
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Cluster-Based Input Weight Initialization
for Echo State Networks

Peter Steiner , Azarakhsh Jalalvand , Member, IEEE, and Peter Birkholz , Member, IEEE

Abstract— Echo state networks (ESNs) are a special type of
recurrent neural networks (RNNs), in which the input and
recurrent connections are traditionally generated randomly, and
only the output weights are trained. Despite the recent success
of ESNs in various tasks of audio, image, and radar recognition,
we postulate that a purely random initialization is not the ideal
way of initializing ESNs. The aim of this work is to propose
an unsupervised initialization of the input connections using the
K -means algorithm on the training data. We show that for a
large variety of datasets, this initialization performs equivalently
or superior than a randomly initialized ESN while needing
significantly less reservoir neurons. Furthermore, we discuss that
this approach provides the opportunity to estimate a suitable size
of the reservoir based on prior knowledge about the data.

Index Terms— Clustering, echo state networks (ESNs), reser-
voir computing, unsupervised pretraining.

I. INTRODUCTION

S INCE the breakthrough of echo state networks (ESNs) [1],
a lot of design strategies for ESNs have been proposed.

Although randomly initialized ESNs have achieved state-of-
the-art results in various directions, several publications, such
as [2]–[4], argue that there should exist better approaches that
incorporate more prior or biologically plausible knowledge.
According to [5], it requires a lot of trial and error methods
to initialize an ESN for a task, and the relationship between
the different weight matrices is not completely understood.

To better understand the behavior of randomly initialized
ESNs for digit and phoneme recognition, Jalalvand et al. [6],
Jalalvand et al. [7], and Bala et al. [8] have analyzed an ESN
with optimized hyperparameters and determined the impact
of the different hyperparameters. For example, it turned out
that even very sparse weight matrices are still sufficient for
achieving proper results. Similarly, in [9], it was shown that the
hyperparameters should be tuned to match the spectral prop-
erties of the reservoir states and the target outputs. Another

Manuscript received March 1, 2021; revised August 17, 2021 and
October 25, 2021; accepted January 19, 2022. This work was supported in
part by the Europäischer Sozialfonds (ESF), in part by the Free State of
Saxony under Grant 100327771, and in part by the Special Research Fund
of Ghent University under Grant BOF19/PDO/134. (Corresponding author:
Peter Steiner.)

Peter Steiner and Peter Birkholz are with the Institute of Acoustics and
Speech Communication, Technische Universität Dresden, 01069 Dresden,
Germany (e-mail: peter.steiner@tu-dresden.de; peter.birkholz@tu-dresden.de).

Azarakhsh Jalalvand is with IDLab, Ghent University–imec, 9052 Ghent,
Belgium, and also with the Mechanical and Aerospace Engineering
Department, Princeton University, Princeton, NJ 08544 USA (e-mail:
azarakhsh.jalalvand@ugent.be).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3145565.

Digital Object Identifier 10.1109/TNNLS.2022.3145565

way to design ESNs more efficiently is to concatenate multiple
reservoirs. Different architectures, such as layered ESNs [6]
or deep and tree ESNs [10]–[13], were shown to improve
the performance over a single-layer ESN while reducing the
training complexity by utilizing smaller reservoirs in each
layer.

Other approaches step even farther away from random
initialization. The publications [14]–[16] proposed simple ESN
reservoirs in different flavors, e.g., delay lines with optional
feedback, cyclic reservoirs, or even a simple chain of neurons.
It was shown that the proposed reservoir design strategies
outperformed randomly initialized ESNs in various aspects,
such as classification or regression accuracy and in terms of
memory capacity. A big advantage is a relatively high sparsity,
which is memory-efficient and computationally cheap. How-
ever, at least in [15], the authors warned that their findings
might not hold in practice, when one needs to deal with high-
dimensional inputs or more complex tasks. A related approach
to simplify the reservoir initialization was proposed in [17],
where the reservoir weights are only allowed to have the
values 0 and ±1. Starting with the values 1 and 0, which
were assigned to the reservoir in a deterministic way, sev-
eral 1 weights were flipped to −1 and the authors have shown
that this strongly influenced the behavior of the reservoir
in terms of fitting error and memory capacity. In [18], the
aforementioned approaches were further simplified, and only
one neuron was used in the reservoir. The output of the neuron
was fed back to its input using different delay times. This
produced virtual nodes simulated a larger reservoir.

All these pioneering approaches try to initialize the reservoir
and/or input weights in a more or less deterministic way that
is almost task-independent. Alternative techniques also aim to
initialize the ESN in a deterministic way that is, however,
more task-dependent or dependent on the input data. For
example, [19] adopted recurrent self-organizing maps (SOMs)
to initialize the input and recurrent weight matrices using
the SOM algorithm. Therefore, a new neuron model was
used, and the weight matrices were pretrained using the
unsupervised SOM algorithm. In [20], scale-invariant maps
(SIMs), an extension of SOMs, were used to initialize the
input weights. The same group also used the Hebbian learning
in [21]. Lazar et al. [22] proposed a biologically inspired
self-organizing recurrent neural network (SORN) consisting
of spiking neuron models, in which the weights of frequently
firing neurons are increased during training. This was adopted
for the batch intrinsic plasticity (BIP) for ESNs [23], where
the reservoir weights were iteratively pretrained.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8149-2275
https://orcid.org/0000-0001-8739-1793
https://orcid.org/0000-0003-0167-8123

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Yet another family of unsupervised learning algorithms are
clustering techniques. In [24], the inverse weighted K -means
(IWK) algorithm [25], [26] was proposed to initialize the
weight matrices of an ESN. After randomly initializing the
input weights, they applied IWK to the neuron inputs and
adapted the input weights. Then, they randomly initialized
the recurrent weights and applied IWK again on the reservoir
states to adapt the recurrent weights. The authors showed that
their method outperformed a randomly initialized ESN and
that the performance gets more stable when repeating random
initialization.

In this article, we present an alternative strategy to initialize
the ESN input weights using the K -means algorithm. Instead
of applying the cluster algorithm on the neuron inputs, we used
the K -means algorithm to cluster the input features and used
the centroid vectors as input weights.

The main advantages of our approach are as follows.
1) The pretrained ESNs perform equally well or better than

ESNs without pretraining and need smaller reservoirs.
This will be discussed in detail on a large-scale video
dataset and evaluated on a broad variety of datasets with
different characteristics.

2) We show that the same hyperparameter optimization
strategy proposed in [6] and [7] for conventional ESNs
can be applied to optimize the hyperparameters of the
novel K -means-based initialized ESN (KM-ESN).

3) Applying the clustering techniques is a common data
exploration step to study possible correlations within the
data. Our approach efficiently benefits from the outcome
of this step to also initialize the input weights.

4) Since the clusters are usually associated with the classes
to be recognized, e.g., phones in speech or notes in
music, the procedure of our approach is interpretable.

The rest of this article is structured as follows. In Section II,
we introduce the basic ESN and our proposed unsupervised
input weight initialization. In Section III, we introduce, opti-
mize, and evaluate ESNs for door state classification in videos.
In Section IV, we present results on a wide variety of mul-
tivariate datasets. Finally, we summarize our conclusions and
give an outlook to future work in Section V.

II. METHODS

Here, we introduce the basic ESN and the K -means algo-
rithm and explain how the input weights of an ESN can be
initialized using the K -means algorithm.

A. Basic Echo State Network

The main outline of a basic ESN is depicted in Fig. 1.
The model consists of the input weights Win, the reservoir
weights Wres, and the output weights Wout. The input weight
matrix Win has the dimension of N res × N in , where N res and
N in are the size of the reservoir and dimension of the input
feature vector u[n] with the time index n, respectively. Typi-
cally, the values inside the input weight matrix are initialized
randomly from a uniform distribution between ±1 and are
scaled afterward using the input scaling factor αu , which is
a hyperparameter to be tuned. In [6], it was shown that it is

Fig. 1. Main components of a basic ESN. The input features u[n] are
fed into the reservoir using the fixed input weight matrix Win. The reservoir
consists of unordered neurons, sparsely inter-connected via the fixed reservoir
matrix Wres. The output y[n] is a linear combination of the reservoir states
r[n] based on the output weight matrix Wout, which is trained using linear
regression.

sufficient to have only a limited number of connections from
the input nodes to the nodes inside the reservoir. We therefore
connect each node of the reservoir to only K in = 10 (�N in)
randomly selected input features. This makes Win very sparse
and feeding the feature vectors into the reservoir potentially
more efficient.

The reservoir weight matrix Wres is a square matrix of the
size N res × N res. Typically, the values inside this matrix are
initialized from a standard normal distribution. Similar to the
input weight matrix, we connect each node inside the reservoir
to a limited number of K rec = 10 (�N res) randomly selected
other nodes in the reservoir, and set the remaining weights
to zero. In order to fulfill the echo state property (ESP) that
requires that the states of all reservoir neurons need to decay
in a finite time for a finite input pattern, the reservoir weight
matrix is normalized by its largest absolute eigenvalue and
rescaled by the spectral radius ρ, because it was shown in [1]
that the ESP holds as long as ρ < 1.

Together, the input scaling factor αu and the spectral radius
ρ determine how strongly the network relies on the memorized
past inputs compared with the present input. These hyperpa-
rameters need to be optimized during the training process.

Every neuron inside the reservoir receives an additional con-
stant bias input. The bias weight vector wbi with N res entries is
initialized by fixed random values from a uniform distribution
between ±1 and multiplied by the hyperparameter αb. With
the three weight matrices Win, Wres, and wbi, the reservoir
state r[n] can be computed as follows:

r[n] = (1 − λ)r[n − 1]

+ λ fres
(
Winu[n] + Wresr[n − 1] + wbi). (1)

Equation (1) is a leaky integration of the reservoir neurons,
which is equivalent to a first-order low-pass filter. Depending
on the leakage λ ∈ (0, 1], a specific amount of the past
reservoir state is leaked over time. Together with the spectral
radius ρ, the leakage λ determines the temporal memory of
the reservoir.

The reservoir activation function fres(·) controls the non-
linearity of the system. Conventionally, the sigmoid or tanh

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

STEINER et al.: CLUSTER-BASED INPUT WEIGHT INITIALIZATION FOR ECHO STATE NETWORKS 3

functions are used, because their lower and upper boundaries
facilitate the reservoir state stability.

The output weight matrix Wout has the dimensions Nout ×
(N res + 1) and connects the reservoir state r[n], which is
expanded by a constant intercept term of 1 for regression,
to the output vector y[n] using the following equation:

y[n] = Woutr[n]. (2)

Typically, the output weight matrix is computed using ridge
regression. Therefore, all reservoir states calculated for the
training data are concatenated into the reservoir state collection
matrix R. As linear regression usually contains one intercept
term, every reservoir state r[n] is expanded by a constant of 1.
All desired outputs d[n] are collected into the output collection
matrix D. Then, Wout can be computed using the following
equation, where � is the regularization parameter that needs
to be tuned on a validation set:

Wout = (
RRT + �I

)−1(
DRT

)
. (3)

The size of the output weight matrix determines the total
number of free parameters to be trained in ESNs. Because
linear regression can be obtained in the closed form, ESNs are
quite efficient and fast to train compared with typical deep-
learning approaches.

B. K -Means Clustering

In this work, we studied the frequently used K -means
algorithm [27] to improve the input weight initialization of
ESNs. The K -means algorithm groups N feature vectors
(observations) u[n] with N in features into K clusters. Each
observation is assigned to the cluster with the closest centroid,
the prototype of the cluster. The basic K -means algorithm aims
to partition all N observations into K sets S1, S2, . . . , SK and
thereby minimizes the within-cluster sum of squares (SSE)

SSE =
K∑

k=1

∑

u[n]∈Sk

�u[n] − μk�2. (4)

Here, μk is the centroid of the kth set Sk , which is usually
the mean of all points belonging to Sk .

In this article, we utilized relatively large datasets. Thus,
we used the fast mini-batch K -means algorithm proposed by
Sculley [28] to determine the μk and initialized it based on
“K -Means++” [29].

C. Novel Input Weight Initialization

In this article, we propose to initialize the input weight
matrix Win using the cluster centers μk determined by the
K -means algorithm. To understand how a feature vector is
passed to the reservoir in general, we reconsider (1), which
describes the computation of a new reservoir state based on
the current feature vector and the previous reservoir state.
For the sake of simplicity, we briefly assume a reservoir
without leakage (λ = 1), without any recurrent connections

(K rec = 0), and with a linear activation function fres. Thus,
we can simplify (1) to (5) and (6) for the kth reservoir neuron

r[n] = Winu[n] (5)

rk[n] =
N in∑

m=1

win
k,m um[n] = win

k · u[n] (6)

where m is the feature index inside u[n], and win
k is the

kth row of Win with the presynaptic input weights for the
kth neuron in the reservoir.

This dot product is in fact closely related to the cosine
similarity S in (7). The only difference between (6) and (7) is
the normalization

S = 1∥∥win
k

∥∥ �u[n]� win
k · u[n]. (7)

The input weights of an ESN are responsible for passing
feature vectors to the reservoir that consists of nonlinear
neurons. Due to the—typically—random initialization of the
input weights, several linear combinations of the input features
for different neurons in the reservoir can be computed. In this
article, we do not neglect this assumption, but we hypothesize
that the main task of the input weights is to structure features
according to their similarity. We also stick to the conventional
linear regression-based training of ESNs, because this is a
key advantage of such networks. However, we would like to
incorporate prior knowledge about the feature vectors, in an
unsupervised fashion, so that it is “easier” for the ESN to
solve a specific task.

Thus, we propose to replace the randomly initialized input
weights by the cluster centroids obtained from the K -means
algorithm, i.e., win

k = μk . The K -means algorithm detects
prior structure in the feature vectors, such as phones or
phone transitions in speech datasets, common segments of
images [30]. In this way, passing feature vectors to the ESN
basically consists of computing the cosine similarity between
the centroids and the feature vectors.

Typically, the reservoir size N res is increased after tuning
the hyperparameters using small ESNs. We have been shown
that this final step significantly improves the classification
results [6], [7], [31]–[34]. However, if we would simply
increase the reservoir size in our novel ESN model, we needed
also to increase K , as each reservoir neuron represents one
cluster so far. If we increase K too much, we might end up
with less meaningful clusters. Thus, in this article, we propose
that K does not need to be equal to Nres.

This has the advantage that we can increase K and Nres

together, until the improvement of further increasing K gets
low. Then, we can keep K constant and add additional “zero-
connections” to Win. In that way, we ensure that the centroids
are still representing useful information, and we reduce the
computational complexity by using very sparse Win in the case
of large reservoirs. By padding the new input weights with a
lot of “zero-connections,” we specifically limit the amount of
neurons in the reservoir that receive input features. This can be
compared with a cortical column in the brain that also mainly
consists of recurrent connections and in which only a part
of the neurons directly receives input information [35]. Thus,

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Example ESN architectures for (a) K = N res = 3 and (b) K = 3
and N res = 13. Only the nonzero parts of Win are visualized in red. For the
sparse KM-ESN, only a few neurons receive input data.

very large K -means-based ESNs are even getting biologically
plausible.

Fig. 2 visualizes two very simple examples for the proposed
K -means-based ESN architectures. Fig. 2(a) shows the case
K = N res = 3, where the number of centroids is equal
to the reservoir size. Fig. 2(b) shows the case K = 3 and
N res = 13, where the number of centroids is much smaller
than the reservoir size. As indicated by the red arrows, only a
very small amount of the neurons inside the reservoir receive
information directly from the input features, while most of
the neurons are only connected to other neurons inside the
reservoir.

In the rest of this article, we refer to the basic ESN with
randomly and sparsely initialized input weights as “basic
ESN” and to the ESN with K -means-based initialized input
weights as “KM-ESN.” If N res > K , we call it “sparse
KM-ESN.”

III. EXPERIMENT 1: DOOR STATE RECOGNITION

In the first experiment, we consider a frame-level classifica-
tion task, namely, event detection in door surveillance systems.
The task is to continuously classify the status of a door that
can be opened, closed, or half-opened from a low-resolution
camera sensor. Using a large-scale dataset, we illustrate the
impact of the K -means clustering on the hyperparameters.

A. Dataset

We used the publicly available dataset [36] that contains
recordings of a low-resolution camera (Avago Technologies

ADNS-3080 mouse sensor) set up in front of a door. The
resolution was 30 × 30 pixels with a frame rate of 90 frames
per second. The dataset has more than 8 30 000 frames in
total. For each frame, the label (0 for the closed, 1 for the
half-opened, and 2 for the opened door, respectively) was
semiautomatically generated using magnetic sensors that were
placed in the middle of the door and close to the door
hinge. In the dataset, three movies of different lengths are
included, where the camera position in each movie was slightly
displaced to introduce more variable input features.

The dataset does not have any default split into training,
validation, and test sets. We prepared the dataset as follows.
Each movie was split into consecutive sequences with a
length of ≈1 min. The first half of each movie was used
as the training set (N) and the latter one as the test set.
To optimize the hyperparameters, we only used the first
movie, whose training set was partitioned in fivefold for cross
validation. We sequentially optimized the hyperparameters
according to [32].

B. Feature Extraction

Following [36], we converted each frame with 30 × 30
pixels to a vector with 900 elements and did not consider fur-
ther feature reduction techniques. Since the pixel values were
integers between 0 and 255 (grayscale values), we divided
each value by 255 to obtain values between 0 and 1. We did
not do any further preprocessing steps and directly used the
rescaled vectors as input for the ESN models. The training
set contained ≈76 min of data leading to Nsamples = 4 15 620
frames in total.

C. Target Preparation and Readout Postprocessing

In this task, we have three binary outputs, one for each door
state (close, half-open, and open). We converted the integer
label of each frame in a 3-D output with one-hot encoded
targets, where only the output indexed by the integer label
is 1.

During inference, the output with the highest value in every
frame indicated the current state of the door.

D. Measurements

To optimize the hyperparameters, we used the mean squared
error (MSE) between the one-hot encoded targets and the
computed outputs.

To report the final performance, the frame-level error rate
(FER) (portion of frames assigned to the wrong class, the
following equation) was used:

FER = Nerror

Nframes
(8)

where Nerror and Nframes were the misclassified frames and the
total number of frames, respectively.

E. Number of Centroids

The key parameter of the K -means algorithm is K , the
number of clusters to be used. This is strongly task-dependent

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

STEINER et al.: CLUSTER-BASED INPUT WEIGHT INITIALIZATION FOR ECHO STATE NETWORKS 5

Fig. 3. SSE for different numbers of centroids. A fast decrease was observed
until K ≈ 20. Afterward, SSE still continued to decrease more slowly.

and there exists no general solution for this optimization
problem. One way to determine the number of centroids is
to observe the summed squared error (SSE) for different K
values and to search for the point when the slope of the SSE
gets less steep. From Fig. 3, where the SSE is visualized over
K for the training set, we observed that the SSE decreased
quite fast until K ≈ 50. Afterward, SSE still continued to
decrease but with a slower pace.

The low effective number of clusters that is able to cluster
the dataset to some extent is in line with the nature of this
dataset. Given that the camera was fixed in each movie and that
it recorded a limited set of interactions between humans and
the door, the majority of all pixels were more or less constant
over time. Although different persons interacted with the door,
the resolution of the camera is rather low so that it mostly
captures the overall shape of each person. Since the dataset
is rather noisy, it was furthermore difficult for the camera to
record objects (e.g., chairs) that the people carried into or out
of the room. During the reservoir hyperparameter optimization,
we first of all fixed the number of centroids to K = 50 and
later increased it together with the reservoir size.

F. Optimization of the Hyperparameters of the ESNs

Before optimizing the hyperparameters of the ESN models,
we compared the input weights of the basic ESN and of
the KM-ESN. Therefore, the input weights to nine randomly
selected reservoir neurons are visualized in Fig. 4 as follows.
Each neuron has a 900-dimensional input weight vector.
We have reshaped them into 30 × 30 images, since the input
weights connect exactly one input image of the same size
to the particular neuron. The following differences can be
observed.

1) The input weights of the basic ESN [see Fig. 4(a)] are
very sparse (0.06% nonzero values) and have uniformly
distributed nonzero values between ±1.

2) Fig. 4(a) shows that images are randomly fed in the basic
ESN.

3) The KM-ESN [see Fig. 4(b)] is dense and the values
are approximately distributed between 0 and 0.25. This
sparseness is caused by the dark regions in the frames.

4) Fig. 4(b) shows that the images are fed in the KM-ESN
by the correlation with prototype images learned by the
K -means algorithm.

These observations can be explained by the different ways
of initializing the basic ESN and the KM-ESN. For the

Fig. 4. Input weights for both ESN models. (a) In the case of the basic
ESN, every neuron received ≈10 randomly selected input features and thus
has ≈890 zero connections. The remaining values are uniformly distributed
between ±1. (b) In the case of the KM-ESN, the weights were learned from
the training dataset and represent basically mean values of various images.

first one, we partially followed [36], where each neuron
received only K in = 5 randomly chosen inputs. In contrast
to [36], we increased K in to 10, as we already know that
the level of sparseness does not have a significant impact on
the performance [36]. The other observations show that the
K -means algorithm learned exactly what we expected it to
learn—average images for each cluster. Since the weights of
the basic ESN and the KM-ESN are different, we expect the
two models to behave differently in the remaining experiment.

The last observation is the most interesting one, since it
perfectly visualizes that the K -means algorithm has learned
different average images from the training dataset. Thus,
different opening phases of the door or silhouettes of people
in the room or even the displacement of the camera due to
different positions can be observed in Fig. 4(b).

Since the input weights of the KM-ESN are initialized
using a purely data-driven approach, the value range strongly
depends on the value range of the features. In the case of
the video dataset, the values are bounded between 0 and 1;
hence, the values of the input weights of the KM-ESN are also
nonnegative. For the following hyperparameter optimization,
the different distributions of the input weights will lead to
significant differences between the hyperparameters of the
basic ESN and of the KM-ESN, especially for the input scaling
and spectral radius.

In order to optimize the hyperparameters of both basic and
KM-ESN, we followed the sequential optimization approach
introduced in [32] and [33]. A similar outline was recently
published in [37]. In our preliminary experiments, we com-
pared this sequential method with a fully randomized opti-
mization by jointly exploring the entire hyperparameter space.
We found that the sequential optimization required fewer
search steps and led to a lower loss function. Therefore, in the
following, we use the sequential optimization process.

We began with a memory-less ESN (ρ = 0) with 50 reser-
voir neurons. Particularly, we fixed the leakage λ = 1 and
removed the constant bias term by setting αbi = 0.

Then, we jointly optimized αu and ρ using a random search
with 200 iterations. The values for αu were drawn from a
uniform distribution between 0.01 and 1.0, and the values for
ρ from a uniform distribution between 0 and 2.

The entire search space after fivefold cross validation is
depicted in Fig. 5. To better present the results, we have

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 5. MSE after the joint optimization of the input scaling αu and the
spectral radius ρ. The overall behavior of (a) basic ESN and (b) KM-ESN
is similar. The input scaling of the basic ESN (0.85) is very large compared
with the one of the KM-ESN (0.05).

visualized them using the expression min(0.15, MSE).
We achieved the lowest validation MSE with (αu, ρ) =
(0.85, 0.05) for the basic ESN and (αu, ρ) = (0.05, 0.08) for
the KM-ESN. Comparing the optimization results in Fig. 5,
the general behavior of these basic ESNs and KM-ESNs is
different. In particular, there are two marginal differences. The
input scaling is lower in the case of the KM-ESN, whereas the
spectral radii are similar. The area of the best hyperparameters
in the case of the KM-ESN is much smaller than the area in
the case of a basic ESN.

The differences in the input scaling values are caused by
different input weights of the basic ESN and of the KM-ESN.
While most of the values in the input weights of the basic ESN
are zero, the remaining values need to strongly activate the
reservoir neurons, which is achieved with a large input scaling.
The KM-ESN in contrast has learned prototype images. If the
input image is very similar to a prototype, the cross correlation
between the input image and the prototype is high, leading to
a strong activation of the associated neuron. Thus, despite the
smaller absolute values of the input weights in the KM-ESN,
a significantly smaller input scaling value is required. Since
the ratio between input scaling and spectral radius is almost 1
in the case of the KM-ESN, it relies more on a combination
of current and past information than the basic ESN, which
mostly benefited from the current input.

The next hyperparameter to be optimized was the leakage λ.
Again, we used a random search to optimize this hyperpara-
meter for the basic ESN and for the KM-ESN. This time,
we used a logarithmic uniform distribution between 1e − 5
and 1, because we expected that a large leakage, i.e., very
small λ is required for the ESN to make the decision based
on a wide range of memory. The results in Fig. 6 show that the
leakage has a strong impact on the final performance. Again,
the global behavior of the basic ESN and the KM-ESN was
similar. The final values were 0.05 and 0.08 for the basic ESN
and for the KM-ESN, respectively.

The low values for λ are reasonable for this task, since
the dataset is noisy and the outputs need to be constant for
a longer time, especially for long phases with an opened or
closed door. Thus, a small λ is desired that acts as a first-order
low-pass filter [38] and smooths the reservoir states.

The last hyperparameter to be optimized was the bias
scaling factor αbi that controls the influence of a constant bias

Fig. 6. MSE after the optimization of the leakage λ. The global behavior of
(a) basic ESN and (b) KM-ESN is similar. As indicated by the crosses, the
optimized leakage values of the basic ESN and of the KM-ESN are 0.05 and
0.08, respectively.

Fig. 7. MSE after the optimization of the bias scaling αbi. The impact
of bias scaling is rather small compared with the impact of the previous
hyperparameters. As indicated by the crosses, the best performance was
achieved with αbi = 0 in both the cases. (a) Basic ESN. (b) KM-ESN.

input to each reservoir neuron. In general, the bias scaling
has a minor impact on the final ESN performance. Thus,
we simplified the optimization scheme here and evaluated
values from 0 to 1 with a step of 0.1 to optimize this parameter.
Fig. 7 shows that the impact of the bias term is indeed small
and that large bias inputs even decreased the performance of
the ESN models. The basic ESN as well as the KM-ESN did
not need any bias at all.

G. Impact of the Reservoir Size

As mentioned in the introduction, ESNs typically bene-
fit from increasing the reservoir size after fixing the other
hyperparameters. At the same time, we were reluctant to
add to the complexity of the K -means model by increasing
K as much as Nres. Therefore, we only increased K and
Nres up to 200, and from that point, we only increased the
reservoir size while K = 200. This means that the input
layers of the ESNs were fully connected until Nres = 200, and
for all the larger models, the input features were connected
to only 200 reservoir nodes (i.e., sparse input connections).
We also repeated the hyperparameter optimization for these
sparsely connected KM-ESNs.

The optimized hyperparameters for the new initialized ESNs
are summarized in Table I. Since introducing neurons in the
sparse reservoir that did not receive any input information
strongly changes the overall system behavior, the optimal
hyperparameters have changed. In particular, it is interest-
ing that the spectral radius strongly increased by a factor
of 10 while input scaling increased only by a factor of 3. This
means that especially the sparse KM-ESN not only uses the
current input to compute the output but also needs the memory

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

STEINER et al.: CLUSTER-BASED INPUT WEIGHT INITIALIZATION FOR ECHO STATE NETWORKS 7

TABLE I

OPTIMIZED HYPERPARAMETERS FOR THE BASIC ESN, SMALL KM-ESN
(Nres < 200 AND DENSE INPUT LAYER), AND LARGE KM-ESN

(Nres > 200 AND SPARSE INPUT LAYER) AFTER

FIVEFOLD CROSS VALIDATION

Fig. 8. Mean, minimum, and maximum FERs for different reservoir sizes
after ten random initializations. The KM-ESN always performed equally well
or better than the basic ESN for all reservoir sizes. The vertical bars indicate
the minimum and maximum FER of the respective models.

provided by the recurrent connections. Less smoothing by the
leaky integration is required now.

In Fig. 8, the final FER computed on the test set for
different ESN architectures are visualized. Overall, for both
the basic ESN and the KM-ESN, only a small reservoir with
100 neurons was required to achieve a reasonable performance
that was clearly below 1% FER. In particular, the best per-
forming basic ESN with 100 neurons achieved an average
FER of 0.85% and the same KM-ESN an average FER of
0.50%. In the case of reservoirs with more than 100 neurons,
we noticed that the performance of the basic ESN strongly
decreased with an FER of about 5%. The same effect occurred
in the case of the dense KM-ESN with more than 200 neurons.
Reconsidering the SSE in Fig. 3, we noticed that it almost
stopped decreasing with more than 200 neurons. In the case
of large basic ESNs, it is likely that many static pixels are
selected by the input weights, and in the case of large dense
KM-ESNs, it is likely that a lot of centroids are close to each
other. This, in turn, means that large KM-ESNs receive a lot
of input information in an almost equivalent way, which is
counterproductive, since ESNs in general benefit from diverse
input. By switching to the sparse KM-ESN when increasing
the reservoir size beyond 200 neurons, we restricted the
number of centroids and thus did not split up meaningful
clusters in too many small subclusters. In addition, we boosted
the impact of the recurrent connections, since the number of
parameters in W res increases quadratically with N res. From
Fig. 8, we can conclude that the performance does not decrease

TABLE II

COMPUTATIONAL COMPLEXITY TO TRAIN THE BASIC ESN AND THE
KM-ESN. THE K -MEANS ALGORITHM INCREASES THE COMPLEXITY

BUT NEEDS TO BE PERFORMED ONLY ONCE BEFORE

THE HYPERPARAMETER OPTIMIZATION

in the case of large sparse KM-ESNs and further improved to
FER = 0.44% for K = 200 and N res = 400. Reconsidering
Table I, we can say that large reservoirs benefit from the
memory incorporated by means of the high spectral radius.
For N res = 1600, the FER slightly increased toward 0.64%.
Overall, the KM-ESN (regardless dense or sparse) was always
more robust against ten different random initializations with
only one exception: the dense KM-ESN with 400 neurons,
when the performance got more similar to the basic ESN.

H. Computational Complexity

According to [6], passing data through the ESN can be
decomposed in a series of actions that include computing
the reservoir states, updating the correlation matrices, matrix
inversion, and output weight computation. In the case of the
KM-ESN, the K -means training is an additional initial step.

The complexity of all steps are summarized in Table II and
shows that the K -means algorithm adds to the complexity but
needs to be performed only once before the hyperparameter
optimization.

IV. EXPERIMENT 2: MULTIDATASET EVALUATION

In this section, we focus on evaluating the KM-ESN on
a large variety of datasets with different characteristics, such
as dataset size, feature vector size, sequence length, and data
type.

A. Datasets

We used exactly the same datasets as in [41], which were
provided in the accompanying Github repository.1 Statistics
about the datasets are summarized in Table III and show the
diversity of the tasks such as single- and multi-input time
series as well as binary classification and multiclass tasks.

The datasets are by default split into training and test
subsets. As before, for hyperparameter optimization, we parti-
tioned the training set in fivefold for cross validation and then
again sequentially optimized the hyperparameters as in [32]
and in the previous experiment. Since the datasets “CMU

1https://github.com/FilippoMB/Time-series-classification-and-clustering-
with-Reservoir-Computing

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III

DETAILS ABOUT THE DATASETS FOR THE MULTIDATASET EVALUATION WITH THE NUMBER OF INPUT FEATURES (N in), NUMBER OF OUTPUTS (Nout),
MEAN, MINIMUM, AND MAXIMUM SEQUENCE DURATION (Tmean, Tmin AND Tmax), THE ENTIRE NUMBER OF FEATURE VECTORS

(OBSERVATIONS) IN THE TRAINING SET AND TEST SET (Nsamples,train , Nsamples,test), AND THE NUMBER

OF SEQUENCES IN THE TRAINING AND TEST SET (#TRAIN, #TEST)

subject 16,” “Kick versus Punch,” and “Walk versus Run”
contained only very few training sequences, we used threefold
cross validation to optimize the hyperparameters for these
tasks.

B. Feature Extraction

Most of the datasets were already preprocessed to some
extent. For all datasets except for NetFlow, we subtracted the
mean value from each feature and normalized it to unitary
variance.

The NetFlow dataset was almost binary and the proposed
normalization was not applicable. Instead, we simply rescaled
each feature to the range between 0 and 1.

C. Target Preparation and Readout Postprocessing

For all datasets, we have binary outputs, one for each class
in the particular dataset. For each dataset, the target out-
puts (classes) were one-hot encoded across the entire sequence
(0 for the inactive classes and 1 for the active class).

During inference, the class scores were obtained by accu-
mulating the class readouts over time. The recognized class
is determined as the class with the highest accumulated score
over time.

D. Measurements

To measure the overall classification results and to opti-
mize the hyperparameters, the classification error rate (CER),
as shown in the following equation, was used:

CER = Nerror

Nseq
(9)

where Nerror and Nseq were the number of incorrect classified
sequences and the overall number of sequences, respectively.

E. Number of Centroids

As in the previous experiment, we optimized the number
of clusters K of the K -means algorithm. For each dataset,
we computed the SSE for different K values and evaluated
the values 50, 100, 200, 400, 800, and 1600. In some datasets,
e.g., the Auslan (AUS) and the CMU subject 16 (CMU)
datasets, we observed that the performance decreased or stag-
nated when increasing K too much. In that case, we stopped
increasing K as soon as the performance dropped and instead
switched to a sparse KM-ESN when further enlarging the
reservoir size. Since the ROBOT dataset contained less than
1600 samples, we did not evaluate K = 1600.

F. Optimization of the Hyperparameters of the ESNs

The optimization of the ESN models followed the same
strategy as in Section III-F with one exception. Instead of
starting with a default leakage of 1.0, we chose 0.1, because
the target outputs were constant across the entire sequence.
Thus, we expected a lower leakage. The subsequent opti-
mization procedure was then the sequential optimization of
the hyperparameters, during which we minimized the cross-
validation MSE.

The hyperparameters with the lowest cross-validation
MSE were then used as the final hyperparameters. Dur-
ing the optimization, we fixed the reservoir size to
50 neurons.

As discussed for the previous experiment, the hyperpara-
meters significantly influence the performance of the ESN

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

STEINER et al.: CLUSTER-BASED INPUT WEIGHT INITIALIZATION FOR ECHO STATE NETWORKS 9

Fig. 9. Multidataset evaluation. The mean and standard deviation of the CER of the basic ESN and of the KM-ESN. For each dataset, the models were
ten times randomly initialized, trained, and evaluated. The KM-ESN outperformed the basic ESN in many dataset, both the basic ESN and the KM-ESN
performed equivalently in various datasets, and only in a few cases, the basic ESN performed better than the KM-ESN.

and they need to be tuned task-dependently. Thus, in contrast
to [41], we used models with optimized hyperparameters to
report our final results for each dataset. As can be expected
and without reporting all the hyperparameters for every task,
we observed that these parameters were significantly different
across datasets.

G. Results

Fig. 9 shows the mean value and standard deviation of CER
for the different datasets for different reservoir sizes and ten
instances of each model. In order to investigate the impact
of random initializations on the performance, we repeated
the training procedure ten times. In each run, all weights
of the basic ESN and the reservoir weights of the KM-ESN
were randomly initialized, trained using the training datasets,
and finally evaluated on the test sets. Fig. 9 shows that the
KM-ESN outperformed the basic ESN in many datasets that
both the basic ESN and the KM-ESN performed equivalently
in various datasets, and only in a few cases, the basic ESN
performed better than the KM-ESN. Since for some datasets
and models, the standard deviation of the loss was so low
and the error bars are not always visible. However, overall,
the standard deviation of the loss of the KM-ESN is often
lower than that of the basic ESN. Thus, as in the previous
experiment, the KM-ESN is more robust against random
initializations.

The KM-ESN outperformed the basic ESN in particular
for very high-dimensional datasets, such as PEMS, KICK,
and WALK, which all have more than 60 features. Another
case, in which the KM-ESN performed remarkably better
than the basic ESN, is the 2-D LIB dataset, where the fea-
tures are uniformly distributed in a first glance. However,
the features can still be well clustered, and thus, clustering
the features still improves the performance of the KM-ESN
compared with the basic ESN in the case of larger reservoirs.

In the ARAB dataset, which consists of extracted MFCC
features from Arabian spoken digits, the smaller KM-ESNs
slightly outperformed the basic ESNs, whereas for larger
reservoirs, the performance became more and more similar.
Since this is a dataset, in which features can be linearly
separated, we postulate that the KM-ESN works particularly
well for linearly separable datasets. Interestingly, in the case
of the datasets JPVOW and AUS, we can see that the
KM-ESN not only outperformed the basic ESN, but it also
allows to further increase the reservoir size without the risk
of overfitting.

In the case of the CHLO and the PHAL datasets, the
KM-ESN slightly outperformed the basic ESN. Since these
datasets have 1-D input features, this means that, given lin-
early separable features, the K -means algorithm can clus-
ter them. In fact, both CHLO and PHAL show patterns
that make it possible to determine at least a few clusters,
whereas the 1-D features of the SWE dataset are more
normally distributed. Thus, the resulting centroids of the
K -means algorithm are concentrated at the maximum of
the distribution.

In the case of the ROBOT dataset, the performance of the
KM-ESN was relatively low compared with the basic ESN.
According to Table III, ROBOT was the smallest dataset to be
considered in this study. It consists of less than 1500 samples.
That means that, for the largest reservoir with 1600 neurons,
we were forced to introduce sparsity to the KM-ESN. Further-
more, K -means algorithms are known to be sensitive against
outliers. Applying the principal component analysis (PCA) on
the ROBOT dataset showed a large amount of outliers in this
dataset. This, in turn, means that it is likely that the K -means
algorithm found a lot of centroids in a very small part of the
feature space and thus many neurons in the KM-ESN received
a lot of input information in an almost equivalent way. These
could be the reasons why the KM-ESN performed worse than
the basic ESN on the ROBOT dataset.

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

V. CONCLUSION AND OUTLOOK

We presented an effective way to initialize the input weights
of ESNs using the unsupervised K -means algorithm. Moti-
vated by the fact that passing feature vectors to a reservoir
neuron is closely related to the cosine similarity, we used the
centroids of the K -means algorithm as input weights. This
controls the neuron activation such that they were high only
if the feature vector and a centroid were similar. We showed
that the input weight distribution of the basic ESN and the
KM-ESN is significantly different, because the weights of the
latter one were trained using the K -means algorithm and are
thus basically the average value of subsets of the training
samples. This supported the hypothesis that the K -means
algorithm indeed supplied the KM-ESN with beneficial infor-
mation about the dataset.

We demonstrated that the KM-ESN model outperformed
basic ESNs on various datasets. First of all, we studied
the impact of replacing randomly initialized input weights
with centroids obtained by the K -means algorithm. Based on
our experiments, the input weights are no more uniformly
distributed between ±1 and the initialization is driven by
the data. Also the K -means-based ESN was more robust
compared with random initialization, and the performance of
the KM-ESN was higher than the performance of a basic ESN
in particular for small numbers of neurons. In the case of the
multidataset evaluation, we have presented different use cases
together with suggestions when to prefer the KM-ESN or a
basic ESN. It turned out that the KM-ESN is in particular
useful for very high-dimensional datasets with a sufficient
number of samples to train the K -means algorithm. However,
if the features have outliers, such as in the ROBOT task, the
KM-ESN was less successful than the basic ESN, which by
itself did not perform well.

As the K -means-based input weight initialization is both
data-driven and unsupervised, we obtain a set of input weights
that is optimized for a given dataset. In general, if we would
use a basic ESN for two different datasets with different
features (e.g., audio features and sensor data) but with the
same N in , we would simply use the same random set of
input weights. However, since the features have completely
different characteristics, it is likely that task-dependently
adapted input weights boost the performance of ESNs. Such
an adaptation is the main reason to support KM-ESN. Fur-
thermore, we can easily extend a given dataset with more
data, e.g., video recordings with different camera positions
or with additional objects and kinds of noise without needing
labels to help the KM-ESN to generalize toward unknown
situations.

In the future, one would analyze the capability of the
proposed technique to solve more complex tasks, such as
phoneme recognition in spoken language or multipitch track-
ing in music signals. It would also be interesting to determine
the capability of predicting the time series. Another follow-up
work would be to investigate ways for pretraining the reservoir
weights as well. Furthermore, it would be interesting to study
whether the proposed KM-ESN is a universal approximator
for dynamic systems according to [42].

TABLE IV

SEARCH SPACES FOR THE SEQUENTIAL OPTIMIZATION BASED ON THE
STEPS PROPOSED IN [32], AND FOR THE JOINT RANDOMIZED SEARCH

TABLE V

OPTIMIZED HYPERPARAMETERS AND FINAL LOSS VALUES FOR THE

BASIC ESN AND FOR THE DENSE KM-ESN (Nres < 200)
AFTER THE JOINT RANDOMIZED SEARCH AND THE

SEQUENTIAL OPTIMIZATION

Code examples for the two experiments are pub-
licly available in our Github repository (https://github.com/
TUD-STKS/PyRCN/).

APPENDIX

HYPERPARAMETER OPTIMIZATION

Since the hyperparameter optimization explained in
Section III-F and proposed in [32] was originally introduced
for the basic ESN and successfully applied to various speech,
music, and image recognition tasks, we checked whether it
can be used for the KM-ESN as well.

To do so, we compared two optimization strategies on the
video classification task (see Section III).

1) Sequential optimization as described in Section III-F
using the parameters in Table IV. Only αbi was opti-
mized with a 1-D grid search. All other steps were
randomized searches. We needed 321 optimization steps
in total.

2) Fully randomized optimization by jointly exploring the
search space consisting of all parameters in Table IV.
We evaluated 2000 parameter combinations in total.

Since we used fivefold cross validation, each parameter
combination (regardless sequential or joint optimization) was
evaluated five times.

From the results in Table V, it can be seen that the sequential
optimization and the joint randomized search in the case of the
basic ESN led to similar hyperparameters. There are strong
differences between the spectral radii and the bias scalings.
The final loss is comparable as well.

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

STEINER et al.: CLUSTER-BASED INPUT WEIGHT INITIALIZATION FOR ECHO STATE NETWORKS 11

In the case of the KM-ESN, we can see that the spectral
radii are particularly different. In the case of the sequential
optimization, the spectral radius is close to 0, whereas the
spectral radius in the case of the joint randomized search is
close to 1. However, the losses differ more than in the case of
the basic ESN. Table V shows that it decreased much more in
the case of the sequential search.

REFERENCES

[1] H. Jaeger, “The ‘echo state’ approach to analysing and training
recurrent neural networks-with an erratum note,” German
Nat. Res. Center Inf. Technol., Schloss Birlinghoven, Sankt
Augustin, Germany, Tech. Rep. 148, 2001. [Online]. Available:
http://www.faculty.iu-bremen.de/hjaeger/pubs/EchoStatesTechRep.pdf
and https://www.izb.fraunhofer.de/en/contact.html

[2] M. C. Ozturk, D. Xu, and J. C. Príncipe, “Analysis and design of echo
state networks,” Neural Comput., vol. 19, no. 1, pp. 111–138, Jan. 2007,
doi: 10.1162/neco.2007.19.1.111.

[3] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” KI-Künstliche Intell., vol. 26, no. 4, pp. 365–371, Nov. 2012.

[4] S. Scardapane and D. Wang, “Randomness in neural networks:
An overview,” Wiley Interdiscipl. Rev.: Data Mining Knowl. Dis-
covery, vol. 7, no. 2, p. e1200, Mar. 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1200

[5] Y. Xue, L. Yang, and S. Haykin, “Decoupled echo state net-
works with lateral inhibition,” Neural Netw., vol. 20, no. 3,
pp. 365–376, Apr. 2007. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0893608007000378

[6] A. Jalalvand, F. Triefenbach, K. Demuynck, and J.-P. Martens, “Robust
continuous digit recognition using reservoir computing,” Comput.
Speech Lang., vol. 30, no. 1, pp. 135–158, Mar. 2015.

[7] A. Jalalvand, K. Demuynck, W. De Neve, and J.-P. Martens, “On the
application of reservoir computing networks for noisy image recogni-
tion,” Neurocomputing, vol. 277, pp. 237–248, Feb. 2018.

[8] A. Bala, I. Ismail, R. Ibrahim, and S. M. Sait, “Applications of meta-
heuristics in reservoir computing techniques: A review,” IEEE Access,
vol. 6, pp. 58012–58029, 2018.

[9] P. V. Aceituno, G. Yan, and Y.-Y. Liu, “Tailoring echo state networks for
optimal learning,” iScience, vol. 23, no. 9, Sep. 2020, Art. no. 101440.

[10] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir computing:
A critical experimental analysis,” Neurocomputing, vol. 268, pp. 87–99,
Dec. 2017.

[11] C. Gallicchio, A. Micheli, and L. Pedrelli, “Design of deep echo state
networks,” Neural Netw., vol. 108, pp. 33–47, Aug. 2018.

[12] C. Gallicchio and S. Scardapane, Deep Randomized Neural Networks.
Cham, Switzerland: Springer, 2020, pp. 43–68.

[13] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free predic-
tion of large spatiotemporally chaotic systems from data: A reservoir
computing approach,” Phys. Rev. Lett., vol. 120, no. 2, Jan. 2018,
Art. no. 024102, doi: 10.1103/PhysRevLett.120.024102.

[14] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
Trans. Neural Netw., vol. 22, no. 1, pp. 131–144, Jan. 2011.

[15] T. Strauss, W. Wustlich, and R. Labahn, “Design strategies
for weight matrices of echo state networks,” Neural Comput.,
vol. 24, no. 12, pp. 3246–3276, Dec. 2012. [Online]. Available:
https://doi.org/10.1162/NECO_a_00374

[16] A. Griffith, A. Pomerance, and D. J. Gauthier, “Forecasting chaotic
systems with very low connectivity reservoir computers,” Chaos: Inter-
discipl. J. Nonlinear Sci., vol. 29, no. 12, Dec. 2019, Art. no. 123108,
doi: 10.1063/1.5120710.

[17] T. L. Carroll and L. M. Pecora, “Network structure effects in reservoir
computers,” Chaos: Interdiscipl. J. Nonlinear Sci., vol. 29, no. 8,
Aug. 2019, Art. no. 083130, doi: 10.1063/1.5097686.

[18] L. Appeltant et al., “Information processing using a single dynamical
node as complex system,” Nature Commun., vol. 2, no. 468, pp. 1–6,
Sep. 2011.

[19] M. Lukoševičius, “On self-organizing reservoirs and their hierarchies,”
Jacobs Univ., Bremen, Germany, Tech. Rep. 25, 2010.

[20] S. Basterrech, C. Fyfe, and G. Rubino, “Self-organizing maps and scale-
invariant maps in echo state networks,” in Proc. 11th Int. Conf. Intell.
Syst. Design Appl., Nov. 2011, pp. 94–99.

[21] S. Basterrech and V. Snášel, “Initializing reservoirs with exhibitory and
inhibitory signals using unsupervised learning techniques,” in Proc. 4th
Symp. Inf. Commun. Technol. (SoICT), New York, NY, USA, 2013,
pp. 53–60, doi: 10.1145/2542050.2542087.

[22] A. Lazar, “SORN: A self-organizing recurrent neural network,” Fron-
tiers Comput. Neurosci., vol. 3, p. 23, Mar. 2009. [Online]. Available:
https://www.frontiersin.org/article/10.3389/neuro.10.023.2009

[23] B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil,
and D. Stroobandt, “Improving reservoirs using intrinsic
plasticity,” Neurocomputing, vol. 71, nos. 7–9, pp. 1159–1171,
Mar. 2008. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231208000519

[24] W. M. Ashour, A. S. Abu-Issa, and O. Hellwich, “Clustering algorithms
in echo state networks,” Int. J. Signal Process., Image Process. Pattern
Recognit., vol. 9, no. 5, pp. 15–24, May 2016.

[25] W. Barbakh and C. Fyfe, “Online clustering algorithms,” Int.
J. Neural Syst., vol. 18, no. 3, pp. 185–194, 2008. [Online]. Available:
https://doi.org/10.1142/S0129065708001518

[26] W. Barbakh and C. Fyfe, “Local vs global interactions in clustering
algorithms: Advances over K-means,” Int. J. Knowledge-Based Intell.
Eng. Syst., vol. 12, no. 2, pp. 83–99, May 2008.

[27] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.

[28] D. Sculley, “Web-scale K-means clustering,” in Proc. 19th Int. Conf.
World Wide Web (WWW), 2010, pp. 1177–1178.

[29] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms.
Philadelphia, PA, USA: SIAM, 2007, pp. 1027–1035.

[30] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer net-
works in unsupervised feature learning,” in Proc. 14th Int. Conf.
Artif. Intell. Statist. (Proceedings of Machine Learning Research),
vol. 15, G. Gordon, D. Dunson, and M. Dudík, Eds. Fort Laud-
erdale, FL, USA: PMLR, Apr. 2011, pp. 215–223. [Online]. Available:
https://proceedings.mlr.press/v15/coates11a.html

[31] F. Triefenbach, A. Jalalvand, B. Schrauwen, and J. P. Martens, “Phoneme
recognition with large hierarchical reservoirs,” in Proc. Adv. Neural
Inf. Process. Syst. Red Hook, NY, USA: Curran Associates, 2010,
pp. 2307–2315. [Online]. Available: http://papers.nips.cc/paper/4056-
phoneme-recognition-with-large-hierarchical-reservoirs.pdf

[32] P. Steiner, S. Stone, P. Birkholz, and A. Jalalvand, “Multipitch tracking
in music signals using echo state networks,” in Proc. 28th Eur. Signal
Process. Conf. (EUSIPCO), Jan. 2021, pp. 126–130. [Online]. Available:
https://www.eurasip.org/Proceedings/Eusipco/Eusipco2020/pdfs/
0000126.pdf

[33] P. Steiner, A. Jalalvand, S. Stone, and P. Birkholz, “Feature engi-
neering and stacked echo state networks for musical onset detec-
tion,” in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021,
pp. 9537–9544.

[34] P. Steiner, S. Stone, and P. Birkholz, “Note onset detection using echo
state networks,” in Studientexte zur Sprachkommunikation: Elektronische
Sprachsignalverarbeitung, R. Böck, I. Siegert, and A. Wendemuth, Eds.
Dresden, Germany: TUDpress, 2020, pp. 157–164.

[35] W. Maass, “Liquid state machines: Motivation, theory, and applications,”
in Computability in Context: Computation and Logic in the Real World,
2011, pp. 275–296.

[36] A. Jalalvand, G. Van Wallendael, and R. Van De Walle, “Real-time
reservoir computing network-based systems for detection tasks on visual
contents,” in Proc. 7th Int. Conf. Comput. Intell., Commun. Syst. Netw.,
Jun. 2015, pp. 146–151.

[37] X. Hinaut and N. Trouvain, “Which hype for my new task? Hints and
random search for echo state networks hyperparameters,” in Artificial
Neural Networks and Machine Learning (ICANN), I. Farkaš, P. Masulli,
S. Otte, and S. Wermter, Eds. Cham, Switzerland: Springer, 2021,
pp. 83–97.

[38] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization
and applications of echo state networks with leaky- integrator neurons,”
Neural Netw., vol. 20, no. 3, pp. 335–352, Apr. 2007.

[39] M. K. Pakhira, “A linear time-complexity K-means algorithm using
cluster shifting,” in Proc. Int. Conf. Comput. Intell. Commun. Netw.,
Nov. 2014, pp. 1047–1051.

[40] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause, “Approx-
imate K-means++ in sublinear time,” in Proc. AAAI Conf. Artif.
Intell., Feb. 2016, vol. 30, no. 1, pp. 1459–1467. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/10259

[41] F. M. Bianchi, S. Scardapane, S. Løkse, and R. Jenssen, “Reservoir
computing approaches for representation and classification of multivari-
ate time series,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5,
pp. 2169–2179, May 2021.

[42] D. Wang and M. Li, “Stochastic configuration networks: Fundamentals
and algorithms,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3466–3479,
Oct. 2017.

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1162/neco.2007.19.1.111
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1063/1.5120710
http://dx.doi.org/10.1063/1.5097686
http://dx.doi.org/10.1145/2542050.2542087

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Peter Steiner received the master’s (Dipl.Ing.)
degree from Technische Universität Dresden (TUD),
Dresden, Germany, in 2017, where he is currently
pursuing the Ph.D. degree with the Institute of
Acoustics and Speech Communication.

His research interests include signal processing,
machine learning, and its application to different
kinds of audio, visual, and multisensor signals. He is
in particular working with reservoir computing and
is thereby interested in improving these techniques
using unsupervised learning methods.

Azarakhsh Jalalvand (Member, IEEE) is currently
a Senior Data Scientist with Ghent University,
Ghent, Belgium. His research interests include data-
driven discovery research tracks, including audio,
visual, and radar data analysis, and multisensor
signal processing for variety of applications, such
as object recognition, surveillance, predictive main-
tenance, and anomaly detection.

Mr. Jalalvand received a three-year Special Post-
doctoral Fellowship Award (UGent-BOF) in 2020 to
investigate data-driven models for condition moni-

toring and plasma control in the magnetic confinement devices to produce
controlled thermonuclear fusion power.

Peter Birkholz (Member, IEEE) was born in
Rostock, Germany, in 1978. He received the
Diploma degree in computer science and the Ph.D.
degree (Hons.) in signal processing from the Uni-
versity of Rostock, Rostock, in 2002 and 2005,
respectively.

He worked as a Research Associate with the
University of Rostock from 2005 to 2009, and the
Department of Phoniatrics, Pedaudiology, and Com-
munication Disorders, RWTH Aachen University,
Aachen, Germany, from 2009 to 2014. He became

a Junior Professor of cognitive systems at TU Dresden, Dresden, Germany,
in 2014, and a Full Professor of speech technology and cognitive systems at
TU Dresden in 2020. His research interests include speech production, articu-
latory speech synthesis, computational neuroscience, silent speech interfaces,
and measurement techniques for speech research.

Dr. Birkholz was awarded the Joachim-Jungius Prize in 2006 by the
University of Rostock for his dissertation on articulatory speech synthesis,
and the Klaus-Tschira Award for Achievements in Public Understanding of
Science in 2006.

Authorized licensed use limited to: University of Gent. Downloaded on June 20,2023 at 12:12:20 UTC from IEEE Xplore. Restrictions apply.

