
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2 � Excess charge versus full charge approach

2.1 � The non‑equilibrium Green’s function formalism

The NEGF formalism is a quantum transport formalism 
which can naturally incorporate phenomena such as con-
tacts at different potentials and scattering effects. Using a 
non-orthogonal basis set, the transport characteristics can 
be calculated from an effective single particle device Ham-
iltonian matrix H and overlap matrix S, usually obtained 
from DFT,

Here, G, G† , G< and G> are the retarded, advanced, lesser 
and greater Green’s function, respectively [8]. The diagonal 
elements of the latter two are related to the existence of filled 
and empty states at energy E.

Four types of self-energy Σ∗ are used to incorporate the 
interaction with contacts and phonon scattering. Consider a 
slabbed description of the device, i.e., the device is divided 
into slabs which only interact with their directly neighbour-
ing slabs. The Hamiltonian and overlap matrix can then be 
divided into blocks with indices corresponding to the slabs, 
Hk,l and Sk,l . Hence, Hk,l = Sk,l = 0 if |k − l| > 1 . The slab 
indices k = 1, ...,N correspond to the actual device and indi-
ces k = 0,−1, ... ( k = N + 1,N + 2, ... ) correspond to a left 
(right) contact in equilibrium, described by the Fermi-Dirac 
s t a t i s t i c s  f u n c t i o n ,  f1 =

(
1 + exp(Ef1

∕kBT)
)−1 (

f2 =
(
1 + exp(Ef2

∕kBT)
)−1) . The retarded/advanced self-

energy, Σ(†) , and lesser and greater self-energy, Σ≶ , are then 
only nonzero at the leftmost and rightmost slab. The expres-
sions for the leftmost slab are given by [8],

with �i,j = Hi,j − (E + i�)Si,j and g(†) equal to the retarded/
advanced Green’s function of the contact in equilibrium, 
before it is contacted to the device. The calculation of this 
quantity is easily achieved using the Sancho-Rubio algo-
rithm [9].

(1)G = ((E + i�)S − H − Σ)−1

(2)G† = ((E − i�)S − H − Σ†)−1

(3)G≶ = GΣ≶G†.

(4)Σ
(†)

1,1
= �1,0g

(†)

0,0
�0,1

(5)
Σ<
1,1

= if1Γ1,1

= −f1(Σ1,1 − Σ
†

1,1
)

(6)
Σ>
1,1

= −i(1 − f1)Γ1,1

= (1 − f1)(Σ1,1 − Σ
†

1,1
),

In addition to the contacts, there is also a contribution to 
Σ due to phonon scattering. The orthogonal scattering self-
energy is given by [10],

where we only consider local scattering and q and �q are the 
phonon wave vector and corresponding angular frequency, 
Nq =

(
exp(ℏ�q∕kBT) − 1

)−1 is the phonon occupation num-
ber, Mq are the electron–phonon matrix elements and V is 
the volume of the sample. The non-orthogonal scattering 
self-energies are then given by [11],

The latter formula is an approximation which only considers 
the imaginary part of the scattering self-energy. The real part 
of the scattering self-energy typically results in a small shift 
of the energy levels and can safely be neglected [10].

From the Green’s functions, it is possible to calculate 
macroscopic properties, such as electron and hole concen-
trations, nk and pk , and the currents between slabs, Ik,l [8],

where ns is due to spin degeneracy.
The carrier concentrations give rise to a charge density 

� , which affects the effective one-particle Hamiltonian H 
through a change in potential. The NEGF formalism thus 
usually results in an iterative procedure where the charge 
density has to be calculated multiple times. The calculation 
of the charge density is, however, prohibitively expensive 
due to the large energy windows in (11) and (12), and thus 
requires an approximate approach.

(7)Σ<
scat,⟂

(E) =
∑

q

|Mq|2

V

(
Nq +

1

2
±

1

2

)
G<(E ± �𝜔q)S

(8)Σ>
scat,⟂

(E) =
∑

q

|Mq|2

V

(
Nq +

1

2
±

1

2

)
G>(E ∓ �𝜔q)S

(9)Σ
≶

scat =
1

2

(
SΣ

≶

scat,⟂
+ Σ

≶

scat,⟂
S
)

(10)Σscat =
1

2

(
Σ>
scat

− Σ<
scat

)
.

(11)nk = −
ins

2𝜋 ∫
+∞

−∞

(G<S)k,kdE

(12)pk =
ins

2𝜋 ∫
+∞

−∞

(G>S)k,kdE

(13)Ik,l =
qns

2𝜋� ∫
+∞

−∞

(𝜏k,lG
<
l,k
− 𝜏l,kG

<
k,l
)dE.
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2.2 � The excess charge approach

In the ECA model, as implemented in ATOMOS, the charge 
density is calculated as the sum of the charge density due to 
electrons (and holes), calculated as filled (empty) states above 
(below) a certain charge neutrality level (CNL).

with

where the indices were dropped for the sake of clarity. The 
CNL is set to the Fermi level for metals and set to the middle 
of the band gap for semiconductors. The major benefit of 
the ECA is that one can significantly reduce the computa-
tional cost of the calculation by introducing a cutoff for the 
integral over energy. Due to the exponential decay of the 
Fermi-Dirac statistics function, the number of filled (empty) 
states at high (low) energy will be small and this part of the 
integral can safely be neglected, significantly reducing the 
number of energy points for which the Green’s function must 
be calculated.

The disadvantage of this approach is twofold. First, the 
CNLs are usually taken from bulk simulations, but it is 
presently unclear whether these CNLs are also accurate for 
heterojunctions, such as semiconductor–metal interfaces at 
contacts [12]. Second, the ECA does not account for charge 
transfer due to the deformation of states. Filled states in the 
valence band that deform to screen electric fields do not con-
tribute to the charge density, and hence, the screening is not 
included. One can account for this screening by introducing 
an experimental or DFT-based permittivity value, extracted 
from bulk material, in the Poisson solver [5].

2.3 � The full charge approach

In the FCA, charge is attributed to all filled states, which 
allows for screening by electronic states and does not rely 
on CNLs extracted from bulk simulations. Total neutrality 
is imposed by also taking the charge on the atom cores in 
equilibrium into account.

with

(14)� = q(p − n)

(15)n = −
ins

2𝜋 ∫
+∞

ECNL

G<SdE

(16)p =
ins

2𝜋 ∫
ECNL

−∞

G>SdE

(17)� = q(ncores − nelectrons)

(18)nelectrons = −
ins

2𝜋 ∫
+∞

−∞

G<SdE

The disadvantage of this approach lies in the fact that it is 
impossible to reduce the energy window over which the 
Green’s function must be integrated. A solution can be found 
by splitting the Green’s function into an equilibrium part, 
G<

eq
 , and a non-equilibrium part, G<

neq
 [7, 13]. Considering 

again two contacts, with broadening matrices Γ1 and Γ2 [14], 
at which carriers are injected according to the Fermi-Dirac 
statistics f1 and f2 , respectively,

Here, fr is a reference Fermi-Dirac statistic function with 
corresponding Fermi level Efr

 , usually taken as the Fermi 
level at one of the contacts, Ef1

 or Ef2
 . The equilibrium part 

corresponds to the device in equilibrium with this reference 
level, i.e., states in the device are filled up according to fr . 
The non-equilibrium part corresponds to the difference com-
pared to this reference equilibrium. Neglecting the scattering 
part for now, G<

neq
 only depends on the differences of two 

Fermi-Dirac statistics functions f1∕2 − fr , which falls off rap-
idly at high and low energies. This allows for a cutoff of the 
energy integral similar to the ECA. The energy window of 
G<

eq
 cannot be reduced, but it can be shown that [13],

G ( G† ) is analytic in the upper (lower) complex plane which 
enables the use of the residue theorem, as demonstrated in 
Fig. 1.

(19)

G< = GΣ<G† = G
(
iΓ1f1 + iΓ2f2 + Σ<

scat

)
G†

= G
(
iΓ1(f1 − fr) + iΓ2(f2 − fr) + Σ<

scat

)
G†

+ iG(Γ1 + Γ2)G
†fr

= G<
neq

+ G<
eq
.

(20)G<
eq
=
(
G† − G

)
fr.

Fig. 1   The top part shows two contours in the complex plane, R and 
C, over which one can integrate the Green’s function. Integration 
along R corresponds to real axis integration. Due to the analyticity 
of the Green’s function, the two integrals are equivalent except for 
a summation over the poles of the Fermi-Dirac statistic, denoted by 
dots. The bottom part shows the DOS as a function of energy on the 
real axis. The Van Hove singularities require a fine grid for numeri-
cal integration. The fact that the total contour R+C is not closed is 
allowed due to the Fermi-Dirac function decaying exponentially at 
high energies (Color figure online)
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The poles are the poles of the Fermi-Dirac statistic func-
tion fr , with Ep = Efr

+ ikbT�(2n + 1) and Res(fr,Ep) = −kBT  
for n ∈ ℕ [7]. The prohibitively high computational cost of 
integrating a Green’s function over a large energy window 
is attributed to the presence of many Van Hove singularities, 
which require many grid points to be integrated accurately. 
On the complex contour, these Van Hove singularities disap-
pear, resulting in a smooth function requiring a significantly 
lower number of grid points [7].

An additional benefit of (20) is that occupation of states 
is not governed by injection of carriers at the contacts. 
Hence, (20) also allows for occupation of bound states. 
These are states that are not connected to the contacts, and 
which would thus be empty in the ECA, irrespective of their 
energy [7]. The occupation of these bound states in the FCA 
depends on the reference level Efr

 . The issue of having the 
charge density depend on the choice of Efr

 can be resolved 
by making multiple choices of Efr

 , e.g., setting Efr
= Efc

 for 
each contact c, and calculating the charge density for each of 
these choices, �c . The total charge density is then obtained 
as the weighted average of all choices,

Additionally, it is predicted that, for certain choices of the 
weights wc , one can minimize the effect of the numerical 
integration error [15].

3 � Challenges in employing the FCA

3.1 � Implementation of the complex contour 
integration

The implementation of the FCA in ATOMOS uses a com-
posite Gauss-Legendre quadrature with 5 grid points on each 
subinterval for the integral on the complex contour. It was 
found that this allows for an accurate integration for 20–40 
subintervals or a total of 100–200 grid points on the complex 
contour. Additionally, (20) only requires G and G† , imply-
ing that we can forgo the expensive matrix multiplication in 
(3). This results in the calculation of the equilibrium charge 
density, �eq , being computationally much less expensive than 
the calculation of its non-equilibrium counterpart, �neq.

The computational cost can be further reduced by noting 
that the advanced Green’s function is the Hermitian conjugate 
of the retarded Green’s function at the complex conjugate of 
the energy, G†(E) = GH(E∗) . The residue theorem requires a 

(21)∫R

GSfrdE =∫C

GSfrdE − 2�ikBT
∑

poles

G(Ep)S

(22)� =
∑

c

wc�c.

contour in the upper (lower) complex plane for the retarded 
(advanced) Green’s function, which implies that one can use 
the Hermitian conjugate of the retarded Green’s function cal-
culated in the upper complex plane, for the contour integral of 
the advanced Green’s function. In certain cases, the expression 
can be simplified even further. For real energies, G and G† are 
each other’s Hermitian conjugate. Consider now the case when 
the basis set is orthogonal and hence S = I,

Note that we take the imaginary part of the integral instead 
of the integral of the imaginary part. This is because 
Im

(
Gk,k

)
 is not analytic in the upper complex plane, which 

would prevent the use of the residue theorem. It should also 
be noted that (23) only holds if S = I , as G†S and GS are not 
Hermitian conjugates. However, a similar reasoning can be 
made when H and S are real, as is the case for matrices pro-
vided by certain localized orbital-based DFT packages, such 
as OpenMX [16] and CP2K [17]. If H and S are real and, 
hence, symmetric, then G and G† are also symmetric as can 
be seen from (1), (2) and (4). Therefore, for real energies, 
Gk,l = Gl,k =

(
G

†

k,l

)∗

 and,

Therefore, for both the case where the overlap matrix and 
Hamiltonian are real or when the basis set is orthogonal, 
one has,

3.2 � Rescaling at the contacts

As (11) and (25) indicate, the calculation of the carrier concen-
tration requires a matrix multiplication of the lesser Green’s 
function and retarded Green’s function with the overlap matrix. 
However, at the interfaces with the contacts this multiplication 
requires the respective Green’s functions coupling the device 
and the contact. At the left contact,

where we use G∗ as a generalized Green’s function which can 
be either G or G< . Note that the indices denote slab indices 
and the entities in (26) are therefore matrices. We cannot use 

(23)
nk,eq = −

ins

2� ∫R

(
G† − G

)
k,k
fr dE

= −
ns

�
Im

(

∫R

Gk,kfr dE

)
.

(24)
(GS)k,k =

∑

l

Gk,lSl,k =

(
∑

l

G
†

k,l
Sl,k

)∗

=
(
G†S

)∗
k,k
.

(25)nk,eq = −
ns

�
Im

(

∫R

(GS)k,kfr dE

)
.

(26)(G∗S)1,1 = G∗

1,0
S0,1 + G∗

1,1
S1,1 + G∗

1,2
S2,1
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(26) as is, because we only calculate G∗ within the device, 
and hence, G∗

1,0
 is unknown. The same is true at the right 

contact for G∗
N,N+1

 . Indications on how to resolve this issue 
are provided in [8]. For the retarded Green’s function, one 
can obtain an expression for G1,0 using matrix algebra. More 
specifically, one considers the matrix G as the inverse of 
the matrix ((E − i�)Stot − Htot) where Stot and Htot contain 
both the device and its contacts. G1,0 , the part of the inverse 
coupling the two, is then obtained by inversion by partition-
ing [18],

For the lesser Green’s function, an algebraic approach is 
not possible, and one has to start from the Dyson equation 
of the contour ordered Green’s function[19] and employ the 
Langreth theorem to obtain [8],

Equation (28) requires the unperturbed Green’s functions 
within the contacts, which are known. For real energies, g†

0,0
 

is just the Hermitian conjugate of g0,0 . g<0,0 is linked to the 
occupation of the edge states of the contact. Before contact-
ing the contact and the device, the contact is in equilibrium 
according to the statistics function f1 . Using (20), we thus 
obtain,

A similar derivation is possible for the right contact. It 
should be noted that these considerations are not limited 
to the FCA but are relevant for all NEGF simulations using 
non-orthogonal basis sets. However, the relative error intro-
duced by neglecting this rescaling of the contact carrier 
concentration is small. This is shown for a homogeneous 
sheet of WS2 in equilibrium, i.e., f1 = f2 . The Hamiltonian 
and overlap matrix are obtained with OpenMX. The rela-
tive error on the carrier concentration at the contact inter-
faces when the contact rescaling is neglected, is about 10%, 
as denoted in Fig. 2, which does not influence the device 
behavior significantly in the ECA. In the FCA, the carrier 
concentration is much larger, but it is counteracted by the 
subtraction of ncores , which is equally large and nearly identi-
cal to nelectrons . The small relative error on nelectrons is there-
fore greatly amplified into a large relative error on the charge 
density in the FCA.

3.3 � Explicit screening

A major benefit of the FCA is that screening of charges is 
automatically included, compared to the ECA, where a bulk 
permittivity value has to be introduced in the Poisson solver. 
To compare both models, we performed a self-consistent 

(27)G1,0 = G1,1�1,0g0,0.

(28)G<
1,0

= G1,1𝜏1,0g
<
0,0

+ G<
1,1
𝜏1,0g

†

0,0
.

(29)g<
0,0

=

(
g
†

0,0
− g0,0

)
f1.

simulation of an n-type MOS (nMOS) WS2 transistor in 
OFF-state using both the ECA, with in-plane and out-of-
plane relative permittivity values (�∕∕, �⟂) = (13.7, 6.3) , 
extracted from DFT [20], and the FCA, with vacuum per-
mittivity (�∕∕, �⟂) = (1.0, 1.0) . The Hamiltonian matrix was 
obtained using Quantum Espresso [21] and Wannier90 [22] 
as detailed in [5]. The basis set obtained through Wannieri-
zation is orthogonal. For comparison, a similar device simu-
lation was performed with a Hamiltonian matrix obtained 
using OpenMX.

The resulting carrier concentrations and bands are shown 
in Fig. 3. Figure 3a demonstrates how the carrier concentra-
tion drops in the channel region for both the ECA and FCA. 
For the FCA, an additional dipole formation can be distin-
guished, which screens the electric fields in the depletion 
regions. From the bands in Fig. 3b, it is, however, apparent 
that the FCA does not attain the same electrostatic behav-
ior as the ECA with adjusted permittivity in the Poisson 
solver. Additionally, we find that the FCA screening depends 
on the DFT package used for the calculation of the device 
Hamiltonian.

The reason for this DFT package dependency is unclear 
at this point. One explanation could be that different DFT 
packages give rise to different band structures. The bands 
close to the Fermi level or band gap are equivalent, which is 

Fig. 2   The relative error on the carrier concentration on W atoms in a 
WS2 sheet in equilibrium. The relative error is calculated as the rela-
tive difference of the carrier concentration with the average carrier 
concentration of all W atoms in the device. Both the equilibrium and 
the non-equilibrium contributions are listed. When Green’s function 
rescaling with S at the contacts is taken into account correctly, the rel-
ative error is uniform in the device and never exceeds 10−3 . When the 
term G∗

1,0
S0,1 in (26) is neglected, peaks in the relative error as high as 

10−1 appear at the contacts. Additionally, the relative error in the rest 
of the devices also increases because the average carrier concentra-
tions is affected by this increase of the error at the contacts
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important for transport. For the Hamiltonian obtained with 
Quantum Espresso, these are the only bands included. The 
ultra-soft pseudo potentials used in Quantum Espresso gives 
rise to 13 valence bands for WS2 . During Wannierization 
only the 7 highest energy valence bands are included. Simi-
larly, only the 4 lowest energy conduction bands are included 
during Wannierization for a total of 11 Wannier functions 
for each primitive cell. The OpenMX Hamiltonian typically 
includes more low-energy valence bands and high-energy 
conduction bands as no additional Wannierization process 
is needed. For WS2 , the OpenMX Hamiltonian corresponds 
to 12 valence bands and 19 conduction bands. The extra 

bands compared to Quantum Espresso are too far from the 
injection energies to influence transport, but could impact 
the electronic screening in the FCA. However, Fig. 3b shows 
that including more deep valence bands during Wannieri-
zation, for a total of 9 valence bands, does not affect the 
screening. Other parameters that could still explain the dis-
crepancy in electronic screening are the different number of 
conduction band states, the difference in pseudopotentials, 
exchange-correlation functional or type of basis set that were 
used. A full investigation of the influence of the DFT pack-
age on electronic screening is, however, beyond the scope 
of this paper.

It should be noted that the FCA does not include ionic 
displacements and thus, generally, underestimates the 
screening, although this source of inaccuracy is expected 
to be small for WS2 [20]. Due to these shortcomings of 
the FCA, neglect of ionic displacements and DFT package 
dependency, we propose the use of an intermediate permit-
tivity value in the FCA that results in band matching with 
the ECA with the full permittivity value from DFT. The rela-
tive permittivity values that corresponded to optimal band 
matching were iteratively found to be (�∕∕, �⟂) = (1.5, 2.8) 
for the Hamiltonian obtained from Quantum Espresso, indi-
cated by the blue line in Fig. 3b. For band matching with the 
Hamiltonian obtained from OpenMX, relative permittivity 
values smaller than 1.0 would be required which is unphysi-
cal. Another approach would therefore be to use a small or 
vacuum permittivity for the FCA and to search the match-
ing permittivity value for the ECA. This is the approach we 
utilized in Sect. 4.

3.4 � Scattering in the FCA

One of the major benefits of the NEGF formalism is that 
one can easily incorporate electron–phonon interactions. 
Scattering of charge carriers by interaction with phonons 
can heavily influence transport properties in devices. To our 
knowledge, a study investigating the influence of the FCA 
on scattering mechanisms has not been done. Indeed, it is 
not clear whether splitting the lesser Green’s function into 
an equilibrium and non-equilibrium part is compatible with 
the calculation and incorporation of a scattering self-energy:

•	 The scattering self-energy in (8) depends on the lesser 
Green’s function at energies shifted with the phonon 
energy. However, the lesser Green’s function is 
unknown, as we only compute G<

neq
 . The same is true 

for G> which is required for Σ>
scat

 to calculate Σscat in 
(10). However, provided we have a way to calculate G> , 
we could use the identity G − G† = G> − G< [8] to 
extract G> as well.

Fig. 3   Results on a WS2 transistor in OFF-state. a shows the car-
rier concentrations as a function of the position. The insets show 
an atomic depiction of the depletion regions for both the ECA and 
the FCA, where the atom colors denote the carrier concentration. b 
shows part of the conduction band as a function of the position. The 
inset shows the complete conduction (CB) and valence band (VB) in 
the whole device. Different trials with the FCA are compared to an 
ECA reference using a macroscopic permittivity value in the Pois-
son solver. The FCA does give rise to screening but does not attain 
the same electrostatic control as the ECA. For accurate band match-
ing, the FCA should be combined with an intermediate permittivity 
value. Additionally, a simulation using a Hamiltonian extracted with 
OpenMX, instead of Quantum Espresso with Wannier90, shows that 
the screening depends on the DFT-package used. The OpenMX simu-
lations included more deep valence bands. To verify whether this 
influences results, more deep valence states were also included in the 
Wannierization process (Color figure online)
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•	 We could, in principle, calculate G< for real energies in 
the same energy window as G<

neq
 . However, this would 

amount to a doubling of the computational cost of the 
procedure as many energy points are required on the real 
energy axis.

•	 It is unclear on how to extend scattering to the equilib-
rium part. The calculation of G requires Σscat at complex 
energies. However, Σscat depends on both Σ<

scat
 and Σ>

scat
 , 

and hence, depends on both G< and G> which are not ana-
lytic in the complex plane. Indeed, even the very deriva-
tion of (20) has only been done in the ballistic case [13].

Even though these concerns appear to prohibit the combina-
tion of the FCA with electron–phonon scattering, there is a 
rather simple solution for the simulation of semiconductor 
devices, where there is a band gap. Consider the case where 
the reference level, Efr

 , is in the band gap. The equilibrium 
part then corresponds to a completely filled valence band. 
The influence of the scattering self-energy is a shift in the 
energy of states due to the real part of the scattering self-
energy [10] and a broadening of the states due to the imagi-
nary part of the scattering self-energy, which can be inter-
preted as a finite lifetime of the states [23]. Both conserve 
the total mass of the states when integrated over energy. 
Especially considering the fact that only local scattering is 
taken into account here, we claim that scattering does not 
influence the charge density of a completely filled valence 
band. Additionally, the equilibrium part does not result in 
transport, and hence, the charge density is the only thing that 
is of interest for the equilibrium part. This claim therefore 
allows us to safely leave out the scattering self-energy in 
the equilibrium part of the Green’s function. Indeed, this is 
exactly what was done in (19).

For the non-equilibrium part, we discern between n-type 
and p-type devices. Consider the case of an n-type device 
with Efr

 in the middle of the band gap. In this case, fr ≈ 0 in 
the conduction band and G<

neq
 is just equal to G< . Practically, 

Efr
 does not have to be in the middle of the band gap as a few 

kBT  below the bottom of the conduction band is sufficient. 
We can then define,

Equations (1)–(3) and (8)–(10) can then be used unaltered 
for the non-equilibrium parts.

It is tempting to make the same assumption for p-type 
devices. However, in the valence band, fr ≈ 1 when Efr

 is 
a few kBT  above the top of the valence band. Hence, in the 
ballistic case,

(30)G>
neq

= G − G† + G<
neq

≈ G − G† + G< = G>.

(31)
G<

neq
= G

(
iΓ1(f1 − fr) + iΓ2(f2 − fr)

)
G†

≈ −G
(
iΓ1(1 − f1) + iΓ2(1 − f2)

)
G† = G>.

G<
neq

 thus plays the role of G> in p-type devices when Efr
 is 

in the band gap. This is not surprising as G<
neq

 is the deviation 
from an equilibrium where the valence band is completely 
filled. G<

neq
 is thus related to the concentration of holes, just 

like G> . It could therefore be argued that one should change 
the sign convention in (8) to the one in (9) for the calculation 
of Σ>

scat
 in p-type devices with the FCA. To then keep Σscat 

consistent with the ECA, we should also change (9), since,

We can extend this reasoning to more general choices of Efr
 

than Efr
 being in the middle of the band gap. We propose the 

following altered scattering equations in the FCA.
If Efr

< min(Ef1
,Ef2

)

If Efr
> max(Ef1

,Ef2
)

with

It can easily be verified that (33)–(36) keep (10) consist-
ent with the ECA. The importance of these corrections are 
demonstrated in Fig. 4, where both approaches are used to 
simulate a WS2 MOSFET. Both approaches used the same 
Hamiltonian obtained using Quantum Espresso and Wan-
nier90, and the intermediate permittivity value obtained in 
Sect. 3.3 was used for the FCA.

3.5 � Choosing the reference level Ef
r

Section 3.4 showed that choosing the right reference energy 
level allows us to obtain strong arguments as to why and 
how electron–phonon scattering can be correctly combined 
with the FCA. These arguments relied heavily on the fact 
that the device was either n-type or p-type, such that the 
reference level could be put in the band gap throughout the 

(32)
G>

neq
= G − G† + G<

neq

≈ G − G† + G> = 2G> − G<.

(33)Σ<
scat,⟂

(E) =
∑

q

|Mq|2

V

(
Nq +

1

2
±

1

2

)
G<

neq
(E ± �𝜔q)S

(34)Σ>
scat,⟂

(E) =
∑

q

|Mq|2

V

(
Nq +

1

2
±

1

2

)
G>

neq
(E ∓ �𝜔q)S

(35)Σ<
scat,⟂

(E) =
∑

q

|Mq|2

V

(
Nq +

1

2
±

1

2

)
G<

neq
(E ∓ �𝜔q)S

(36)Σ>
scat,⟂

(E) =
∑

q

|Mq|2

V

(
Nq +

1

2
±

1

2

)
G>
neq

(E ± �𝜔q)S + Σ>
cor

(37)Σ>
cor

=
∑

q

|Mq|2

V

(
2G<

neq
(E − �𝜔q) − 2G<

neq
(E + �𝜔q)

)
S.
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whole device. However, the reference level is convention-
ally not kept fixed at one level, but set equal to each contact 
Fermi level Efi

 once, after which the results are combined 
in a weighted average [13, 15]. The averaging resolves the 
arbitrariness of having to choose a Efr

 which might influence 
the charging of bound states, and, more importantly, is pre-
dicted to reduce numerical errors in the integration. Indeed, 
it can be shown that an appropriate choice of the weights 
can minimize the error of integration if one assumes that 
the error of integration follows a certain stochastic behavior 
and is dominated by the real axis integration [15]. The lat-
ter assumption is a reasonable assumption since the contour 
integral can be made extremely accurate by increasing the 
number of energy points without significantly increasing the 
computational cost.

To probe the influence of Efr
 , we performed ATO-

MOS simulations of the same p-type WS2 transistor as 
in Sect. 3.4 for different choices of Efr

 . The results are 
shown in Fig. 5. It is clear that putting the reference level 
equal to the right contact Fermi level, Efr

= Ef2
 , putting it 

in the band gap or using the averaging procedure with Efr
 

both equal to the left and right contact Fermi level, results 
in nearly identical IV curves and convergence behavior. 
Therefore, even though we only have strong arguments that 
the ECA and the FCA with scattering are equivalent when 
Efr

 is put in the band gap throughout the device, it appears 
that in some cases, it is also correct to use the averaging 
approach or to set Efr

 equal to the contact Fermi level clos-
est to this band gap reference level.

This equivalence can be argued for by noting that the 
effect of scattering on transport in devices is most pro-
nounced by its effect on states at the injection level of the 
source, i.e., the left contact. If this energy is more than a 

few kBT  away from the reference level, as is the case when 
Efr

= Ef2
 and the source-drain bias is more than a few kBT  , 

then G<
neq

≈ G≶ for the states that contribute most to scat-
tering, and the same reasoning as in the previous section 
applies.

When the reference level is put equal to the left contact 
Fermi level, Efr

= Ef1
 , significantly more iterations are 

required to achieve convergence, and the value that is 
obtained after convergence differs significantly from the 
result for the other choices of Efr

 and the ECA. The reason 
for this discrepancy is twofold. First, when the reference 
level is set to the injection level at the source, G<

neq
 differs 

strongly from G≶ and (33)–(36) in the previous section do 
not hold. Second, when Efr

 is put to Ef1
 , there are filled 

states between Ef1
 and Ef2

 at the drain side, i.e., the right 
side of the device. These states are integrated with a real 
axis integration, which suffers from the presence of Van 
Hove singularities and which can hinder convergence.

On the other hand, when Efr
 is put to Ef2

 the energy win-
dow between Ef1

 and Ef2
 contains very few states at the 

source, because most of this energy window is located in 
the band gap. This also explains why the averaging approach 
gives the same result as putting Efr

 equal to Ef2
 . The weights 

in the procedure are chosen such that a larger weight is used 
for the charge density which has a smaller contribution of 
the real axis integral of �neq , since this part is expected to 
bear a larger error [15]. Since the choice Efr

= Ef2
 has fewer 

states integrated with the real axis integral, this contribution 

Fig. 4   IV curves for, respectively, a 14-nm channel WS2 pMOS and 
nMOS transistor simulated using ATOMOS with both the FCA and 
ECA. For n-type devices, there is negligible difference in the cur-
rent of the ECA and FCA. However, for p-type devices, this is only 
the case when the corrected scattering self-energies are used. When 
the naive approach of substituting in G>

neq
 and G<

neq
 in (8) and (9) is 

applied, the ON-current and the subthreshold slope are degraded 
compared to the ECA

Fig. 5   Comparison of ATOMOS simulations of a 14 nm channel 
WS2 pMOS transistor for different choices of Efr

 . a and b show the 
error in the current and charge, respectively, as a function of the itera-
tion number for a single bias point. Due to the exponential behavior 
of the current, the error on the current is calculated as log10(Iit∕Ifinal) . 
c shows the IV curves on both a linear and log scale. d shows a sche-
matic representation of the bands of the transistor as a function of the 
position along the transport direction. It also denotes the different 
choices of Efr

 with dashed lines, following the color codes in (a), (b) 
and (c) (Color figure online)
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will dominate the averaging approach, which explains the 
similarities in Fig. 5.

It should be noted that the averaging approach can be 
beneficial for devices which contains both n-type and p-type 
doped regions, to reduce the integration error in an auto-
mated way. However, even though the averaging approach 
takes about the same number of iterations, each iteration is 
twice as expensive since both �eq and �neq have to be calcu-
lated twice. In the case of purely p-type (n-type) devices, 
we can thus forgo this additional cost by setting Efr

 to 
max(Ef1

,Ef2
 ) (min(Ef1

,Ef2
)).

4 � The importance of the FCA at metal 
interfaces

In the previous section, we used the ECA to test and verify 
the FCA using single doping type transistors without metal-
lic contacts, since the two models are expected to be largely 
equivalent for such devices. For devices including strongly 
doped pn junctions or metallic interfaces, this is no longer 
the case and the FCA, being closer to reality, is expected to 
give more accurate results. In this section, we apply both the 
ECA and FCA for the simulation of a HfS2 nMOS transistor 
with HfTe2 metal contacts at the source and drain. We con-
sider both a top contact and a lateral contact configuration.

4.1 � Top contacts

The Hamiltonian elements of the top contact were extracted 
by simulating a bulk HfTe2-HfS2 bilayer with Quantum 
Espresso. Both layers were first relaxed individually with a 
variable cell relaxation. Both materials were then strained 
for 3.9% to have the lattices match and joined in a bilayer 
after which the atomic positions were relaxed again with 
fixed cell dimensions. The OptB86 functional was used in 
combination with ultrasoft pseudopotentials and the Grimme 
DFT-D3 van der Waals correction with a 30 Å vaccuum 
between cells. A 10×10× 1 Monkhorst-Pack grid was used 
and the energy cut off for the plane wave basis was set to 
70 Ry. The self-consistency convergence criterion and the 
atomic force convergence criterion were set to, respectively 
10−6 , eV and 10−3 eV/Å. The Wannier90 package was then 
used to convert the plane wave basis to a localized basis, 
starting from 3 p orbitals on S and Te and 3 d orbitals on Hf.

The Hamiltonian elements provided by Wannier90 were 
then used to build a device Hamiltonian for the whole device, 
as demonstrated in Fig. 6a. The device dimensions depend 
on the crystal orientation. Two crystal orientations are 
considered, namely transport along the Γ K and Γ M direc-
tion. The corresponding device dimensions are provided 
in Table 1. The relative permittivity in the FCA was set to 
(�∕∕, �⟂) = (2.0, 2.0) and the matching relative permittivity 

in the ECA was found to be (�∕∕, �⟂) = (9.0, 3.4) . The chan-
nel oxide relative permittivy was set to 15.6, resulting in 
an effective oxide thickness of 0.5 nm. Finally, 10 k-points 
were used to capture half the Brillouin zone of the periodic 
direction in ATOMOS. The other half was obtained through 
symmetry.

The resulting IV curves are shown in Fig. 7. For compari-
son, also pure HfS2 references are shown, where the explicit 
metallic contacts were removed, the semiconducting source-
drain extensions were enlarged to have the same total device 
dimensions and perfect ohmic contacts were used just like in 
the sections above. The incorporation of metal top contacts 
into the device decreases the current by ∼50% compared to 
the pure HfS2 references. This decrease is attributed to the 
introduction of a van der Waals gap, which is consistent with 
our previous work in [24]. The results for the pure semicon-
ductor references in the ECA and FCA are nearly identical, 
which is consistent with our earlier assertion that for single 
doping type pure semiconducting devices, the ECA and the 
FCA are equivalent. The same appears true for the transistor 
with top metal contacts with transport along the Γ K direc-
tion. However, when the transport direction is along Γ M, 

Table 1   Dimensions of the device with metal contacts

Lchan (nm) Lmetal (nm) Lext (nm) Lint (nm)

Top ΓK 14 6.8 9.4 4.5
Top ΓM 14 6.5 8 3.9
Lateral ΓM 14 11 10.6 /

Fig. 6   a The device configuration of the nMOS HfS2 transistor with 
HfTe2 top and lateral contacts. The dimensions in the schematic are 
not to scale. The actual dimensions are listed in Table  1. b Crystal 
structure of HfS2 with the corresponding high symmetry points in 
reciprocal space. c The edge of the metallic top layers at the source 
and drain side for both the device with transport along Γ K and ΓM
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there is a larger difference in both the ON-current and the 
subthreshold regime for the FCA and the ECA.

The origin for this discrepancy can be found in the band 
profile, shown in Fig. 8. In the ECA, there are no significant 
interface charges at the metal–semiconductor interfaces and 
no significant Schottky barrier is found. In the FCA, how-
ever, a strong peak in the potential can be seen, indicat-
ing the presence of significant interface charges. It should 
be noted that the ends of the metallic and semiconduct-
ing layers in Fig. 6a are not passivated, which implies that 
there are dangling bonds at the interface, and hence, there 
are large interface charges in the FCA. Indeed, this also 
explains the discrepancy between the source and drain side 
and the influence of the crystal orientation, as demonstrated 
in Fig. 6c. When the transport direction is along Γ K, the 
final Hf and Te atoms on both sides have a coordination of 
4 and 2, respectively. When the transport direction is along 
Γ M, there are dangling Hf atoms with coordination 3 on the 
left side, and dangling Te atoms with a coordination of only 
1 on the right. There are thus more dangling bonds when 
the transport direction is along Γ M, which complies with 
the interface charge and potential peaks in Fig. 8. Note that 
the FCA in combination with a transport direction along 
Γ M gives such large charges that the potential in the metal 
is non-flat, as indicated by the small peaks in the neutral-
ity levels. This is attributed to the limited density of states 
at the Fermi level due to having a 2D metal and quantum 
effects limiting the screening capabilities of a single quan-
tum state [25, 26].

It should be noted that the lack of passivation is not nec-
essarily realistic. In a real device, the electronic states at 
the edge of a material will not correspond well with elec-
tronic bulk states which have been abruptly cut. The elec-
tronic states will rearrange themselves to a lower energy 
termination. Additionally, the edge atoms could be partially 
passivated by interaction with neighbouring oxide atoms. 
Therefore, correct capturing of these interface states by the 
FCA is not necessarily beneficial. In that regard, the ECA 
appears more robust, as these interface states appear to be 
screened away automatically.

4.2 � Lateral contacts

The Hamiltonian and overlap matrix elements of the lateral 
contact were extracted by simulating a lateral heterojunction 
with 6.8 nm of HfTe2 and 6.4 nm of HfS2 with OpenMX. 
It was verified that the on-site energies in, respectively, the 
middle of the HfS2 and HfTe2 parts were constant, leading 
us to believe that these parts of the DFT cell can be used to 
extract bulklike properties. The same lattice constants were 
taken as in the top contact configuration for pure HfS2 and 
HfTe2 to limit the influence of the DFT package and the 
exchange-correlation functional. Both materials were again 
strained for 3.9% to have the lattices matched and joined in 
a heterojunction. The atomic positions were then relaxed 
again with fixed cell dimensions in the orthogonal direction. 
The dimension in the transport direction was allowed to vary 
freely. The GGA-PBE functional was used in combination 

Fig. 7   IV curves of the nMOS HfS2 transistor with HfTe2 top con-
tacts and pure HfS2 references, simulated with both the ECA and 
FCA and both transport along the Γ K and Γ M direction. The IV 
curves are plotted both on a linear scale (right) and a logarithmic 
scale (left). The deep subthreshold regime on the log-scale is repeated 
in the inset for clarity

Fig. 8   Bottom of the conduction band of the nMOS HfS2 transis-
tor with HfTe2 top contacts as a function of the position along the 
transport direction for different gate biases. The conduction bands 
are shown for both the ECA and FCA and for both transport along 
the Γ K and Γ M direction. The conduction bands are based on the 
middle of the HfS2 parts, i.e., at the height of the Hf atoms, and are 
hence only shown for the regions with semiconducting material. The 
neutralitiy levels within the metal are also shown and denoted with 
a dashed line. Similarly, these neutrality levels are based on the 
potential in the middle of the HfTe2 parts, i.e., at the height of the Hf 
atoms. The yellow (red) arrows denote potential peaks due to unpas-
sivated HfTe2 (HfS2 ) edges (Color figure online)
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with the corresponding provided optimized basis sets and 
pseudopotentials [27, 28] and a 2 ×8× 1 Monkhorst-Pack grid 
was used. The self-consistency convergence criterion and the 
atomic force convergence criterion were set to 2.7 ⋅ 10−5 eV 
and 5 ⋅ 10−3 eV/Å, respectively. The rest of the procedure 
was similar to the top contact case.

The relative permittivity value in the FCA was set to 
(�∕∕, �⟂) = (2.0, 2.0) and the matching relative permittivity 
in the ECA was found to be (�∕∕, �⟂) = (37.0, 5.5) . Note that 
this is larger than the matching relative permittivity for HfS2 
extracted with Quantum Espresso and Wannier90, confirm-
ing our earlier observation that the explicit screening is DFT 
package dependent. Due to the increased computational cost 
of the larger basis set provided by OpenMX than by Wan-
nier90, only the Γ M direction is considered here. One should 
be careful with choosing the core charges ncores . A naive 
approach would be to set the ncores of all atoms of the same 
type to the same value, namely the number of electrons on 
the atom in bulk in equilibrium. However, it should be noted 
that in our NEGF approach, we are attributing charge to a 
surplus number of electrons or holes compared to the DFT 
level. For the lateral junction, atoms at the interface can dif-
fer significantly from bulklike atoms and can thus carry a 
different equilibrium charge. Therefore, we set the value of 
ncores for atoms at the interface to the Mulliken charge of the 
corresponding atom in the DFT simulation. Both approaches 
are equivalent for the case of a bilayer separated by a van 
der Waals gap, where both layers are considered to behave 
bulklike.

The IV curves of the HfS2 nMOS transistor with lateral 
contacts are shown in Fig. 9 for both the ECA and FCA and 
for both Mulliken-charge-based ncores and bulklike ncores at 
the interface. Also pure HfS2 nMOS transistors with ohmic 
contacts are shown for reference. The pure HfS2 transistors 
show little difference between the ECA and FCA in ON-
state, as is consistent with our discussion above. For the 
transistors with lateral contacts, the different models give 
different results. Both models achieve ON-currents which 
are slightly reduced compared to the pure HfS2 reference due 
to the presence of a Schottky barrier. However, the reduc-
tion is more pronounced for the ECA, ∼45% lower current 
in ON-state than the pure HfS2 reference, than for the FCA, 
∼30% lower current. The relative difference in ON-current 
between the models is hence ∼20%. The choice between 
Mulliken-charge-based ncores and bulklike ncores for the simu-
lations with explicit metallic contacts, seems to be of minor 
importance, with an ON-current difference less than 5%. The 
decrease in ON-current is attributed to the different inter-
face charge and interface screening and hence a difference 
in the interface potential profile. The interface potential pro-
file influences the effective Schottky barrier height, which 
becomes an important factor in ON-state, when the channel 
barrier collapses.

The potential profiles along the transport direction for the 
different choices of model and ncores are shown in Fig. 10. In 
the lateral contact configuration, there are no dangling 
bonds, and hence, there is no need for surface passivation. 
The interface charge in the FCA is therefore expected not to 
be unphysically large and hence give an accurate representa-
tion of the actual interface charge. This is consistent with the 
fact that there are no large peaks in the potential profile of 
the lateral contact configuration, compared to the top contact 
configuration. Note that the ECA gives rise to an effective 
Schottky barrier height at the source of ∼ 100 mV,∼ 40 mV 
higher than the FCA, which is consistent with the lower ON-
current for the ECA. The FCA shows little dependency on 
the choice of ncores at the source side, consistent with the 
minimal difference in ON-current between the two choices. 
At the drain side, the choice of ncores significantly influences 
the potential profile and corresponding Schottky barrier. 
However, as this barrier is below the injection energy at the 
source, there is little effect on the ON-current. Scattering can 
be assumed to be simulated correctly for similar reasons. 
Transport is dominated by the source side and happens 
around the source-side injection energy, which is several kBT  
above the reference level, and hence, it can be assumed that 
G<

neq
≈ G< at the energies most relevant for transport.

5 � Conclusion

There are typically two approaches to calculate the charge 
density in the NEGF formalism: the ECA and FCA. The 
ECA does not account for electronic screening and relies 
on neutrality levels, for which the validity is unclear at 

Fig. 9   IV curves of the nMOS HfS2 transistor with HfTe2 lateral 
contacts and pure HfS2 references, simulated with both the ECA and 
FCA. The IV curves are plotted both on a linear scale (right) and a 
logarithmic scale (left)
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heterojunctions. The FCA automatically accounts for elec-
tronic screening and relies on a choice of reference levels 
and ionic charges ncores . For single doping type pure semi-
conducting devices, the two approaches are expected to be 
equivalent except for a difference in electronic screening. We 
used an nMOS WS2 transistor to verify the equivalence of 
the ECA and FCA and test our implementation of the FCA.

It was found that the explicit screening behavior of the 
FCA depends on the DFT package used to extract the Ham-
iltonian, negating this advantage of the FCA. The reason for 
this discrepancy is presently unclear. However, this depend-
ency can be compensated for by the use of a matched permit-
tivity value in the Poisson solver.

Furthermore, it was found that under certain circum-
stances, the FCA is compatible with electron–phonon scat-
tering, if adjusted scattering self-energy expressions are 
used. We also resolved some uncertainty concerning the 
choice of the reference energy level Efr

 used in the FCA and 
provided new expressions for rescaling of the Green’s func-
tions at the contacts.

Finally, we investigated the impact of the model choice 
for the simulation of metal–semiconductor interfaces, where 
both models can feature different currents in ON-state for the 
same device. These differences in ON-current are attributed 
to differences in the charges at the interface, which can give 
rise to potential peaks and changes in the Schottky barrier 
height. For adequate choices of ncores , e.g., the Mulliken 
charges of the corresponding atoms at the DFT level, and 
assuming an adequate matched permittivity can be found, 

the FCA is expected to simulate the interface charge at het-
erojunctions more accurately. However, the two models give 
qualitatively similar results for our case of a HfS2 transistor 
with HfTe2 side contacts, characterized by a reasonable low 
Schottky barrier height of ∼ 100 mV. For devices contain-
ing unpassivated edge atoms, the difference between the 
two models can be more pronounced. Unrealistic interface 
states make the FCA susceptible to the surface termination. 
While introducing correct passivation at the DFT level is a 
possibility, it makes simulations more cumbersome and is 
considered outside the scope of this paper.
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