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Abstract
Objective. Biosignal control is an interaction modality that allows users to interact with electronic
devices by decoding the biological signals emanating from the movements or thoughts of the user.
This manner of interaction with devices can enhance the sense of agency for users and enable
persons suffering from a paralyzing condition to interact with everyday devices that would
otherwise be challenging for them to use. It can also improve control of prosthetic devices and
exoskeletons by making the interaction feel more natural and intuitive. However, with the current
state of the art, several issues still need to be addressed to reliably decode user intent from
biosignals and provide an improved user experience over other interaction modalities. One
solution is to leverage advances in deep learning (DL) methods to provide more reliable decoding
at the expense of added computational complexity. This scoping review introduces the basic
concepts of DL and assists readers in deploying DL methods to a real-time control system that
should operate under real-world conditions. Approach. The scope of this review covers any
electronic device, but with an emphasis on robotic devices, as this is the most active area of
research in biosignal control. We review the literature pertaining to the implementation and
evaluation of control systems that incorporate DL to identify the main gaps and issues in the field,
and formulate suggestions on how to mitigate them.Main results. The results highlight the main
challenges in biosignal control with DL methods. Additionally, we were able to formulate
guidelines on the best approach to designing, implementing and evaluating research prototypes
that use DL in their biosignal control systems. Significance. This review should assist researchers
that are new to the fields of biosignal control and DL in successfully deploying a full biosignal
control system. Experts in their respective fields can use this article to identify possible avenues of
research that would further advance the development of biosignal control with DL methods.

1. Introduction

Biosignal control systems decode user intent from
biological signals (also referred to as biosignals),
enabling users to interact with electronic devices
through their thoughts and other biological phenom-
ena resulting from voluntary action intent. One of
the main benefits of this new interaction paradigm is

allowing people that suffer from a paralyzing condi-
tion to partially regain the use of their motor func-
tionality through wearable robots and other assistive
robotic devices (Ren et al 2019). Another population
that might benefit from this technology are individu-
als with an amputation, allowing users to control a
prosthetic device in a manner similar to their actual
limb (George et al 2018). Ultimately, this technology
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could reach a point where it will also enable users to
control everyday devices such as personal computers.

An example of this approach are brain–computer
interfaces (BCI), which decode signals emanating
from brain activity and increase the sense of agency
for users (Caspar et al 2021). Therefore, creating a
responsive control system is important to make users
feel that they are in control of the device, enabling
an optimal user experience. Alternatively, muscle
activity measured through electromyogram (EMG) is
another commonly used control signal (Ameri et al
2019) that has found success in robotics applications
among others (Bi et al 2019).

However, at the current level of this technology,
many applications still do not provide the user exper-
ience that is expected from commercial applications.
While invasive approaches, which require a surgery to
implant sensors, can provide higher quality signals,
non-invasive methods are often more suited for gen-
eral use. Current non-invasive methods are typically
not accurate enough or introduce undesired latency,
making existing interaction modalities more suited
for these applications at the moment. To achieve the
sense of agency that biosignal control could provide,
better recognition methods are necessary and several
issues need to be addressed.

Recognition of user intent from biosignals is typ-
ically achieved with artificial intelligence (AI) meth-
ods. These methods are trained on data originating
from a subject performing an action related to the
action that the algorithm should identify. Some of the
most successful AI methods use deep learning (DL)
to achieve state-of-the art results in their respective
domains. Therefore, DL could be a good choice as
a decoding method when implementing a biosignal
based control system.

In this scoping review biosignal control meth-
ods that use DL are investigated. The overall aim of
this review is to provide an overview of publications
that build a proof-of-concept biosignal control sys-
tem that uses DL methods for decoding user intent
and identifying the most important gaps in the field
of biosignal control.

1.1. Rationale
Multiple reviews and surveys discuss the different
aspects of biosignal decoding. Some focus on DL for
electroencephalogram (EEG) analysis (Thomas et al
2017, Craik et al 2019, Roy et al 2019,Merlin Praveena
et al 2020), while others provide general overviews of
machine learning (ML) methods used in the context
of BCI (Ramadan and Vasilakos 2017, Rashid et al
2020). Others, like (Buongiorno et al 2019, Simão
et al 2019) review EMG decoding methods and Rim
et al (2020) reviews general biosignal decoding. How-
ever, most reviews lack an extensive discussion of the
background knowledge that is required to develop
new biosignal control systems. There is also a dis-
tinct lack of clear guidelines and best practices on

how to gather and share data for biosignal control
research. Several publications also do not report their
results properly to allow for the reproduction of per-
formed experiments and to provide support that the
developed model is suited for real-time decoding in a
real-world setting. Evaluation of research prototypes
is also insufficient to take the system’s technology
readiness level6 beyond a proof-of-concept (POC).
These issues also impede the comparison of biosignal
control systems.

This scoping review distinguishes itself from sim-
ilar review articles such as Zhang et al (2020b) and
Rechy-Ramirez and Hu (2021) by focusing on pub-
lications that implement and evaluate a real control
application. The specific scope of this review covers
biosignal decoding with DL methods, in the specific
context of control applications, without limiting itself
to just one type of application like Rechy-Ramirez
and Hu (2021) or focusing solely on brain signals
like Zhang et al (2020b). We also highlight some of
the major differences between offline signal analysis
(open-loop) and real-time decoding in a control set-
ting (closed-loop) in section 5.2. To the best of our
knowledge, no other review discusses this specific
topic.

1.2. Objectives
The main objective of this review is to provide the
necessary insights to understand DL and biosig-
nal decoding concepts. The necessary knowledge to
implement a biosignal decoding pipeline that incor-
porates DL methods will be presented for this pur-
pose. Specifically, this scoping review will tackle the
following research questions.
What can be achieved with DL for biosignal

decoding? DL is currently a successful method in
multiple research fields that outperforms most other
ML methods. However, certain prerequisites should
be met to effectively use DL methods. The problem
at hand should also warrant the increased complex-
ity that is introduced by DL methods. Ensuring that
these conditions are met requires a good grasp on the
basic principles of DL methods.
What are the challenges that the field is facing

in terms of data gathering and processing? Gather-
ing high-quality biological data is an important aspect
of constructing any ML model that will be used in a
biosignal control application. Typically, task-specific
data should be gathered, as publicly available data is
often unsuited for the training of a model for a spe-
cific control system. Following the right procedures
greatly facilitates the later stages of data processing
and ensures better reproducibility of the research if
the data used for training a model cannot be shared
publicly.

6 For more information on the technology readiness level: https://
ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016
_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf.
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Figure 1. Pipeline for decoding user commands from a biosignal.

How to evaluate DL methods and control sys-
tems, and report for optimal reproducibility? DL
models havemany components and hyperparameters
that need to be chosen by the implementer. Perform-
ance of models can sometimes greatly vary between
software and hardware that are used in training and
evaluation. Evaluating the performance of a model
requires great care in selecting the appropriatemetrics
to report. Additionally, evaluating the full control sys-
tem requires more investigating than only assessing
the decoding performance of the DL model. Recom-
mendations will be formulated regarding reporting
standards in relevant scientific fields.

This scoping review describes the basic concepts
of ML and DL, which should provide a deeper under-
standing of the techniques used in biosignal decod-
ing research andDLmethods. This knowledge should
assist in implementing, evaluating and deploying DL
models that will be integrated in biosignal control
pipelines. Best practice procedures for gathering and
pre-processing data and an overview of which DL
models have been used in which biosignal control
contexts are presented. A discussion of the evaluation
methods for biosignal control applications highlights
the key gaps in current methods. Finally, a literature-
based guide to developing and evaluating a biosignal
control application is presented.

2. Background

In this section,we give a brief overviewof themethods
that are employed in biosignal decoding applications.
Amore detailed background is presented in appendix.

2.1. Biosignal decoding
In biosignal control, the biosignals related to volun-
tary activity from a subject are measured to enable
a user to control a device with their thoughts and
movements. To identify the desired action from the
user’s biosignal activity, the signals are processed by a
pipeline that consists of the steps depicted in figure 1.

After acquiring the signal, it typically needs to
be cleaned because biosignals have a low signal-to-
noise ratio (SNR). This means that there will be more
noise present in the acquired data, making it harder
to extract useful information. Therefore, a prepro-
cessing step is necessary to improve SNR and yield a
‘clean’ signal that eliminates artifacts, such as those
resulting from power supplies or unrelated muscle

activity. Next, features are extracted that describe the
relevant information contained in the signal.

To decode the user’s intent from the extracted
signal, an algorithm, usually implemented as a ML
model, processes the signal. This can either be clas-
sification into a discrete set of classes or regression
into a value that is relevant to the control application.
Finally, the output is passed to the motion controller
software that ensures the correct action is executed by
the device.

The EEG is the most commonly used signal
when using brain signals for control. Multiple con-
trol paradigms exist for EEG signals that influence the
design of a control system (Ramadan and Vasilakos
2017, Rashid et al 2020). EEG can be measured invas-
ively through implanted sensors or non-invasively,
which is the approach we focus on in this review.
Alternatively, the EMG is the most commonly used
non-brain signal. Itmeasures electrical activity result-
ing frommuscle contractions. It is relatively simple to
incorporate in existing robotic systems and it is easier
to identify which muscle is active and subsequently
map this activity to an action of the controlled device
(Simão et al 2019). The choice between using EEG
and EMG generally depends on the application.

Other biosignals are also leveraged, but to a
lesser extent, as there are drawbacks that currently
make them impractical compared to EEG and EMG.
Alternative signals include magnetoencephalogram
(Gross 2019), functional near infrared spectroscopy
(Naseer and Hong 2015), and functional Magnetic
Resonance Imaging (Sitaram et al 2007). Lesser
known signal types are also becoming usable, such as
acoustic resonance (Norman et al 2021), which uses
the Doppler effect to detect changes in brain activ-
ity, and Photoplethysmogram (Han et al 2020), which
uses optical reflections to monitor brain activity, in
a similar way to near infrared spectroscopy. Another
possibility is to monitor spinal cord activity using
magnetospinography (Sakaki et al 2020) if one is only
interested in lower-limb activity.

Some systems combine multiple signals to take
advantage of the redundant information that might
be lost when using only one signal type, but can reli-
ably be extracted from another signal type. Such sys-
tems are referred to as hybrid BCI. One example of
such a hybrid system is to combine EEG and EMG for
movement detection (Leeb et al 2011, Loopez-Larraz
et al 2018, Tortora et al 2020b), as this allows detection
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of motor planning from the EEG signal and determ-
ining the exact movement more reliably from EMG.

2.2. Machine learning
ML is a subfield of AI which consists of algorithms
that extract knowledge from data and involves two
steps. First, a learning phase consists of summarizing
the data in some machine form. Once knowledge is
extracted, a prediction phase uses it to produce values
to solve a specific task in a computer system.

The most common form of ML is supervised
learning, in which we assume that the data is presen-
ted as a set of input-output pairs, a dataset, which
we call labeled data, as each input is labeled with
its corresponding output (Caruana and Niculescu-
Mizil 2006). Alternatively, unsupervised learning
techniques do not use outputs for learning, but rather
learn the (unknown) structure of the data.

Semi-supervised learning methods use both
labeled and unlabeled data, usually to learn the struc-
ture of the training data to become able to generate
more (artificial) training points (Aznan et al 2019),
that are used for conventional supervised learning
in a second learning phase. Self-supervised learn-
ing (Jing and Tian 2019) is a similar approach that
is used to learn the relevant structure in EEG data
by first learning an unsupervised pretext task, after
which the model is further trained on the target task
with labeled data (Banville et al 2020, Kostas et al
2021). The remainder of this review will focus on
supervised learning methods.

2.3. Neural networks
Out of the many supervised learning approaches that
exist, and are reviewed by Caruana and Niculescu-
Mizil (2006), neural networks currently appear as
the most promising one. There are several reasons
for this: the neural network formalism is quite gen-
eral, which means that many specific ML architec-
tures can be seen as neural networks, therefore lever-
aging the extensive knowledge we have on them.
Neural networks are also able to learn mappings
between inputs and outputs in a highly general way,
making few assumptions. Neural networks are there-
fore applicable to many tasks, even if the input is a
time sequence, has a large dimensionality, consists of
images or portions of videos.

Training a neural network consists of finding θ,
the set of parameters (synonym weights) that min-
imizes a loss. Training a neural network is therefore
an optimization problem, for whichmany well-known
algorithms and software libraries exist of which PyT-
orch7, in Python and C++, and TensorFlow8, in
Python, are the most well-known. Other less-known

7 https://pytorch.org.
8 www.tensorflow.org/.

libraries exist in various programming languages,
such as MATLAB or Java, but they do not have as
many tutorials and tools available as PyTorch and
Tensorflow. On embedded systems, CMSIS-NN (Lai
et al 2018), by ARM, makes neural networks amen-
able for deployment on small microcontrollers.

The multi-layer perceptron Rumelhart et al
(1985), MLP is the neural architecture that is most
often used. Other commonly used architectures
include convolutional neural networks (CNN) and
recurrent neural networks (RNN), which each intro-
duce new types of layers. In practice, neural net-
works can combine many layers of different kinds.
In the papers that we review in this article, great
care is always given to explain and motivate the
choice of neural architecture. Designing a neural
network requires experience, as there is no system-
atic approach. More information on neural networks
and their architectures is presented in the appendix,
section ‘Neural networks’. We refer readers inter-
ested in knowing more than what we present to
books such as Goodfellow et al (2016) and Aggarwal
(2018).

A neural network’s usefulness is directly related
to it is ability to generalize from training examples
to the general problem that needs solving. General-
ization is particularly important in the engineering
and medical fields, where data is costly to acquire,
as it allows a neural network to produce better pre-
dictions in production (on unseen data) with fewer
training data points. With neural networks, the main
avenue to increase generalization is to decrease over-
fitting. Over-fitting happens when a neural network
remembers exactly what training input should learn
which training output, without having actually made
sense of the data. The network achieves a training
loss close to 0, but produces garbage output on the
testing set.

To avoid over-fitting, Batch Normalization (Ioffe
and Szegedy 2015) considers the input of every layer
in a neural network, and normalizes it so that, in
expectation, the inputs of every layer has a zero
mean and a unit variance. Dropout (Srivastava et al
2014) does not modify the values that flow through a
neural network, but instead randomly disables neur-
ons every time the network is evaluated during train-
ing. Both these methods contribute to improving
training speed and generalization of the network,
and ensure that the model converges to an optimal
loss. Both batch normalization (Tayeb et al 2019,
Tam et al 2020) and dropout (Gautam et al 2020,
Tortora et al 2020a) are often used in biosignal decod-
ing papers, sometimes both at the same time. Other
normalization techniques are possible, such as L1-
normalization or clipping the gradients (Zhang et al
2019a), but they have been superseded by Batch Nor-
malization and Dropout.
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2.4. Deep learning
DL is a form of representation learning (Bengio
et al 2013) that introduces more than one level of
abstraction to the learned features (Goodfellow et al
2016). This means that from the initially learned fea-
tures, new features at a higher level of abstraction are
extracted. If one considers the steps of the pipeline as
a graph, then this graph can become much larger in
the number of consecutive steps, or deeper, than with
other techniques, and is therefore referred to as DL.

Most modern DL models are neural networks,
however, other ML techniques can also qualify as DL.
The most common type of DL neural networks at
this time are the previously described CNNs (LeCun
et al 1989). The subsequent application of convolu-
tional layers results in a high-level representation of
the input as stipulated by Goodfellow et al (2016).

A DL method that is useful in biosignal decod-
ing is transfer learning (Fahimi et al 2019, Kostas et al
2021).With Transfer Learning, amodel is first trained
on general data from which the model aims to learn
the structure of the data. After pretraining, a fine-
tuning phase will further train the model with data
related to the specific problem that the model should
solve. This approach is useful when faced with limited
data availability for the target domain and specifically
for biosignal decoding when calibrating a model for
a new user. Transfer Learning allows for the training
of much larger models than if the model was trained
directly on the task-specific dataset.

3. Methods

3.1. Search strategy
To gather the literature related to practical applic-
ations of biosignal control that use DL in their
decoding pipeline, a systematic procedure was fol-
lowed. Due to the interdisciplinary nature of biosig-
nal control research, no standard best-practice for
systematic data gathering currently exists. To ensure
all relevant literature was identified by the search
strategy, the searchwas based on the PRISMAmethod
for systematic reviews andmeta-analyses (Moher et al
2016).

Articles that were retrieved according to this
method were categorized in two classes. The first type
of articles are those that discuss the implementation
and evaluation of a biosignal based control system.
The second type of papers are those that present a
DL model that is evaluated on offline biosignal data.
The latter type of papers focus on methods related to
biosignal decoding without deploying their methods
in a real-world control system. Most limit themselves
to offline evaluation of the decoding performance of
their algorithm. This review focuses on the former
type of articles, which are presented and analyzed in
the results section. Of the latter type of articles, those
deemed most relevant to this review are cited where
appropriate. The inclusion and exclusion criteria that

were used to select papers of interest are summarized
in table 1.

To gather the literature about control applica-
tions that use DL to decode biosignals, the PubMed,
Scopus and IEEE Explore literature repositories were
queried. In order to ensure that the latest state-of-the-
art methods are included in this review, the ArXiv
preprint servicewas also queried. The retrieval of doc-
uments from the selected databases was performed
with a customPython script that queries the API end-
points that are provided by the respective repositor-
ies. For each database, all provided search fields were
used, except for Scopus where the title, abstract, and
keyword fields were used. The initial search was per-
formed in November 2020.

The query that was used to retrieve pub-
lications is the following: (Brain Computer
Interface OR Electroencephalogra∗ OR EEG
OR Brain Machine Interface OR Biological
Signal∗ OR Magnetoencephalogra∗ OR MEG
OR Electromyogra∗ OR EMG OR Human Com-
puter Interaction∗ OR HCI) AND (Deep Learning
OR Convolutional Neural Network∗ OR Recur-
rent Neural Network OR Generative Adversarial
Network∗ OR GAN OR Auto Encoder OR Trans-
formerNetwork)AND(Motor Image∗ORControl∗

ORApplied). The resulting search strategy is depicted
in figure 2.

3.2. Literature synthesis and ideal publication
profile
The final list of selected publications were reviewed
in detail and relevant data items were extracted from
each publication. These extracted data were used to
generate the tables and figures presented in section 4.
Analyses were performed in a Jupyter notebook
(Kluyver et al 2016) with the Python9 programming
language. Statistical analyses were performedwith the
Seaborn (Waskom 2021) and Pandas (Reback et al
2020) software packages. Figures in section 4 were
generated using the Matplotlib (Hunter 2007) soft-
ware library.

Assessing the quality of publications in the mul-
tidisciplinary field of biosignal control is a nontrivial
matter. There are no standardized guidelines available
at the time of writing andmost of the guidelines from
specific fields are not entirely applicable to publica-
tions pertaining to the implementation and valida-
tion of hardware prototypes and complete processing
pipelines. Therefore, different elements of the quality
assessment guidelines for relevant fields of research
were combined to design an ideal publication profile,
i.e. what are the important data that a publication
should provide in order to be relevant to each field
that is implicated in biosignal control research.

9 www.python.org/.
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Table 1. Inclusion and exclusion criteria for the selection of relevant biosignal decoding papers.

Inclusion criteria Exclusion criteria

• Use a DL model in at least one step of the biosignal
decoding pipeline.

• The biosignal decoding implementation is validated
with a real-world control application.

• Invasive methods to measure biosignals.
• Medical applications, such as sleep staging or pathology
detection, that are unrelated to control.

• Low-quality publications that are almost impossible to
reproduce due to limited information.

Figure 2. PRISMA search strategy flowchart.

Concretely, a publication that fits this ideal pro-
file is easy to reproduce by providing the necessary
code and data to deploy the developed system. The
evaluation should also be easy to reproduce by detail-
ing the tasks that were performed to evaluate proto-
types. Additionally, a thorough evaluation of a POC
prototype is required to assess the suitability for fur-
ther development into a consumer-ready control sys-
tem. Finally, if any of the information that is extracted
for this review is missing or unclear, the publication
is also marked as low quality.

Taking into account whether the publication
was published in a conference or a journal was
also considered as a criterion to fit the ideal pub-
lication profile. However, depending on the spe-
cific field, conferences might be considered as an

equally impactful publication venue as opposed to the
typical preference for publishing in journals above
conferences. Therefore, it was determined that this
aspect should not be a part of the ideal publication
profile.

To provide a concrete example of the proposed
ideal publication profile, a case study is performed
with a publication that was selected from those that
match the proposed profile most closely. This public-
ation is discussed in the context of the proposed pro-
file in section 4.2 and serves as the basis for a template
of the ideal publication profile.

In this scoping review, the ideal publication pro-
file criteria are used to classify the retrieved articles
into three tiers according to howwell they fit this pro-
file. The lowest tier class is for papers that do not fit

6
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Figure 3. Publications per year about DL methods in biosignal control systems.

any of the ideal criteria, making them hard to repro-
duce and their evaluation is limited. The second tier
are publications that do not have any issues, but could
be improved by sharing code or data, or by perform-
ing a more thorough evaluation. Finally, those papers
that match most of the ideal profile criteria are classi-
fied in the highest tier.

4. Results

4.1. Literature review
Following the systematic search strategy described in
section 3.1, 46 papers remain that fit the selection cri-
teria that were listed in table 1. Figures in subsequent
sections include all papers, regardless of their ideal
publication profile tier, unless stated otherwise.

Figure 3 emphasizes the increased interest in DL
methods for biosignal control systems. This increase
is in line with the rise in the use of DL methods in
other fields of research. It demonstrates that research
interest in using DLmethods as a decoding algorithm
for biosignal control increases yearly.

Twenty six publications (57%) are conference
papers and nineteen (41%) are journal articles. The
missing two percent is due to one publication being a
preprint (George et al 2020) at the time of retrieval.

The application that is most common for EEG
control is robot arm control. A total of five public-
ations implement such a control system (Kuhner et al
2019, Shim et al 2019, Zied et al 2019, Alex et al 2020,
Jeong et al 2020). Four of the retrieved publications
use EEG signals to control a drone. Kobayashi and
Ishizuka (2019) and Ishizuka et al (2020) implement a

quadcopter control system, while Zhuang et al (2021)
use EEG for controlling a ground vehicle and Aznan
et al (2019) use it for controlling a mobile robot.

Another common application of EEG decoding
are BCI spellers. Three publications in our result set
are of this type (Nguyen and Chung 2018, Zhang
et al 2019b, 2020a). Other applications of EEG con-
trol include driving assist (Lu et al 2020, Mourad et al
2020), embedded movement recognition (Wang et al
2020), smart home control (Zhang et al 2017), image
reconstruction (Hernandez-Carmona and Penaloza
2019) and virtual reality control (Bevilacqua et al
2014, Karácsony et al 2019). One publication uses
EEG for wheelchair control (Zgallai et al 2019) and
another combines EEG with functional near-infrared
spectroscopy to play a computer game (Makhrov and
Denisova 2018).

Prosthesis (Shima and Tsuji 2010, Li et al 2017,
George et al 2018, 2020, Teban et al 2018, Wan et al
2018, Jafarzadeh et al 2019, Liu et al 2019, Gautam
et al 2020, Tam et al 2020) and exoskeleton (Orlando
et al 2010, Xiang et al 2012) control exclusively uses
EMG, with hybrid methods being used by Li et al
(2018) and Ren et al (2019) respectively. Two pub-
lications use EMG for wheelchair control (Stroh and
Desai 2019, Zhou et al 2019) and two also for operat-
ing a robotic arm (Hu et al 2015, Song et al 2020).
Other applications that use EMG include drones
(Redrovan and Kim 2018), real-time gesture recog-
nition (Cote-Allard et al 2020, Zanghieri et al 2020),
human-robot collaboration (Hanafusa and Ishikawa
2020), smartphone interaction (Cotton 2020) and
virtual reality movement (Chiu et al 2019). There is
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Figure 4. Distribution of applications found in the retrieved publications (a) divided by the signal that is used to decode user
intention (EEG= electroencephalogram, EMG= electromyogram, fNIRS= functional near infrared spectroscopy, EOG=
electrooculogram, FSR= force-sensing resistor, IMU= inertial measurement unit) (b) divided by whether the used model
outputs classes or regression values (excluding those in the lower-tier ideal publication profile).

finally one special case where the authors used elec-
trooculogram, i.e. eye movement, to operate a wheel-
chair (Ramakrishnan et al 2020).

Figure 4(a) displays the distribution of control
signals over different applications. For the selected
publications, exoskeletons and prostheses exclusively
use EMG signals for control, with some publications
combining EMGwith another sensor type in a hybrid
control system. Conversely, while EMG is still utilized
in the other applications, EEG is the most common
signal for these applications. Only for wheelchair con-
trol an equivalent mix of signals are utilized.

The application domains presented in figure 4(a)
consist of high-level categories that can encompass
multiple concrete applications. For example, a drone
can be the well-known quadcopter (Redrovan and
Kim 2018), but this can also refer to ground vehicles
(Lu et al 2020) and robots (Aznan et al 2019) that can
move according to the operator’s commands.

All retrieved publications that discuss exoskelet-
ons target the upper limbs (Orlando et al 2010, Xiang
et al 2012, Ren et al 2019). Similarly, all prostheses
applications aim for the control of a prosthetic hand
(Shima andTsuji 2010, Li et al 2017, 2018, George et al
2018, Wan et al 2018, Jafarzadeh et al 2019, Hanafusa
and Ishikawa 2020, Tam et al 2020). In the retrieved
publications, the number of degrees of freedom that
are provided by the device vary among the devices
used.

The Other category includes applications such
as speller systems that allow paralyzed persons to
communicate (Nguyen and Chung 2018, Zhang
et al 2019b, 2020a), virtual reality control systems
(Bevilacqua et al 2014, Karácsony et al 2019), driving
assist systems (Lu et al 2020, Mourad et al 2020), and
smart home control (Zhang et al 2017). Except for
spellers, which are all EEG-based, these applications

are the type that target biosignal control for everyday
use by able-bodied users.

Depending on the application, the choice, and
design of a high-level or low-level controller will
determine if the decoding model should output
classes or regression values. Figure 4(b) demonstrates
that classification is the most common approach to
signal decoding with prostheses also using regression
in half of the publications. All publications on exo-
skeleton control use regression as the model output.
Note that this figure does not include those public-
ations that are deemed low-quality according to our
ideal publication profile.

Distributing the publications based on whether
their model outputs a class or regression value yields
figure 5. This figures demonstrates that for EEG
decoding classification is used exclusively in the
retrieved publications. For EMG decoding, four out
of twelve publications used regression. Note that this
figure also excludes publications belonging to the low
quality ideal publication profile category.

Another important aspect of the biosignal decod-
ing pipeline is the choice of DL model that does the
actual decoding of the signal. Figure 6(a) presents the
distribution of DLmodel types over the selected pub-
lications. It indicates that CNN is by far the most
widely used network architecture. Second are RNNs
which can deal with varying length input sequences,
but are more complex to use. Another interesting
finding is that one publication uses reinforcement
learning in combination with RNN (Zhang et al
2019b).

When considering the type of model with regards
to the application domain, we can observe from
figure 6(b) that CNNs are still the most common
model for every application except exoskeletons. This
is in line with the general distribution of model
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Figure 5. Distribution of classification or regression over the different signal types.

Figure 6. (a) Distribution of DL models used to decode user intention in the published biosignal decoding pipelines (CNN=
convolutional neural network; MLP=multilayer perceptron; RNN= recurrent neural network; RL= reinforcement learning;
AE= autoencoder). (b) Distribution of applications, divided by the model used for decoding.

types and the disparity in exoskeletons could be
attributed to the small sample size of the publication
data.

Certain control systems also perform their decod-
ing on embedded hardware, which introduces addi-
tional constraints regarding computational resources
and power consumption. Eight publications perform
their decoding on embedded hardware as opposed to
a dedicated computer with specialized hardware. One

paper even performs decoding in the cloud (Zhang
et al 2019b).

There is a wide variety in the devices used for the
acquisition of each signal. For EEG, the number of
recorded channels (electrodes) varies from a single
channel to 64 channels, with sampling frequencies
ranging from 128 to 1000 Hz. For the types of elec-
trodes used, there is no dominating type with both
wet and dry, and active and passive electrodes being

9
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Figure 7. Reproducibility criteria for the publications. (a) Availability of code and data. (b) Pie chart of the proportion of
publications that perform evaluation up to a certain level. The lowest level of evaluation is Online validation where real-time
decoding was implemented but not used in a control system. The second level is POC with validation which means that while a
proof-of-concept (POC) was implemented, it was only tested without assessing the user experience. The highest level of
evaluation is POC with user evaluation where a user study with multiple participants is performed to assess the user experience of
the control system.

used. For EMG, a distinction is made between sep-
arate electrode placement and sleeves or armbands
consisting of electrode arrays, which are both used.
Sampling frequencies are significantly higher for
EMG devices with frequencies ranging from 1000 Hz
up to 24 kHZ, with the exception of the Myo arm-
band which is an armband consisting of eight EMG
channels that are sampled at 200 Hz. (Ramakrish-
nan et al 2020) attached five electrodes to the parti-
cipant’s face to measure EOG and use it as the con-
trol signal, where EOG is typically used for artifact
removal.

The following publications included a hybrid sig-
nal acquisition setup. Makhrov and Denisova (2018)
combined 20 EEG channels with fNIRS at the F7, Fp1,
G, Fp2 and F7 locations. In Li et al (2018) they meas-
ure EMG with a Myo armband in combination with
force sensing resistors on the finger tips to determ-
ine grasping strength based on the combination of
both signals. The final publication that takes a hybrid
approach is Ren et al (2019), where two Myo arm-
bands are measuring EMG and the device’s builtin
IMU sensors are leveraged to control the joint angles
of an arm exoskeleton.

4.2. Ideal publication profile
In this subsection, figures and analyses related to the
ideal publication profile are presented. Figure 7(a)
displays a heatmap of the number of publications
based on the availability of code and data that are used
for experiments. It indicates that there are only four
publications that provide both their code and data.
Thirty publications share neither their code nor their
data. However, these publications describe the data
gathering procedure in detail, which allows reproduc-
tion at the cost of having to perform new experiments
with human participants to gather the necessary data.

The evaluation levels of the selected publications
are displayed on the pie chart in figure 7(b). This chart
indicates that the majority of publications limit the
validation of their POC to a simple test to demon-
strate that their prototype works. Only five papers
perform a full user evaluation of their prototype.

To further illustrate the ideal publication profile,
we now present a case study of one publication that
falls into the highest tier of our categorization. We
provide arguments why this publication fits the ideal
profile in contrast to other publications. The chosen
publication for this case study is Kuhner et al (2019),
which share all their code and provide a detailed
description of their data gathering procedure, even
though they did not share their data directly. One
of the other aspects that sets this publication apart is
the level of detail with which they describe their con-
trol system (in addition to sharing its implementa-
tion). Themost important aspect that makes this into
a model publication is the evaluation methodology.
This publication is one of the few that perform a user
study by putting the system into the hands of mul-
tiple users and evaluating the user experience in addi-
tion to objective performance metrics such as path
optimality (number of steps taken compared to min-
imal number of steps necessary) and time to perform
the task. Their user study is also the most extensive
in both the number of participants and the diversity
of tasks that are performed to evaluate the control
system.

4.3. Prototype evaluation
While there are no standardized guidelines regarding
the evaluation of prototypes, good-practice examples
can serve as a template for the recommended evalu-
ation methods for a biosignal control system. For this
purpose, table 2 lists the five publications mentioned
in figure 7(b) that were found to perform user studies

10



J. Neural Eng. 19 (2022) 011003 A Dillen et al

Table 2. Publications that include a user evaluation of their control system and characteristics of this evaluation.

Citation Biosignal Participant characteristics Evaluation tasks Evaluation metrics

Redrovan and
Kim (2018)

EMG Five users without great
experience in quadrotors
operation (no gender/age
information)

Fly quadcopter in a
predetermined flight
cycle

Time to complete individual
operation

Nguyen and
Chung (2018)

EEG Eight healthy volunteers,
who have no problem with
visual impairment (6M/2F,
aged 24–32 years)

Spell the word SPELLER
using the system

Number of commands
Completion time (minutes)
Accuracy
Information transfer rate
(bitsmin−1)

Karácsony
et al (2019)

EEG 10 subjects (8M/2F, average
age 25.3± 3.4 years)

Subjects are seated with
their hands resting on
the table and equipped
with the BCI-VR system.
Subjects play a VR game
where three trials were
performed, namely 2, 3
and 4-classes for control,
each for 5 min, with 30 s
break.

Score in the game (i.e. how
well users could play the
game)
Questionnaire where users
report experience on a Likert
scale.

Shim et al
(2019)

EEG Five healthy right-handed
participants (aged 25–31
years)

Perform predefined
robot arm movements

Success rate

Kuhner et al
(2019)

EEG Online decoding: four
healthy participants, all
right-handed (1M/3F, aged
26.75± 5.9 years) User
study: 20 able-bodied
participants (17M/3F, aged
25–45 years)
real-world scenarios: same
as user study (not clear
how many)

Online decoding:
simulated goal
formulation with the
GUI User study: five
predefined, simulated
scenarios: move the
robot to the garden,
drink beer using a beer
mug, arrange a red
flower in a red vase,
place a red rose on the
couch table, and give a
red wine glass with red
wine to your friend
real-world scenarios:
fetch and carry task with
disturbances; Drinking
task

Online decoding: accuracy of
the control; time it took the
participants to define a goal;
number of steps used to define
a goal; path optimality, i.e.
ratio of minimally possible
number of steps to number of
steps used; average time per
step
Participant ratings: rate if the
displayed control
opportunities offered by the
GUI comply to their
expectations from 1 to 5; rate
the overall intuitiveness of the
GUI in the range of 1–5;
subjective quality of object
references ranging from 1 to 5
real-world scenarios: accuracy
and execution time

for their evaluation, which is an essential part of the
ideal publication profile.

The selection of participants for a user study
strongly depends on the target application. This is
regrettably not the case in any of the encountered
publications. However, we noticed that several papers
do not evaluate the device on a target population. For
example, both Nguyen and Chung (2018) and Kuh-
ner et al (2019) only include able-bodied participants
while their applications target paralyzed persons.

5. Discussion

The goals of this scoping review are to provide an
overview of the literature discussing biosignal control
with DL and to identify gaps in the state-of-the-art.

Section 5.1 discusses the results from section 4 and
proposes the potential implications of these findings.
Section 5.2 provides recommendations for the devel-
opment of practical biosignal control with DL in the
formof a guide. Finally, section 5.3 presents the future
perspectives of DL for biosignal decoding.

5.1. Implications from results
One remarkable finding is a substantial increase in
publications targeting DL for intention decoding
which is apparent in recent years. This trend can be
related to the recent successes of DL in other fields of
research, such as audio processing and computer vis-
ion (Baevski et al 2020, Srinivas et al 2021). Addition-
ally, the development of custom software, such as the
frameworks mentioned in section 2.2, and hardware,
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such as NVIDIA® Jetson™10 or Intel® Neural Com-
pute Stick11 among others, facilitates the deployment
of DL methods in real-world settings.

EMG is mainly applied for the control of exo-
skeletons and prostheses, because of the ease to map
muscle activations to the degrees of freedom of the
device and to integrate EMG sensors in the devices,
while adding EEG sensors would require the addi-
tion of external acquisition devices to the system. We
also noted that all prosthesis and exoskeleton applic-
ations targeted the upper extremities, which can be
explained by the fact that decoding upper bodymove-
ments is easier than lower body movement (Gand-
hoke et al 2019), as first discovered by Penfield and
Boldrey (1937). For prostheses and exoskeletons, the
limb that is replaced or assisted by the respective
device is also of importance, as this will influence the
design of the device and the degrees of freedom that
are supported by the device.

The typical sampling rate for EMG acquisition
is 1 kHz or higher. However, successful control was
also achieved with the Myo armband12 (discontin-
ued), which supports a sampling rate of 200 Hz. This
would likely be the sampling rate to expect in future
commercial devices for everyday use. There is a trend
towards electrode arrays that can be placed on a sleeve
or an armband instead of single (or bipolar) elec-
trodes. This can be attributed to the added robust-
ness regarding electrode placement and drift of these
methods, as the overall patterns that are related to
a movement should remain largely the same (Farina
et al 2010). Another advantage of sleeves and arm-
bands is the ease of donning and doffing, and no
need for skin preparation, with recent research even
integrating this technology in E-textiles (Yin et al
2021). While the signal quality will generally be lower
than with research-grade electrodes, these advantages
make sleeves and armbands more suited for everyday
use.

EEG is exclusively used in classification tasks, as
demonstrated by figure 5, where the decoded inten-
tion can be mapped to a low-level device action
or to a high-level command that is composed of a
sequence of low-level actions. This sequence can be
fixed or generated on-the-fly from the current device
state to the requested device state. Such an approach
decouples the number of values or classes that need
to be predicted from the degrees of freedom of the
device. Therefore, the applications that are controlled
with EEG generally provide a discrete number of
commands through their control interface.

There is also an interest in hybrid signal decod-
ing for multiple applications. This approach is often

10 www.nvidia.com/en-us/autonomous-machines/embedded-
systems/product-development/.
11 https://software.intel.com/content/www/us/en/develop/
hardware/neural-compute-stick.html.
12 www.youtube.com/watch?v=A8lGstYAY14.

useful in dealing with the low SNR of biosignals.
The introduction of a redundant source of inform-
ation can allow models to learn patterns that would
otherwise be lost in the noise through sensor fusion
(Makhrov andDenisova 2018, Ren et al 2019). Altern-
atively, the secondary signal can have a complement-
ary purpose to add features to the system. In Li et al
(2018), the force-sensing resistor sensors are used to
provide tactile feedback when grasping with a pros-
thetic hand to improve the sense of agency of the user.

The dominance of CNN with regard to model
choice can be attributed to the relative ease of use and
the popularity of this architecture in other research
fields that use DL. While RNN architectures have
been successful in closely related fields such as speech
recognition and natural language processing, they
have only seen limited deployment in a biosignal
decoding context. Typically, CNNs also have less
trainable parameters which makes them less sensit-
ive to small datasets and lower their computational
requirements. Other architectures were investigated
for biosignal decoding, but state-of-the-art research
mostly focuses on CNN architectures (Buongiorno
et al 2019, Roy et al 2019).

Unfortunately, only five papers fit the ideal profile
that we defined for publications on control applic-
ations that use DL methods. From a reproducibil-
ity perspective, most publications can be reproduced
from the provided descriptions. However, an ideal
publication would share both their code and data. It
is easier to reproduce an experiment if a public data-
set is used or if the gathered data is provided. Open
access of all relevant resources should be the goal for
any publication that presents an implementation or
new data.

Also related to the ideal publication profile, is the
level of evaluation for the implemented prototype.
Ideally, this should at least be a basic user study to
validate that the control system improves the user
experience of the targeted user group compared to
alternative approaches. Only a small proportion of
publications perform a user study, which emphasizes
that there is a clear gap in current evaluationmethod-
ologies. The heterogeneity in evaluation methodolo-
gies alsomakes control system designs harder to com-
pare without reimplementing the full control system.
Therefore, there is a need for standardized evaluation
guidelines for each application type. Having such
guidelines should encourage researchers to adhere to
a detailed user evaluation for POC prototypes and
allows for the comparison of control systems for the
same application types.

Furthermore, the evaluation tasks should also be
aligned with the targeted use cases of the application.
A large variety of tasks and the inclusion of edge-
cases will provide most value towards the transfer of
results from laboratory to real-life conditions. Per-
formance of the control system is typically assessed
by the time to complete the task or by the number of

12

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/product-development/
https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://www.youtube.com/watch?v=A8lGstYAY14
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Figure 8. Flowchart for the recommended steps and their order for designing and implementing a biosignal control system.

steps/commands required to reach the end goal. Suc-
cess rate can serve as an initial indication for a pilot
study, but a complete user study should not solely rely
on this metric as a measure of application perform-
ance. Ideally, objectivemetrics related to task comple-
tion should be supplemented with a subjective evalu-
ation by participants, as the end goal should be the
best user experience, which is a subjective concept.
Possible approaches to subjective evaluation of the
user experience are suggested in section 5.2.

The case study in section 4.2 proposes a template
for an ideal publication that reports results from the
evaluation of a biosignal control system. By following
this template and performing extensive user-studies
as presented in section 4.3 one can ensure optimal
reproducibility. Taking all this together should bring
us closer to the standardized guidelines that should
enable the comparison of control systems without the
need for new experiments.

5.2. A literature-based guide to DL for biosignal
control
Building a complete biosignal control system requires
several important decisions. This section will go
through every step of the process and discusses
insights, best practices, and pitfalls for each step. An
overview of the recommended approach is depicted
in figure 8.

Before starting the design of a biosignal control
system, the application requirements and the avail-
able signals should be analyzed. As established in
section 4.1, there is a close relationship between the
device type that will be controlled and the signals
that can be used for the control system. The number
of commands depends on the number of degrees of
freedom of the device. The choice of signals is also
dependent on the user, e.g. EMG signals cannot be
integrated in paralyzed individuals. After a thorough
evaluation of the application requirements, the design
of the controller software and the data gathering pro-
cedure can begin. Methods of software engineering

are well-established in this regard and ensure a thor-
ough requirements analysis (Kotonya 1998).

The first step in any ML application is the acquis-
ition of relevant data to train the model. While pub-
lic data is important for benchmarking and compar-
ison of models, this data will usually not be sufficient
when the aim is to implement a real-time application
that will operate in real-world conditions. Therefore,
data gathering will often be necessary to acquire data
that reflects the application and enables the training
of a performant DL model. However, to know the
type of data that will be required, an initial design
of the controller interface is necessary to determine
the experimental protocol for data gathering. One
should also keep inmind that DLmethods need suffi-
cient data, and data augmentation methods might be
necessary (Corley and Huang 2018, Wang et al 2018).
The more trainable parameters that a DL model has,
the larger the amount of necessary data will be. For
example, the original Transformermodel consisted of
65 million trainable parameters and required 4.5 mil-
lion sentence pairs to learn English–German transla-
tion (Vaswani et al 2017). Such extensive training also
increases the time to train the model, even with high-
performance hardware.

It should also be noted that supervised learning
methods need a ground-truth label to train a model.
This means that data gathering with the aim to use
the data to train a ML model, will typically neces-
sitate additional measurement devices to extract this
ground truth. This should inform the position (in
time) and labels of markers, and the size of a trial
window. When movement is involved, motion cap-
ture solutions are often used for this purpose (Jeong
et al 2020). Data engineering is another import-
ant aspect that needs consideration when gathering
data for ML applications, as this will determine the
expected data formatting when going to the real-time
setting.

Next, a choice should be made whether to imple-
ment a high-level controller that will map a user
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command to a sequence of device actions or a low-
level controller that can directly use the output from
the decoder model to perform a device action. The
former requires more implementation work, but
allows for a reduction of the number of commands
that need decoding when dealing with a high number
of degrees of freedom (Kuhner et al 2019). The latter
only needs to send the command to the device, but
requires an output for each possible degree of free-
dom of the device (George et al 2020).

The choice of DL model is highly dependent on
the application requirements and how the data is pre-
processed. CNNs can often work with raw data that
is only cleaned in the preprocessing step, while other
models will typically necessitate feature extraction
before passing the input to the ANN (Schirrmeister
et al 2017). Alternatively, RNNs are also used for
biosignal decoding, but these architectures typic-
ally need more technical knowledge to deploy and
evaluate. The literature review clearly shows that
CNN is the most deployed model and that biosig-
nal decoding models are typically rather shallow,
which can be attributed to the limited availability of
data.

To obtain a good insight into the decoding per-
formance of a DL model, one should evaluate more
than just the classification accuracy on some test data.
As stated in the background section, all possible eval-
uation metrics should be assessed to properly eval-
uate any ML model. However, offline (open-loop)
validation of the model is insufficient to determ-
ine its’ suitability for integration into a real-world
(closed-loop) control system. It is generally accepted
in ML that underspecification is a major issue when
evaluating the performance of a model for a real-
world application, because additional confounding
factors affect the application in a real-world setting
(D’Amour et al 2020). This is also a significant issue
for biosignal control where many additional factors
come into play when operating in a real-world set-
ting. Reviews byBi et al (2019), Rashid et al (2020)and
Al-Saegh et al (2021) among others discuss the dif-
ferences between offline and online systems in more
detail. Therefore, stress tests should be performed to
evaluate the model under conditions that reflect real-
life conditions. Unfortunately, such stress tests have
not been developed yet in the context of biosignal
control. Finally, a thorough evaluation of the real-
time performance is also necessary, which is currently
lacking in many papers, as demonstrated by figure 2.

Integrating the selected model into a full control
system is not a trivial matter either. For some applica-
tions, the model will be deployed on embedded hard-
ware that is part of the controlled device. In this case,
the different software components will run on sep-
arate hardware components, for which communic-
ation protocols will need implementing. Addition-
ally, simply passing predictions from the model will

often be insufficient in a real control system. A con-
trol strategy will be required that buffers the predic-
tions that can then be used to generate commands for
the device (Kuhner et al 2019, Tam et al 2020). This
enables faster and more robust processing of the user
intention.

Efforts are being made to develop standardized
platforms that facilitate the deployment of control
systems into real or simulated environments. Previ-
ous research solutions attempted to create common
ecosystems for neurorobotic applications, in terms of
open source frameworks such as the Neurorobotics
platform (Falotico et al 2017), ROS-Health (Beraldo
et al 2018) and its successor ROS-Neuro (Tonin et al
2019). ROS-Neuro was already succesfully used in
a DL context (Valenti et al 2020, 2021). For more
general applications, theOpenVibe platformprovides
several environments and integrates with a large vari-
ety of devices for BCI control experiments (Renard
et al 2010).

Decoding user intent is often not the only aspect
of a biosignal control system. Feedback to the user is
also important to engender a feeling of agency for the
user. This feedback should manifest within a certain
timeframe to avoid latency issues that might dimin-
ish the sense of agency (Caspar et al 2021). Typ-
ically, feedback takes the form of tactile responses
and audiovisual cues that indicate successful decod-
ing of a command. This additional feedback can be
provided before the effect of the user’s command can
be observed. Integrating biosignals with other inter-
action modalities is also essential for certain applica-
tions such as robotic arm control. Keeping the num-
ber of commands low is often favorable to provide
an ideal user experience. For example, (Kuhner et al
2019) use depth sensing cameras to track object and
robot positions, which allows users to think of which
object they want to grasp, without communicating
the object’s position to the robot control system.

User-training will also play an important role in
the practical deployment of an application (Kuhner
et al 2019). Users will not want to use a system that
requires a long training time before being usable on
a regular basis. Due to the non-stationary nature of
the signals, users might have to re-train themselves
and re-calibrate their device on every usage. These
challenges are highlighted by the Cybathlon compet-
ition where one of the events is a race where parti-
cipants have to complete a BCI task in the shortest
time (McFarland and Wolpaw 2018, Perdikis et al
2018, Hehenberger et al 2021). Therefore, user train-
ing should be considered when designing the final
control system, which is extensively discussed by Roc
et al (2021).

Finally, the implemented POC should be evalu-
ated for usability. Simply reporting the decoding per-
formance (even in real-time) is not sufficient to valid-
ate a DL model that is intended for use in a biosignal
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control system. Since the end goal is to provide the
optimal user experience, this should be thoroughly
evaluated. At lower technology readiness level valida-
tion studies should be conducted, whereas at higher
technology readiness level user evaluation studies
can be planned with bigger samples. Until now,
no standardized procedures exist that would allow
application-agnostic comparison of a control system,
however Novak and Riener (2015) already proposed
standardized evaluation procedures for exoskeletons
and prostheses, and a systematic review by De Bock
et al (2022) reviews benchmarking of occupational
exoskeletons.

Besides evaluating objective performance of an
application, user experience should also be con-
sidered, as well as the user intent and acceptance of
the novel technology. Elprama et al (2020) investig-
atemethods to evaluate user acceptance in the context
of industrial exoskeletons. Methods from human-
computer interaction (Dix et al 2003) and usabil-
ity engineering (Nielsen 1994) could suggest pos-
sible approaches to validate a control application and
determine which questions to ask participants for an
ideal evaluation of the user experience. Since user
opinions can be subjective, it is essential to have a
heterogeneous group of participants, as mentioned in
section 4.3.

We end this subsectionwith a summary of general
advice that can aid in the development of a control
system and ensure that published results are repro-
ducible and comparable. General tips:

• Software/Hardware co-design: when aiming for
embedded decoding of user intent, it is recom-
mended to design the hardware setup and software
decoding pipeline together (Tam et al 2020, Wang
et al 2020). This can avoid issues when deploying
the control system to the application setting and
forces the software design to take hardware con-
straints into account.
• Limit required preprocessing: extensive prepro-
cessing will yield clean signals with a high SNR, but
this usually comes at the cost of expensive compu-
tational requirements that take resources and time.
It will often be necessary to balance preprocessing
requirements with latency and power consumption
constraints.
• Perform user studies: a user study is the only way
to really evaluate the user experience of a control
system. While validation is sufficient for an initial
prototype, evaluation in the lab will be necessary at
a higher technology readiness level. Finally, in-field
evaluation is necessary to assess user experience in
real-world operating conditions.
• Share resources: sharing resources such as code and
data can assist other researchers that are start-
ing the development of their own control sys-
tem and enhance the reproducibility of the results.

This also enables a better comparison of different
approaches.
• Use standardized validation procedures: using stand-
ardized validation methods allows for the compar-
ison of different approaches without the need to
fully reproduce the experiments. This also enables
the systematic review of methods, which could
assist in identifying best practices.

5.3. Future perspectives
Recent advances in DL methods in related fields can
be leveraged to make real-time decoding more reli-
able, faster and use less resources. There are still sev-
eral methods that are yet to be applied to biosignal
decoding. For example self-supervised learning was
recently used (Kostas et al 2021) for biosignal decod-
ing, and there are multiple advancements in trans-
fer learning (Srinivas et al 2021) that could help in
mitigating the small data issue, with some techniques
even allowing transfer between two completely dif-
ferent settings (Lu et al 2021). By leveraging these
advancements, the calibration of the control system
to a new user and the required user training could be
minimized thanks to the strong generalization power
of DL. In combination with the advent of embedded
DL, these results indicate that DL will likely become
the preferred method for biosignal decoding.

Another interesting development in the research
and development of ML pipelines is AutoML (He
et al 2021). This new approach to the design of ML
pipelines allows for automated exploration of altern-
ative methods for the different components of the
pipeline. While this has not been developed yet in the
context of biosignal control, it has proven to be a valu-
able tool for researchers and companies that are lack-
ing the expertise to develop the whole pipeline them-
selves. Companies such as Google are now providing
AutoML solutions as part of their cloud infrastruc-
ture13. Having such a framework for biosignal decod-
ing pipeline development could significantly boost
the deployment of real-world applications.

Developing standardized methods for both data
gathering and prototype validation should also con-
tribute towards the commercialization of biosignal
control systems. The current lack of standardized data
gathering procedures means that engineers need to
design a new experimental protocol for each new
POC. An advantage of standardized data gathering
procedures is that data engineering for ML training
could be automated.

The same limitations apply for the design of the
experimental protocol of a validation or evaluation
study. When the control systems for a specific applic-
ation are evaluated with the same procedures, dif-
ferent approaches can be better compared without

13 https://cloud.google.com/automl.
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the need to reproduce the baseline. The development
of stress tests that benchmark the model perform-
ance under specific conditions could also be a great
contribution. For example, stress tests that evaluate
the performance of a model across different sensor
devices or when using different numbers of sensors
could be useful to determine whether additional data
gathering is necessary when new acquisition devices
become available. Another example would be to eval-
uate the performance of a model on data from a par-
ticipant that was not included in the training data,
which could be an initial benchmark for the expec-
ted amount of calibration that will be necessary for
new users of the control system.

Finally, new advancements in sensor and robotics
hardware should improve decoding performance and
user comfort even further. Current medical systems
are accurate, but require a setup that is not accept-
able for a consumer device. To get biosignal con-
trol accepted in the mainstream market, the control
systems should be plug-and-play, requiring minimal
user setup. Once this is achieved, it should only be a
matter of making the hardware affordable and devel-
oping worthwhile applications. Afterwards, biosignal
control should become possible for consumer applic-
ations such as VR control and everyday computer
interaction.

6. Conclusion

This scoping review presents an overview of the the-
oretical background that is necessary to understand
DL and biosignal decoding methods, and defines
the scope of the field of biosignal control with DL
decoding methods. After reviewing publications that
applied DL for biosignal decoding in a POC applica-
tion, gaps in the current state-of-the-art were identi-
fied and discussed. A bottom-up guide to implement-
ing a biosignal control system with DL was extracted
from the literature.

Biosignal control is becoming an increasingly
viable alternative to classic interaction modalities,
especially for robotic devices that are directly con-
trolled by an operator. However, while the techno-
logy is already being used in medical devices, it is cur-
rently limited to stationary settings within controlled
environments where biosignals can bemeasured with
medical-grade sensors. Conversely, mobile commer-
cial sensor systems exist, but they are unreliable for
more advanced intention decoding purposes.

To bridge this gap, DL can be used to decode user
intention from biosignals. DL methods have received
increased attention in recent years thanks to the suc-
cess of these methods in other research fields. How-
ever, DL is a complex and data-intensive method
that usually requires more computational resources
than the classical ML techniques. Even so, thanks to
new advancements in both hardware and software

technologies, DL will likely become the go-to method
for user intent decoding from biosignals.

Finally, there currently is a lack of standardized
protocols for evaluating research prototypes. Stand-
ardization of these protocols should allow for a bet-
ter comparison of the performance of biosignal con-
trol systems and assist researchers in determining the
necessary steps to validate their prototypes. Lever-
aging advances in DL and standardizing evaluation
procedures should bring us closer to commercial
biosignal control for everyday use.
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Appendix. Detailed background

One of the objectives of this article is to allow experts
in non-computer science domains to be able to assess
the use of DL techniques for solving biosignal decod-
ing tasks. Instead of enumerating a dense list of cita-
tions, leaving most of the work of understanding and
summarizing DL papers to the reader, we propose in
the following sections a guided walk-through of DL
and related fields.

The biosignal decoding pipeline
In biosignal control, the biosignals related to volun-
tary activity from a subject are measured to enable
a user to control a device with their thoughts and
movements. To identify the desired action from the
user’s biosignal activity, the signals are processed
by a pipeline that consists of the steps depicted in
figure A.1.

As the first step in every biosignal decoding
pipeline, a digital representation of the signals of
interest is acquired through sensors that are repres-
ented as data channels. However, biosignals typically
have a low SNR. This means that there will be more
noise present in the acquired data, making it harder
to extract useful information. Therefore, a prepro-
cessing step is necessary to improve SNR and yield a
‘clean’ signal that eliminates artifacts, such as those
resulting from power supplies or unrelated muscle
activity. This is typically achieved by filtering out
frequencies that fall outside the frequency spectrum
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Figure A.1. Pipeline for decoding user commands from a biosignal.

that is known to be associated with the measured
signal. For more information on filters and digital
signal processing, interested readers are referred to
Orfanidis (1996). Another important preprocessing
step is windowing the continuous signal into discrete
segments. Several windowing methods exist and are
reviewed by Podder et al (2014).

From the resulting (clean) window, referred to
as a trial in the context of biosignals, features are
extracted that represent the information that is con-
tained in the signal. Depending on the chosen signal,
several feature extraction methods exist. However,
DL methods automatically handle feature extraction
when given raw data, which is detailed in section
‘Deep learning’. Specific techniques fall outside of the
scope of this review and are therefore not discussed
and interested readers are referred to Rashid et al
(2020) for an overview of existing feature extraction
methods.

To identify the user intent from the extracted fea-
tures (or raw signal data), an algorithm, which typ-
ically uses ML, computes a value or class label that is
associated to the desired action. With a classification
method, the predicted class is passed to a high-level
controller that maps the predicted class to an action
that the device can perform. For example, by map-
ping a specific movement intention class to a graph-
ical user interface action (Kuhner et al 2019). When
using regression, the predicted value could either be
a threshold to perform a fixed action, or directly
mapped to a continuous value that is understood by
the low level motion controller. A common regres-
sion control strategy maps exoskeleton joint angles to
those of the user (Ren et al 2019).

Designing a good controller is an essential step
in applying biosignal control. On the one hand, the
controller determines what type of model should be
used to process the measured signal. On the other
hand, the interaction capabilities with the device
are entirely determined by the supported controller
interface.

Biosignal modalities
Several types of biosignals can be used to control elec-
tronic devices. The most commonly used signal in
BCI applications is the electroencephalogram (EEG),
which measures electrical activity from firing neur-
ons. It has a high temporal resolution and can be

measured with relatively low-cost devices. Multiple
control paradigms exist for EEG signals that influence
the design of a control system. Several types of EEG
paradigms can be distinguished and are discussed in
more detail in other reviews of Ramadan and Vasil-
akos (2017) and Rashid et al (2020).

EEG can also be measured with implanted elec-
trodes to yield a higher SNR and an increased spatial
resolution.Modalities include the electrocorticogram
where electrodes are implanted on the top of the cor-
tex, right under the skull. There is also the possibil-
ity to implant electrodes directly in the brain matter
(intracortical EEG) to further increase SNR and spa-
tial resolution.However, such invasive approaches fall
outside of the scope of this article.

For robotic control, the electromyogram (EMG),
which measures electrical activity from muscle con-
tractions, is most commonly used, because it is relat-
ively simple to incorporate in existing robotic systems
and it is easier to identify which muscle is active and
subsequentlymap this activity to an action of the con-
trolled device (Simão et al 2019). The choice between
using EEG and EMG generally depends on the
application.

Other biosignals are also leveraged, but to a
lesser extent, as there are drawbacks that currently
make them impractical compared to EEG and EMG.
Alternative signals include magnetoencephalogram
(Gross 2019), functional near infrared spectroscopy
(Naseer and Hong 2015), and functional Magnetic
Resonance Imaging (Sitaram et al 2007). Lesser
known signal types are also becoming usable, such as
acoustic resonance (Norman et al 2021), which uses
the Doppler effect to detect changes in brain activ-
ity, and Photoplethysmogram (Han et al 2020), which
uses optical reflections to monitor brain activity, in
a similar way to near infrared spectroscopy. Another
possibility is to monitor spinal cord activity using
magnetospinography (Sakaki et al 2020) if one is only
interested in lower-limb activity.

Finally, some systems combine multiple signals
to take advantage of the redundant information that
might be lost when using only one signal type, but can
reliably be extracted from another signal type. Such
systems are referred to as hybrid BCI. One example of
such a hybrid system is to combine EEG and EMG
for movement detection (Leeb et al 2011, Loopez-
Larraz et al 2018, Tortora et al 2020b), as this allows
detection of motor planning from the EEG signal
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and determining the exact movement more reliably
from EMG.

Machine learning
AI is a wide domain of research in Computer Science.
It has no precise definition, but Nilsson (2009) pro-
poses to define AI as any method that makes a com-
puter able to perform an intelligent task, that is, acting
on inputs in the pursuit of a goal.

This definition of AI encompasses many sub-
fields, such as planning and optimization (schedul-
ing tasks, finding the shortest route in a city), natural
language processing (text-to-speech, speech-to-text,
parsing, understanding, translation), logic reasoning
and inference (expert systems), and machine learn-
ing, on which we now focus.

ML is a subfield of AI which consists of algorithms
that extract knowledge from data and involves two
steps. First, a learning phase consists of summarizing
the data in some machine form. Once knowledge is
extracted, a prediction phase uses it to produce a value
to solve a specific task in a computer system.

A typical ML pipeline consists of several main
steps, being preprocessing, feature extraction, predic-
tion, and sometimes postprocessing. Depending on
the task, preprocessing can sometimes be omitted, as
much as it could be an extensive and important part
of the pipeline. Postprocessing is generally rare, as
algorithms are usually trained to directly predict the
value(s) of interest.

The most common form of ML is supervised
learning, in which we assume that the data is presen-
ted as a set of input-output pairs, a dataset, which we
call labeled data, as each input is labeled with its cor-
responding output. For instance, inputs can be frag-
ments of signals acquired by electrodes, and outputs
can be corresponding annotations, such as the intent
of the user at that time, or a movement that was per-
formed (Yohanandan et al 2018).

During learning, the supervised learning model
will consider the input-output pairs, and will try to
minimize the error between what it predicts for a
given input, and the actual output for that pair.Meth-
ods and algorithms that allow to concretely perform
this learning operation are presented in the following
sections, and are extensively reviewed byCaruana and
Niculescu-Mizil (2006).

Once the algorithm has learned, a form of sum-
mary of the input-output pairs has been produced.
It can be the weights of a neural network, decision
boundaries in a decision tree, means and variances
in a Gaussian Mixture Model (Rasmussen et al
1999), or the equation of a line in Support Vector
Machines. This knowledge can be used to perform
predictions on new inputs, previously unseen by the
algorithm but drawn from the same distribution (i.e.
if the algorithm has been trained on brain signals, it

must predict on brain signals, not electrocardiogram
data).

The objective of supervised learning is to achieve
high-quality predictions on previously unseen data.
The main difficulty is that this previously unseen
data usually has no known output (it only consists
of inputs). It is therefore impossible to directly eval-
uate how good the prediction of a supervised learn-
ing algorithm is. Methods to estimate this quality
exist, and are presented in the book by Aggarwal
(2018). They mainly consist of using a test set: some
of the input-output pairs are kept aside, not used
for training, but are used after training to compute
the difference between the output predicted by the
algorithms onunseen data, and the known actual out-
put. The ability for an algorithm to make good pre-
dictions on the test set is known as its generalization
ability.

Unsupervised learning techniques do not use out-
puts for learning, but rather learn the (unknown)
structure of the data. For example, clusteringmethods
will try to form groups in the training data accord-
ing to some criterion and try to determine which
group a previously unseen example belongs to after
training. Semi-supervised learning methods use both
labeled and unlabeled data. Their objective is to learn
a supervised learning task, even in cases where only
a small amount of training data is available. Usu-
ally, semi-supervised approaches learn the structure
of the training data to become able to generate more
(artificial) training points (Aznan et al 2019), that
are used for conventional supervised learning in a
second learning phase. Self-supervised learning (Jing
and Tian 2019) is a similar approach which is cur-
rently gaining traction in the larger ML community.
This technique was previously used to learn the relev-
ant structure in EEG data by first learning an unsu-
pervised pretext task, after which the model is fur-
ther trained on the target task with labeled data
(Banville et al 2020, Kostas et al 2021). The remainder
of this review will focus on supervised learning
methods.

Neural networks
Out of the many supervised learning approaches
that exist, and are reviewed by (Caruana and
Niculescu-Mizil 2006), neural networks currently
appear as the most promising one. There are sev-
eral reasons for this: the neural network formalism
is quite general, which means that many specific ML
architectures can be seen as neural networks, there-
fore leveraging the extensive knowledge we have on
them. Neural networks are also able to learn map-
pings between inputs and outputs in a highly general
way, making few assumptions. Neural networks are
therefore applicable to many tasks, even if the input is
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a time sequence, has a large dimensionality, consists
of images or portions of videos.

Despite the name of neural networks, that may
imply a type of opaque and magical approach,
neural networks are a perfectly sound mathemat-
ical approach to ML. Neural networks consist of a
parametric function ŷ= f(x,θ), a function that com-
putes an output ŷ from an input x and a para-
meter θ. The exact equation of the function can
be anything, but usually consists of a sequence of
matrix multiplications and activation functions, also
known as a Perceptron (Ramchoun et al 2016).
Convolutional neural networks (CNN) are often
used when the input x is an image (LeCun et al
1995). Recurrent neural networks are able to pro-
cess inputs that are sequences of numbers (or images)
of varying length (Hochreiter and Schmidhuber
1997). In section ‘Neural architectures’, we provide
more details about these neural network architec-
tures, and identify the numbers that appear in
their equations, that can be learned collectively
form θ.

Training a neural network consists of finding θ,
the set of parameters (synonym weights) that min-
imizes a loss. Training a neural network is there-
fore an optimization problem, for which many well-
known algorithms and software libraries exist. We
now describe what these algorithms do for readers
interested in a detailed mathematical background,
but practical applications of neural networks do not
depend on the understanding of this section, but
can rely on the libraries we present later in this
section.

Inmost supervised learning settings, the loss is the
Mean Squared Error, J =Ex,y∼D(y− f(x,θ))2. Min-
imizing the Mean Squared Error leads to finding θ
such that the outputs predicted by the network are as
close as possible to the actual outputs, as appear in the
dataset D. Other losses exist, and are used in specific
cases, such as when the output of a neural network is
a discrete probability distribution.

The algorithm that is the most often used to train
a neural network is gradient descent. The set of oper-
ations (matrix multiplications, hyperbolic tangents,
etc) in a neural network are all differentiable. It is
therefore possible to compute ∇θJ , the gradient of
the loss with regards to the parameters of the neural
network. By updating the parameters in the oppos-
ite direction of the gradient, θ← θ−α∇θJ , with
α a positive learning rate close to 0, the neural net-
work becomes slightly more accurate at predicting
outputs. StochasticGradientDescent consists of com-
puting that gradient, and moving the parameters,
repeatedly until the accuracy of the neural network
stops improving (Bottou 2012). Recent advances,
such as the Adam optimizer (Kingma and Ba 2014),
still follow the same approach, butmove the paramet-
ers in a slightly smarter way, leading to faster training
of the neural network.

By explaining that neural networks are paramet-
ric functions, and that training them consists of com-
puting the gradient of a loss with regard to the para-
meters and using it to update the parameters so
that the loss decreases, we hope to have demystified
neural networks, that are often presented as magical
black-boxes in the industrial and medical domain,
or in the media. To further help people interested in
using neural networks for biosignal decoding applica-
tions, we also mention that building neural networks
(defining the function f they compute), computing
the gradients, and performing Stochastic Gradient
Descent, is all automated in several well-regarded
software libraries. PyTorch14, in Python and C++,
and TensorFlow15, in Python, are the most well-
known. Other less-known libraries exist in various
programming languages, such as MATLAB or Java,
but they do not have asmany tutorials and tools avail-
able as PyTorch and Tensorflow. On embedded sys-
tems, CMSIS-NN (Lai et al 2018), by ARM, makes
neural networks amenable for deployment on small
microcontrollers. Using one of these frameworks is
a must when implementing neural networks in any
setting to avoid unnecessary work to implement
the low-level components, and ensure their correct
implementation.

Neural architectures
In this section, we discuss several neural architectures,
that define the actual computations performed in a
neural network, to map its input to the output. The
choice of neural architecture is mostly influenced by
the kind of input given to the network, and, in the
next subsections, we will detail when to use which
neural architecture.

Multi-layer perceptron (MLP)
The multi-layer perceptron (Rumelhart et al 1985)
is the neural architecture that is most often used.
It assumes that the input x of the neural network
is a one-dimensional vector of floating-point values.
Multi-layer perceptrons (MLPs) can therefore take
as input sensor readings, or fixed-length windows of
signals.

An MLP has a structure inspired from how neur-
ons are organized in the neo-cortex of the human
brain, hence the historical use of the name ‘neural
network’. The network is organized in a sequence
of layers, each layer consisting of neurons (see
figure A.2). Each neuron of a given layer is connec-
ted to all neurons of the previous layer, through con-
nections whose importance (or weights) are learn-
able (part of the set of parameters of the network).
Practically, a neuron produces a floating-point value,
computed as σ(

∑
jwjhj). j represents an index that

enumerates the neurons in the previous layer, wj is

14 https://pytorch.org.
15 www.tensorflow.org/.
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Figure A.2. Graphical depiction of a simple multi-layer
perceptron with one hidden layer. Each arrow has a
learnable weight (a parameter of the network). In this
particular network, the output
y1 = wh11h1 +wh21h2 +wh31h3 +wh41h4=
wh11σ(w11x1 +w21x2 +w31x3)+wh21 . . ..

the learnableweight of the connection between the jth
neuron in the previous layer, and hj is the value of that
neuron. σ is an activation function, whose purpose is
to make the neural network a non-linear function.
Common activation functions include the hyperbolic

tangent, the sigmoid function
(

tanh(x)+1
2

)
, or ReLU,

the rectified linear unit (max(x,0)).
Compute-efficient implementations of neural

networks observe that the output of a neuron is com-
puted from a dot product (between the output of
every neuron in the previous layer, and the weights
of the connections), and that computing the value of
every neuron of a given layer can be implemented as
a matrix multiplication between a weight matrix, and
the values of all the neurons of the previous layer. As
such, from a mathematical standpoint, an MLP is a
differentiable function that computes a series of mat-
rix multiplications and activation functions.

The last questions that remain are how to choose
how many layers should be included in an MLP, how
many neurons each layer should consist of, and what
the activation functions should be. There is unfortu-
nately no recipe for choosing the structure of a neural
network, but the book on Deep Learning (Goodfel-
low et al 2016) mentions a few approaches that, by
looking at what has to be learned, allows to produce a
reasonable neural architecture.

Convolutional neural networks
The layers of MLPs perform a matrix multiplication
that allows every floating-point value in the previ-
ous layer to influence every floating-point value in
the next layer, in an independent way. This max-
imizes the representative power of the network (the
complexity of the functions it can learn), but is also
costly to compute, and may be too flexible for fast
and efficient learning. Convolutional layers (LeCun

Figure A.3. A one-dimensional convolution (as defined in
the neural network literature) of an input with a 3-elements
kernel. The kernel slides on the input, leading to the
computation of a succession of partial dot products.

et al 1995) replace this matrix multiplication with
a signal correlation operation: the input (1-, 2- or
3-dimensional) is correlated with a learnable kernel,
leading to the output of the layer. Figure A.3 shows
an example of a 1-dimensional correlation between
an input and a 3-elements kernel. Keen observers can
see that the operation is indeed a (cross) correlation,
and not a convolution, as the name ‘convolutional
neural networks’ may indicate. A convolution would
have flipped the kernel before performing the same
operation. This small difference may have historic-
ally been missed by researchers on CNNs, who then
named their networks improperly.

The main advantage of convolutional layers is
that each value produced only depends on a small
set of values from the previous layer. This increases
compute-efficiency (less multiplications have to be
performed), and allows the network to develop shift
invariance, the ability to recognize the presence of
small patterns in the input, regardless of where they
are in the input, and howmany of them there are (see
figure A.4). This increases the generalization ability
of the network. Convolutional layers play an import-
ant aspect in the domain of representation learn-
ing (Bengio et al 2013) where extracting high-level
representations from the input is learned together
with the classification, as opposed to manual feature
engineering. Zeiler and Fergus (2013) provide a good
explanation on how this concept can be visualized in
the context of image classification.

Recurrent neural networks (RNN)
MLPs are also sometimes called feed-forward neural
networks, as each layer only depends on the previous
layer. There is no ‘backwards’ connection that goes
from a layer i to layer i− 1. Recurrent neural networks
introduce these backward connections, with the long
short-termmemory (LSTM)being themost common
case (Hochreiter and Schmidhuber 1997). LSTM net-
works are quite complicated to understand, and a pre-
cise definition is outside the scope of this article. The
general intuition is that the backward connections
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Figure A.4. A one-dimensional convolution can be used to detect patterns in a one-dimensional signal (here a heartbeat in an
ECG). Every position at which the pattern matches is identified by the convolution, regardless of their location (shift invariance)
and number of repetitions.

allow the network to ‘remember’ some information
about an input, and use it to influence the predic-
tion it will make when presented with the next input.
Inputs presented to a neural network are therefore not
seen as an unordered bag of independent inputs any-
more (each of them receiving its independent predic-
tion), but now form an ordered sequence. This allows
the input x to be an element in a sequence of ele-
ments (for instance, one image in a video, or one
instantaneous reading of 10 electrodes in a sequence
of electrode readings). Then, one simply presents a
sequence of inputs to the network, that at the end
predicts an output that depends on all inputs that
have been presented to it. LSTM networks are often
used for sequence-to-sequence tasks, such asmachine
translation, signal processing, visual question answer-
ing and video processing.

In practice, neural networks can combine many
layers of different kinds. It is not unusual to find
neural networks that start with a few convolutional
layers, to detect patterns independently of where they
are in the input (such as edges in an image, or fea-
tures in a 1D signal), then have one LSTM layer to be
able tomake sense of sequences of inputs, followed by
a few feed-forward MLP-like layers to map what the
LSTM layer learned to actual outputs. In the papers
that we review in this article, great care is always given
to explain and motivate the choice of neural architec-
ture. Designing a neural network requires experience,
as there is no systematic approach. We refer read-
ers interested in knowing more than what we present
here to books such as Goodfellow et al (2016) and
Aggarwal (2018).

Deep learning
DL is a form of representation learning that intro-
duces more than one level of abstraction to the
learned features (Goodfellow et al 2016). This means
that from the initially learned features, new features at
a higher level of abstraction are extracted. If one con-
siders the steps of the pipeline as a graph, then this
graph can becomemuch larger in the number of con-
secutive steps, or deeper, than with other techniques,
and is therefore referred to as deep learning.

Most modern DL models are neural networks,
however, other ML techniques can also qualify as DL.
The most common type of DL neural networks at
this time are the previously described CNNs (LeCun
et al 1989). The subsequent application of convolu-
tional layers results in a high-level representation of
the input as stipulated byGoodfellow et al (2016). For
example, in an object classification task, the network
learns to extract primitive shapes from the raw input
(a matrix of pixel values) in the first layer and then
learns to extract objects from these primitive features
in the next layer.

A DL method that is useful in biosignal decod-
ing is transfer learning (Fahimi et al 2019, Kostas et al
2021). With transfer learning, a model is first trained
on general data from which the model aims to learn
the structure of the data. After pretraining, a fine-
tuning phase will further train the model with data
related to the specific problem that the model should
solve. This approach is useful when faced with limited
data availability for the target domain and specifically
for biosignal decoding when calibrating a model for a
new user. Transfer learning allows for the training of
much largermodels than if themodel was trained dir-
ectly on the task-specific dataset.

Data preprocessing
Until now, we considered an abstract representation
of the data, with x the input and y the desired out-
put. In practice, neural networks assume x and y to
be multi-dimensional arrays of floating-point values.
Going from raw data, as acquired by sensors (such
as electrodes), to these arrays of floating-point val-
ues therefore requires application-specific code, usu-
ally being referred to as a data preprocessing pipeline.

Conceptually, given enough layers and neur-
ons, and the proper architecture, a neural network
can learn any mapping from inputs to outputs
(Sonoda and Murata 2017) (they are universal func-
tion approximators). This means that any method
of acquiring a signal, and representing it as floating-
point values will eventually allow the network to
make sense of the inputs, and learn something. How-
ever, a more careful design of the inputs allows to
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improve two important properties of the neural net-
work: learning speed (important when the network is
used in an adaptive system that learns as it is being
used) and generalization power (the ability of mak-
ing high-quality predictions for unseen inputs, even
if training on a small amount of input-output pairs).

Designing the input, also called feature engineer-
ing, is highly domain-specific. In the signal processing
literature, especially in settings that consider EEG
data, the following preprocessing steps are commonly
used for feature engineering:

(a) Signal filtering: applied on the signals, filters
remove frequencies of the signals, to only keep
those of interest. This is a form of noise removal,
in which the expert designer knows that some
frequencies never convey information and can
only be noise. There are many different types
of filters, which fall outside of the scope of this
publication. For more information on filters and
digital signal processing, interested readers are
referred to (Orfanidis 1996).

(b) Windowing: when specific events in a signal
(such as a spike or pattern) matters more than
the overall shape of the complete signal, win-
dowing allows to split a signal into fixed-length,
usually overlapping, sub-sequences. Having the
network focus on small sub-sequences allows it
to be faster (less compute intensive, as less data
is being processed), and generalize better, as a
small number of easily-recognizable patterns (on
which the network focuses) can appear in vari-
ous positions in longer signals (that the network
does not have to bother with). Several window-
ing methods exist, and are reviewed by Podder
et al (2014). Jeong et al (2020) and Nguyen and
Chung (2019) use Hamming windowing.

(c) Feature extraction: this final step is highly vari-
able and depends on the exact context (sleep sta-
ging, Motor Imagery detection, epilepsy seizure
detection, etc) in which the signal should be
decoded. In general, DLmodels have been shown
to perform better when the input is the raw (pre-
processed) signal that is still represented as time-
series of samples for each signal channel. One
of the most commonly used feature extraction
methods is the Fourier transform, which allows
to decompose a temporal signal (a sequence of
signal readings over time) to a sum of sinuses
of various frequencies. The Fourier transform
transforms data from the time domain to the
frequency domain. This transform is loss-less
and invertible, which means that it does not
destroy information. It allows the neural net-
work to more easily focus on the existence of a
particular frequency in a signal, instead of hav-
ing to make sense of the entire (time-domain)
signal.

Other (more minor) preprocessing steps exist,
which are not presented in this section. For a detailed
review of possible feature extraction methods, we
refer interested readers to Rashid et al (2020).

Improving generalization
We have introduced how neural networks work, how
to train them, and how to design data acquisition
pipelines that allow for efficient learning. We now
focus on methods that, given a neural network, allow
to increase its generalization power. Generalization is
particularly important in the engineering and med-
ical fields, where data is costly to acquire, as it allows
a neural network to produce better predictions in pro-
duction (on unseen data) with fewer training data
points.

With neural networks, the main avenue to
increase generalization is to decrease over-fitting.
Over-fitting happens when a neural network remem-
bers exactly what training input should learn which
training output, without having actually made sense
of the data. The network achieves a training loss close
to 0, but produces garbage output on the testing set.
It is like a small child that learns how to read words,
and remembers that card number 7 is pronounced
‘cat’, without actually looking at the word written on
the card, or being able to read at all.

Batch normalization (Ioffe and Szegedy 2015)
considers the input of every layer in a neural network,
and normalizes it so that, in expectation, the inputs
of every layer has a zero mean and a unit variance.
Intuitively, this normalization prevents ludicrously
large or small values from appearing inside the net-
work, whichmakes it ‘behave better’ or ‘be smoother’
(so, easier to train, and better at generalization). The
actual mathematical way in which batch normaliz-
ation works is however still unknown, with recent
papers providing the first insights (Santurkar et al
2018).

Dropout (Srivastava et al 2014) does not modify
the values that flow through a neural network, but
instead randomly disables neurons every time the
network is evaluated during training. The main
motivation behind Dropout is to avoid one particu-
lar neuron in the network to learn how to compensate
(and thus cancel out) another particular neuron in
the network. When neurons are constantly randomly
disabled and re-enabled, they all have to learn inde-
pendently from each other. More mathematically,
Dropout leads to a neural network that is made of
a different set of neurons every time it is evaluated.
This leads to a large ensemble of ‘sub-networks’, all
trained on different datapoints. Ensembles of func-
tion approximators such as this are known to help
with generalization (Dietterich 2000).

Both batch normalization (Tayeb et al 2019, Tam
et al 2020) and Dropout (Gautam et al 2020, Tortora
et al 2020a) are often used in biosignal decoding
papers, sometimes both at the same time. Other
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normalization techniques are possible, such as L1-
normalization or clipping the gradients (Zhang et al
2019a), but they have been superseded by Batch Nor-
malization and Dropout.
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