
A clustering approach to anonymize locations during dataset
de-identification

Jenno Verdonck
imec-DistriNet
Gent, Belgium

jenno.verdonck@kuleuven.be

Kevin De Boeck
imec-DistriNet
Gent, Belgium

kevin.deboeck@kuleuven.be

Michiel Willocx
imec-DistriNet
Gent, Belgium

michiel.willocx@kuleuven.be

Jorn Lapon
imec-DistriNet
Gent, Belgium

jorn.lapon@kuleuven.be

Vincent Naessens
imec-DistriNet
Gent, Belgium

vincent.naessens@kuleuven.be

ABSTRACT
Companies increasingly rely on massive amounts of data for strate-
gic decision making purposes. In order to optimize business intel-
ligence, companies often try to enrich their models with datasets
acquired from third parties. Datasets containing sensitive attributes
must be anonymized before release. For large datasets contain-
ing microdata, an often applied anonymization technique is data
generalization with the goal of achieving privacy metrics such as
k-anonymity. Location is an often recurring yet strategic attribute
in many use cases. Multiple strategies can be employed to obfuscate
precise coordinates. For example, the most significant digits can be
dropped or their value can be replaced by a ZIP code. While these
methods might be useful in some applications, these approaches
often result in too much information loss, undermining strategic de-
cision making. This paper proposes a novel approach to anonymize
location by means of clustering. Its feasibility is evaluated and
compared to traditional techniques.

CCS CONCEPTS
• Security and privacy → Data anonymization and sanitiza-
tion; Usability in security and privacy.
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1 INTRODUCTION
Data is increasingly becoming an essential part of the business intel-
ligence activities in many companies. Profits can grow by exploiting
of the data gathered from regular business activities. For example,
companies can rely on consumer data to determine the most feasi-
ble location to open a new plant. The performance of the prediction
models can increase by inserting external data in the decision mak-
ing system. Such data can be acquired from governmental institutes
or bought from other commercial companies that, on their turn,
can generate extra revenues by selling data. However, thoughtless
release of strategic data can leak sensitive business information.
Controlled release of personal data can even be mandatory due
to upcoming privacy legislation. The GDPR regulation – which
is enrolled in EU since 2018 – serves as a template for creating
privacy regulations in other regions all over the world. It stipulates
that datasets containing personal information can be exchanged,
provided that they are anonymized. This implies that information
that may (in)directly track individuals must be removed from the
dataset before it may be released.

This paper focuses on the anonymization of large datasets con-
taining personal microdata (e.g. customer data, patient records, . . . )
with the purpose of sharing them with third parties in a privacy
friendly manner. To achieve an acceptable anonymity level, privacy
metrics such as k-anonymity are described in literature [22] and
implemented in anonymization tools such as ARX [20]. The ratio-
nale behind these metrics is that, by applying generalizations, the
quasi-identifying attributes (such as age, gender, location. . . ) can
no longer uniquely identify individuals. In case of k-anonymity,
groups of size k are formed that have exactly the same value for
each (generalized) quasi-identifying attribute. These techniques
require the user to define generalization hierarchies, which define
levels up to what extend each attribute can be generalized. For many
attributes, defining generalization hierarchies is straightforward.
For example, ages can be generalized by age ranges. As such, the age
of 23 becomes [20-25[, and can further be generalized to [20-30[
or [20-40[. Similarly, genders can be suppressed. However, mean-
ingful and effective generalization of location – which is an often
recurring yet strategic attribute in many scenario’s – proves to be
a challenging task in many situations. Currently, straightforward
approaches – such as splitting the area in equal squares based on
GPS coordinates or relying on ZIP codes – offer no or just limited
flexibility (as the group shape, area and sizes are fixed). Additionally,
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the quality of the generalization operations often heavily depends,
among others, on the shape, area and population density therein,
on how the ZIP codes in a specific country are organized.

The optimal generalization strategy also heavily depends on
the use case. If the optimal business intelligence strategy heavily
relies on the absolute location – as is the case in many resource
allocation problems – , the generalized location is preferably as
close as possible to the real location. Other decisions heavily rely
on the fact that neighboring records are in the same generalized
group and do not suffer from a less accurate location. This is the
case when the spread of diseases within a community needs to be
analyzed. This invokes the need for more complex and fine-grained
location generalization techniques.

Contributions. This work proposes a clustering approach as an
alternative to the mainstreammethods to generalize geolocations in
datasets. The quality of our approach is demonstrated by applying
multiple metrics, and compared to the traditional generalization
methods. Moreover, generalization hierarchies are built, applying
the newly proposed strategy, and tested in a k-anonymity setting.
The utility of the obtained generalized datasets is evaluated. Lastly,
this work presents guidelines for generalizing location data.

The remainder of the paper is structured as follows. Section 2
points to related work. Section 3 defines a set of generalization
hierarchy quality criteria, after which the hierarchy creation tech-
niques evaluated in this paper are presented. Thereafter, Section 4
details the clustering-based approach. Our approach is evaluated
and compared to other methodes in Section 5. section 6 starts with
a discussion and, thereafter, extracts general guidelines. Lastly, con-
clusions are drawn in Section 7.

2 RELATEDWORK
Many nowadays applications offer location-based services to users.
A considerable amount research aims at improving the privacy prop-
erties of these services. [13] and [2] apply perturbation techniques
on the user’s device. In these approaches, exact locations never
leave the user’s device. Other papers [14, 23] employ a trusted third
party to anonymize location data before forwarding it to the actual
service provider. Both approaches apply anonymization techniques
during the data collection phase. In contrast to these approaches,
our work does not focus on enabling privacy-friendly location based
services. Instead, we focus on the anonymization of location data
in datasets containing a vast amount of records with a wide range
of (quasi-identifying) attributes. This work is therefore comple-
mentary to research performed on the topic of location privacy in
location-based services. For example, an organization might want
to release a database containing location information to a third
party after having anonymized the data.

Other services heavily rely on time series data that contain lo-
cations. Prototypical examples are fitness applications that track
the user’s running or cycling sessions. Time series data can also
occur in databases where the purchase history of clients is recorded.
Anonymization strategies and de-anonymization attacks on these
data are described in literature [10, 11, 15]. Different anonymization
techniques apply to time series data and microdata in large datasets.
This work focuses on microdata in large datasets.

Many research has been performed on the anonymization of
large datasets by applying privacy metrics such as k-anonymity [6,
22]. These contributions propose novel privacy metrics, and pro-
pose and evaluate algorithms to achieve an acceptable privacy
level. The algorithms require modelers to define generalization
hierarchies. Building high-quality generalization hierarchies can
be tedious and often requires domain knowledge. Several papers
attempt to automate the creation of the generalization hierarchies.
[9] and [1] focus on numerical quasi-identifiers while [7] and [5] on
categorical attributes. While numerical methods can be applied in
straightforward location generalization strategies (ZIP code transla-
tion and coordinate rounding), no existing work focuses on creating
meaningful location generalizations hierarchies. This paper focuses
on increasing the information retained in location data while at the
same time automating the process. To this end, general-purpose
clustering algorithms [3, 4, 12, 18, 21] are applied to create the
generalization hierarchies.

The use of clustering algorithms for the purpose of full dataset
anonymization is also explored in research [8, 17, 19]. These ap-
proaches attempt to achieve a k-anonymous dataset by directly
applying clustering on the records of the dataset without the need
for generalization hierarchies. However, these methods often pro-
vide sub-optimal anonymized datasets, as these methods often fail
to grasp the semantic meaning of attributes. Therefore, they often
fail to group categorical attributes in a meaningful way, or require
manually defined generalization hierarchies to accomplish this. The
generalization hierarchies created in this paper can be used for this
purpose.

3 GENERALIZATION HIERARCHIES FOR
LOCATIONS

This section first outlines the criteria of suitable (location) general-
ization hierarchies. Thereafter, a variety of strategies to construct
generalization hierarchies for locations are proposed.

3.1 Location generalization quality
This subsection first defines three properties a generalization hierar-
chy creation strategy should incorporate in order to be considered
in this work. Thereafter, we focus on quality properties specific to
location hierarchies and the tests conducted in this paper.

A suitable generalization hierarchy (1) consists of multiple
generalization levels Li . L0 represents the values of the original
dataset. Upper levels Li contain less elements than lower levels
Li−1, and hence, lead to increased information loss. Additionally, it
is mandatory that (2) each original attribute value maps to ex-
act one element at each level Li . Third, (3) the generalization
hierarchy follows a strict tree structure. This means that an
element at generalization level Li incorporates multiple elements
of generalization level Li−1.

In our approach, the original dataset consists of the exact GPS
coordinates. Generalizations are constructed by grouping the origi-
nal coordinates together. Each element in the upper levels Li>0 is
a new coordinate cLij that is calculated by a fair weighted function

of all coordinates [cLi−1x , cLi−1x+1 , . . . ,c
Li−1
x+N ] within that specific group.

The generalization strategy determines the specific weight function
(see Section 3.2).
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In order to assess alternative strategies in Section 5, a set of
metrics is defined. Some metrics assess the generalization hierarchy
while others target the datasets.

Metrics w.r.t. generalization hierarchies.

• The distance to generalization metric defines the median
of the distances between each of the original coordinates cL0i
and their generalized counterparts cLjx . A low outcome is de-
sirable, as such behavior implies that actual locations and
their generalized counterpart are close to each other. The
median was preferred over the average to eliminate the ef-
fects of extreme outliers. This metric is meaningful in use
cases which heavily rely on the accuracy of the location in
the dataset.

• The neighbor pairing metric returns the percentage of the
original coordinates cL0x that point to the same generalized
coordinate cLji as their closest neighbor cL0y . Grouping close
neighbors together is important in scenarios where correla-
tions need to be extracted between regions and other sensi-
tive information.

• Group size stability. The variance of the size of each group
should be low within one generalization level. Balanced
groups in generalization hierarchies typically have a positive
impact on the utility of anonymized datasets. A low standard
deviation of group sizes is therefore beneficial.

Note that it is unlikely that one location generalization strategy
excels in all three metrics, as the effect of one metric can negatively
impact others. For example, pursuing equal group sizes will result
in a reduced number of coordinates that are paired to their nearest
neighbor.

Metrics w.r.t. anonymized datasets.

• The amount of suppressed records. When creating a k-
anonymous dataset, a tradeoff is made between generalizing
attributes (i.e. location) and suppressing records. To achieve
dataset compliant with a predefined k , the algorithm can
increase the generalization level or suppress all records in
equivalence classes that contain less than k records. A low
amount of suppressed records along with low generalization
levels are preferable.

• The amount of equivalence classes contained in ak-anony-
mous dataset. This is a measure for the amount of informa-
tion that remains in the data. A lower number of equivalence
classes typically expose a lower utility level.

• The average equivalence class size. This is defined as the
amount of records in the anonymized dataset, not counting
suppressed records, divided by the amount of created equiv-
alence classes. This metric can be used as a general utility
loss metric and is an indication towards the utility of the
remaining data after the suppressed records are removed. A
higher average equivalence class size means a loss in utility.
A low value for this measurement is therefore preferred.

3.2 Location generalization techniques
Our contribution starts from datasets that contain GPS coordinates
of assets (f.i. individuals, places of interest, items. . . ). We present

three approaches to create generalization hierarchies. These hierar-
chies are later used to anonymize datasets. This section gives an
overview of the mainstream approaches, namely coordinate round-
ing and translation to (and masking) zip codes. Thereafter, we pro-
pose a novel clustering approach. All three strategies are depicted
in Figure 1.

Coordinate rounding (CR). Themost straightforward but naive
method rounds off the coordinates by increasingly reducing the
amount of significant bits in the coordinate. As displayed in Figure 2,
this strategy splits the map in rectangular areas.

Coordinate rounding offers little to no flexibility nor config-
urability when creating generalization hierarchies. Moreover, the
surface of an area covered by its next-level generalization increases
with a factor 100 (i.e. 10*10). Hence, the utility of the data decreases
significantly when a higher generalization level is applied. In higher
generalization levels – where only a few very large areas remain
– countries can be divided in very unequally sized areas near to
their borders. This is detrimental for the anonymization process, as
records in these smaller areas no longer fit in an equivalence class
which can lead to a high amount of suppressed records. An example
of the coordinate rounding technique for Belgium is displayed in
Figure 2.a. The figure displays the fourth and fifth generalization
level (i.e. represented by the small and large squares respectively).
Note that the accuracy drastically decreases between the two levels.

We propose two improvements to the coordinate rounding tech-
nique (Figure 2.b). Firstly, simple coordinate rounding can be re-
placed by constructing more refined intervals. A major advantage
of this strategy is that the increase in size between two levels can
be reduced from 100 to 4 (i.e. 2*2). Secondly, starting the intervals
in the center of the target area (f.i. a country) increases the dis-
tribution of the higher-level generalizations. In this strategy, each
location is mapped to the center point of the area that reflects the
generalization.

Note that coordinate rounding exposes one major disadvantage.
The technique does not take into account differences in population
density between areas within a country. Therefore, applying coor-
dinate rounding either results in large suppression rates or high
generalization levels to meet a certain anonymity level (in order to
compensate for areas that are sparsely populated).

ZIP code translation (ZIP). The ZIP code strategy first maps
every coordinate in the dataset to its corresponding ZIP code at
generalization level L1. It subsequently approximates the centre
point of the area covered by that ZIP code by calculating the cen-
troid of the coordinates in the dataset that map to that area. Higher
generalization levels are created by subsequently starring out the
least significant digit(s) of the postal code, and subsequently ap-
proximating the centre point (as in generalization level L1). This
technique is visualized in Figure 3. The grey lines reflect general-
ization level L3, which means that the two least significant digits
are starred out. The black lines represent generalization level L4
(starring out three digits in the ZIP code).

Note that the quality of the generalizations generated by this
strategy heavily relies on how ZIP codes are assigned by the specific
country.While ZIP codes often take population density into account
(by covering less surface in densely populated areas), they often split
dense city centers in multiple areas. In addition, many neighboring
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Figure 1: Overview of the location generalization options and their representation.

(a) Decimal rounding (levels
4 and 5)

(b) Advanced rounding
(levels 6, 7 and 8)

Figure 2: Coordinate rounding techniques Belgium

areas have totally different ZIP codes, artificially splitting them up
in the generalization process.

Figure 3: ZIP code translation Belgium (levels 3 and 4)

Coordinate clustering. Both the coordinate rounding and the
zip code translation strategy result expose major drawbacks as
discussed before. This paper proposes an alternative to generalize
location data, namely coordinate clustering. Clustering algorithms
aim at grouping neighboring locations. A generalization hierarchy
is built by replacing the original coordinate by the center point
of the cluster it belongs to. The latter is calculated as the centroid

of the coordinates in that specific cluster. Figure 4 displays four
generalization levels after clustering is applied. Note that higher
generalization levels lead to larger clusters. Next section applies
multiple clustering algorithms, discusses their applicability for this
specific purpose, and outlines the generalization strategy.

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

Figure 4: Coordinate clustering Belgium compared to zip
(levels 1-4)

4 LOCATION CLUSTERING STRATEGIES
This section demonstrates how location generalization hierarchies
are built by applying clustering algorithms. Firstly, a set of viable
clustering algorithms are selected. Thereafter, the algorithms are
applied for the creation of generalization hierarchies. Note that this
work only considers unsupervised clustering algorithms enabling
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Table 1: Overview of the selected clustering algorithms

Algorithm Determinism Implementation

K-Means Randomizer scikit-learn
Agglomerative Deterministic scikit-learn

Divisive Deterministic own DIANA implementation

to identify clusters in unlabeled data. Table 1 presents an overview
of the selected clustering algorithms.

4.1 Basic clustering algorithms
K-Means (KM). The most well-known clustering algorithm is

K-Means [4]. K-Means clusters data in K clusters by randomly
assigning K points as centroids. It then assigns each point to its
closest centroid before recalculating the centroid as the average of
all the data points in the cluster. This is repeated until a predefined
amount of cycles has passed or the centroids stopped changing.
To decrease the calculation time of the algorithm, the minibatch
K-Means algorithm proposed by D. Sculley [21] can be used. This
executes the K-Means algorithm in smaller batches resulting in
faster computation without significant accuracy losses. The scal-
ability of the minibatch K-Means algorithm in combination with
the ability to select the required cluster amounts makes it a feasible
algorithm for the creation of anonymization hierarchies.

Hierarchical. Hierarchical clustering algorithms create full hi-
erarchical trees of the data. These trees can be cut at any height
resulting in the requested amount of clusters. There are two hier-
archical clustering strategies, namely agglomerative and divisive
clustering.

The hierarchical agglomerative (HA) algorithm [18] works by
first putting every datapoint in its own cluster. It then selects two
clusters to merge according to a linkage function. For this purpose,
the complete (also sometimes referred to as max) linkage function
is applied. It aims to minimize the distance between the furthest
points of the two clusters. Note that complete linkage function was
selected over single (min) and average linkage because early tests
demonstrated better results for this linkage function. The favorable
results can be attributed to the fact that minimizing the maximal
distance between the points in two clusters makes the resulting
clusters more compact.

The hierarchical divisive (HD) algorithm, in contrast to the ag-
glomerative method, builds the hierarchy in a top-down manner.
This is done by first putting every datapoint in the same cluster.
Afterwards, the algorithm selects a cluster to be split based on the
diameter. A splinter element, the furthest outlier, is then selected to
be removed from the cluster. All datapoints closer to this element
compared to their current cluster are merged in a new cluster to-
gether with the splinter element. This algorithm, described by L.
Kaufman et al. [16], is called DIANA.

Density-based clustering algorithms. In initial tests, multi-
ple alternative clustering algorithms were considered. Optics and
DBScan are both density based algorithms. Both techniques merge
datapoints in a cluster where the density of the datapoints is similar.

While often cited as a favorable strategy for location based cluster-
ing, these techniques are not suitable for this particular use case.
First of all, neither allows the user to select the desired amount of
clusters. Hence, the strategy does not allow to generate multiple
generalization levels. Next, the density based clustering exposes two
disadvantages for our purpose. Firstly, the algorithms do not assign
data points in sparsely populated areas to clusters. This implies that
outliers are effectively lost. Secondly, the cluster sizes – both with
respect to surface and amount of records – can be very unbalanced.
Note that the anonymization process further suppresses clusters
with less than k records if k-anonymity must be achieved. Suppress-
ing clusters – as well as very large clusters – have a negative impact
on the utility of the anonymized dataset.

4.2 Building clustering-based generalizations
hierarchies

Our work creates generalization hierarchies that contain a prede-
fined amount of clusters (groups) for each level. The generalization
of a point is represented by the centroid of the corresponding clus-
ter. The centroid is calculated by averaging the coordinates in the
cluster. Note that this strategy was preferred over the geographical
center of the area contained by a cluster in order to embrace the
location density distribution in a cluster.

Hierarchical trees can be constructed bottom-up and top-down.
The agglomerative clustering algorithm is an example of a bottom-
up approach while the divisive algorithm is an example of a top-
down approach. Since these two algorithms construct a hierarchical
tree, a generalization hierarchy can easily be extracted by cutting
the tree at several levels.

Constructing a hierarchical tree with the K-Means clustering
algorithm is less trivial. A top-down approach is applied by repeat-
edly re-clustering the subclusters from a previous level. The amount
of groups a subcluster is divided in, is based on the ratio of points
in that cluster compared to the total dataset size.

5 LOCATION GENERALIZATION QUALITY
ANALYSIS

This section applies the generalization strategies discussed in sec-
tion 4 to various location based datasets. Moreover, their outcomes
are evaluated. This section first outlines the scope of the exper-
iments that are performed in this work. Thereafter, meaningful
results are presented with a major focus on the comparison of the
generalization strategies.

5.1 Test strategy
The hierarchy creation techniques discussed in this paper are ap-
plied to address-centric datasets of three countries, namely Aus-
tralia, Spain and Belgium. This approach ensures a variety in areal
properties. The Australian dataset, retrieved from G-NAF1, was
selected for its diverse population density across different regions.
The majority of the people in Australia live around the South and
East Coast. On the contrary, the population density in the center of
the country is low. Belgium and Spain havemore equally distributed

1https://data.gov.au/data/dataset/19432f89-dc3a-4ef3-b943-5326ef1dbecc

https://data.gov.au/data/dataset/19432f89-dc3a-4ef3-b943-5326ef1dbecc
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populations but differ in shape. Spain’s shape approximates a rec-
tangle, while Belgium is triangular with a more capricious border.
The Belgian dataset is provided by the federal government2 and the
Spanish dataset can be found on openAddresses3. The experiments
in this paper are executed in four steps, as outlined in Figure 5.
The acquired location datasets are preprocessed in a first step after
which generalization hierarchies are created. Thereafter, the hier-
archies are applied to anonymize datasets. Finally, the quality of
the created location generalization hierarchies is assessed.

Figure 5: Overview of the different steps in the experimental
setup.

STEP 1: Preprocessing. The original datasets were preprocessed
by removing incomplete and faulty data. Amongst others, addresses
without zip codes are removed as the latter are needed in the ZIP
code translation technique described in sectoin 4. Moreover, ad-
dresses situated outside the country borders are stripped. The re-
sulting location coordinates were rounded to five decimals after
which samples were taken. For the anonymization experiments,
representative datasets containing multiple quasi-identifiers are
required. For this purpose, synthetic datasets are generated by in-
cluding data from aggregated datasets for Belgium4, Spain5 and
Australia6. The resulting synthetic datasets contain location, gender
and age as quasi-identifiers.

STEP 2: Hierarchy creation. For each of the synthetic datasets
in the previous step, location generalization hierarchies are cre-
ated. The techniques outlined in the previous sections are applied,
namely coordinate rounding, ZIP code translation, K-Means cluster-
ing, agglomerative clustering and divisive clustering. All strategies
– except the ZIP code translation method – replace the original
coordinate by the centroid of the elements in the group at each
level. For the ZIP code generalization method, the center point of
each (masked) ZIP code is preprocessed and stored in a separate file.
We rely on the mainstream methods to generalize age and gender
attributes. Age attributes are generalized by creating age interval
which increase in size in upper generalization levels. Gender is
generalized by suppression.

2https://opendata.bosa.be/index.nl.html
3https://batch.openaddresses.io/job/68218
4https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_pjan
5https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=
1254736176951&idp=1254735572981
6https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun%202019?
OpenDocument

STEP 3: Dataset anonymization. The hierarchies are applied to
the preprocessed datasets and result in anonymized ones. For this
task, we rely on the ARX anonymization API [20] and set the k-
anonymity privacy metric as a parameter.

STEP 4: Quality analysis. This step assesses the quality of hierar-
chies after traditional and clustering hierarchy creation methods
were applied. The quality parameters described in Section 3.1 are
used during the analysis. Three experiments were performed in this
work. Experiment 1 and 2 assess the quality/utility of the hierar-
chies. Experiment 3 focuses on the anonymity level of the resulting
dataset.
Experiment 1: Comparing traditional methods to clustering
strategies. A fair comparison between the different hierarchy cre-
ation methods is only possible if each hierarchy consists of the same
amount of groups. As coordinate rounding and ZIP code translation
offer no flexibility at all with respect to the number of groups, this
experiment is first executed for ZIP code translation and coordi-
nate rounding. The clustering methods are subsequently initialized
with the amount of groups generated by the two aforementioned
approaches. The result of this experiment allows for a fair compar-
ison between both of the traditional methods and our proposed
clustering strategies.
Experiment 2: Comparing different clustering strategies.The
previous experiment compares traditional methods to clustering
based methods. As traditional methods offer no flexibility with re-
spect to group sizes, the latter are not optimal. Clustering methods
do not impose group size constraints. Hence, the number of groups
and levels can be chosen freely. In this experiment, an in-depth
comparison is made between clustering strategies. Hierarchies are
created with a number of groups ranging from 18000 down to 125,
decreasing by 125 at subsequent level. Afterwards, the various
clustering methods are compared.
Experiment 3: Anonymization using ARX. In this experiment,
the synthetic datasets are anonymized by the ARX data anonymiza-
tion tool into k-anonymous datasets. This process is repeated for
all five proposed hierarchy creation techniques. The cluster-based
techniques are applied to create five generalization levels contain-
ing 100, 50, 25, 10 and 5 groups respectively. The gender hierarchy
only contains one suppression level. The age attribute is general-
ized by creating ranges with sizes 5, 10, 20 and 40 after which a
complete suppression level is added. The experiment is executed
for different k values (i.e. 5, 10, 20, 50, 100). Finally, the quality of
the anonymized datasets is analyzed.

5.2 Test results
A complete overview of all executed experiments is available on-
line7. As it is infeasible to include all measurements in the paper,
this section compiles the most significant results. All experiments
were executed on different sample sizes of the dataset. Various tests
exposed similar results. The tables and graphs presented in this
section reflect the results from the experiments on a 100K sample
dataset. The lvl column in the tables represent the generalization
hierarchy level.

7https://kuleuven.box.com/s/p5g098vlfgn0l5rfg06rmbpg7oy51a7d

https://opendata.bosa.be/index.nl.html
https://batch.openaddresses.io/job/68218
https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_pjan
https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254736176951&idp=1254735572981
https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254736176951&idp=1254735572981
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun%202019?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun%202019?OpenDocument
https://kuleuven.box.com/s/p5g098vlfgn0l5rfg06rmbpg7oy51a7d
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Table 2: Coordinate rounding comparison in Australia.

lvl Distance to gen. Paired neighbors Group Size
[median in meters] [in %] [Std. Dev.]
CR KM HA CR KM HA CR KM HA

1 3161 627 1342 92,84 90,23 96,92 55 6 32
2 6270 935 2597 95,95 92,90 98,59 133 11 80
3 12861 1501 5325 97,75 95,27 99,41 321 24 223
4 26488 2617 10837 98,80 97,15 99,77 693 59 660
5 56308 4726 16418 99,37 98,33 99,90 1283 139 1282
6 97399 8767 26764 99,66 99,16 99,96 2946 457 2712
7 182204 23117 43147 99,84 99,67 99,98 5899 2126 5411
8 430964 45748 56409 99,95 99,91 100,00 12898 6790 10578
9 710610 182971 522391 99,98 99,99 100,00 33329 10485 30154

1. Coordinate rounding is always an inferior option. Table 2 re-
flects the generalization hierarchy properties extracted from the
first experiment for Australia with coordinate rounding. We aim
at minimizing distance to generalization and maximizing group size
stability. The coordinate rounding strategy results in inferior values
with respect to both metrics. The median distance from a point to
its generalizations is in many cases five times larger in comparison
to other strategies. The same conclusions apply for Belgium and
Spain. The neighbor pairing metric aims at maximizing the high-
est possible percentage. Experiments with the Australian dataset
demonstrate that coordinate rounding scores marginally better than
the K-Means strategy with respect to this metric, especially related
to lower generalization levels. This discrepancy mainly occurs in
the Australian dataset and can be attributed to the fact that the
majority of the Australian population is packed together in smaller
coastal areas.

2. The quality of ZIP based hierarchies strongly depends on areal
properties. Table 3 and 4 return the results obtained from the first
experiment for Spain and Belgium, and compare various clustering
methods to the ZIP code translation technique. Both the distance to
generalization and the group size stability of ZIP codes are similar
to the results gathered from the clustering techniques. The results
may assume that ZIP code translation is a simple yet effective gen-
eralization hierarchy. However, strong differences can be noticed
when comparing various countries. Level 5 of the Spain ZIP codes
scores significantly worse on both metrics while the Belgium met-
rics are more consistent throughout the levels. This shows that the
effectiveness of ZIP code based hierarchies strongly depends on the
assignment of the ZIP codes in a particular country.

3. K-Means scores best with respect to the distance to generaliza-
tion and cluster size stability metrics. The graphs in figures 6 and
7 reflect the conclusions for Australia with respect to the second
experiment (which compares the three clustering methods under
study). For both the median distance to generalization and the group
size stability metric, K-Means exposes significantly better values
compared to the two other clustering methods. This can be attrib-
uted to the fact that the top-down approach applied in K-Means
clustering heavily focuses on equal distribution of records between
the different groups. This also means that large, densely populated

Table 3: ZIP comparison in Spain.

lvl Distance to generalization Group Size
[median in meters] [Standard Deviation]

ZIP KM HD HA ZIP KM HD HA

1 835 611 1070 834 13 5 16 13
2 3628 2024 3714 2994 36 17 56 45
3 14454 9068 13655 11841 201 109 379 294
4 35368 32309 42849 38366 1270 864 2226 1735
5 269333 97793 126718 12245 6937 3196 8367 5581

Table 4: ZIP comparison in Belgium.

lvl Distance to generalization Group Size
[median in meters] [Standard Deviation]

ZIP KM HD HA ZIP KM HD HA

1 1445 1144 1816 1474 100 26 146 107
2 2006 1744 2612 2301 119 65 275 204
3 6698 5589 7400 6750 643 487 1490 1045
4 20186 18560 24058 23023 3723 3463 13013 6911

areas are split in multiple subclusters, which, on its turn, is favor-
able for the median distance to generalization metric. Note that the
K-Means approach exposes inferior values for the paired neighbor
metric as displayed in figure 8.

Figure 6: Median distance in Australia.

4. Agglomerative clustering exposes the best results with respect to
the paired neighbor metric. The graph in figure 8 shows the results
of the paired neighbor metric for Australia. The hierarchical agglom-
erative method scores up to 8% better than the other methods for
this metric. This is caused by the functioning of the agglomerative
clustering method. In generalization level L0, each cluster maps to a
separate location. The upper levels are created by merging clusters
with neighboring clusters. The complete linkage function supports
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Figure 7: Stability in Australia.

Figure 8: Neighbor pairing in Australia.

the creation of compact clusters. This metric shows that hierarchi-
cal agglomerative clustering is an ideal solution for neighbor driven
use cases.

5. Divisive clustering exposes similar behavior as agglomerative
clustering, but scores worse. The graphs in figures 6 and 7 show that
the agglomerative and divisive methods are similar for the distance
and the stability metrics. For both metrics, agglomerative clustering
outperforms the divisive method. The graph in figure 8 shows that
the agglomerative method also scores better with respect to the
neighbor pairing metric, where the divisive method scores similar
to K-means.

6. Even when the original dataset only contains the ZIP codes and
not the exact GPS location, applying clustering techniques is feasible.
Table 5 presents the results of additional tests conducted in this

Table 5: ZIP based clustering in Spain.

lvl Distance to gen. Group Size
[median in meters] [Std. Dev.]

ZIP KM HD HA ZIP KM HD HA

1 3292 1457 3155 2554 36 19 51 44
2 14400 8923 13098 12043 199 111 353 296
3 35220 32421 44108 37750 1247 880 2334 1539
4 269810 96483 127150 132084 6925 3002 8189 4902

research. In these tests, the original dataset contained only the ZIP
code of the location and not the exact coordinates. Four different
generalization hierarchies were created. One applied the ZIP mask-
ing method; the other three performed the clustering methods. The
table only contains values for the distance to generalization and the
group size standard deviation. The neighbor pairing parameter was
omitted as this parameter is irrelevant if all locations are packed
together in a small amount of coordinates in the original dataset.

The table demonstrates that for both metrics, the clustering
methods generally perform better in this case than the ZIP strategy.
These results are most clear for Spain, which can be attributed to
the fact that many neighboring areas in Spain do not necessarily
have a similar ZIP code. In Belgium and Australia, the K-Means
strategy also outperforms the ZIP masking strategy, but the other
clustering methods score worse.

7. With respect to the k-anonymity metric, K-means achieves the
most favorable results. Table 6 summarizes the results for Belgium
with respect to experiment 3, which was executed for five different
k values. For each location hierarchy creation method, the table
shows the generalization level, the amount of suppressed records,
the amount of equivalence classes and the average equivalence
class size. The generalization level is represented by a tuple of three
values reflecting the location generalization level, gender and age
respectively. For each k value the best result is shown in bold.
This table shows a lot of variation between the different values of
k for which location generalization strategy scores outstanding.
However, in contrast to strategies such as ZIP code translation
and coordinate rounding which demonstrate heavy fluctuations
– sometimes the best, sometimes the absolute worst solution –,
the results for K-Means are very stable. While K-Means does not
always expose a superior score for each parameter, its parameters
are always relatively close to the best score. The results for the
Spanish and Australian datasets are even more favorable for the
K-means strategy.

8. The selected generalization levels and created equivalence classes
reflect only partial results. It is also relevant to consider the actual
information in the anonymized datasets. For this purpose, the dis-
tance to generalization column was added to Table 6. This column
returns the median distance between the records after anonymiza-
tion and the original records, not counting the suppressed records.
Also in this metric, the K-means method expose superior scores. It
results in the lowest median distance in three out of the five cases,
and approximates the best score with respect to the other two k
values. Similar results are valid for Spain and Australia. In these
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cases, the ZIP code method scores worse for the Spanish dataset,
and the coordinate rounding method scores significantly lower in
Australia.

6 EVALUATION AND DISCUSSION
The conducted experiments show that the clustering approach for
creating location generalization hierarchies provides a feasible –
and often preferable – alternative compared to the traditional ap-
proaches. This section extrapolates the results and provides guide-
lines for developers in charge of the anonymization of location
data.

The most suitable location generalization strategy depends on areal
properties. A lot of parameters have an impact on the outcome of a
certain location generalization strategy. Firstly, the shape of an area
can negatively influence the performance of a location generaliza-
tion strategy. This is above all the case for the coordinate rounding
method because records located in remote corners near the coun-
try’s border can disregard records in groups that are too small for
further use. Moreover, the demographical spread of the popula-
tion in an area can have an impact. This paper has demonstrated
that different techniques lead to different results for the Australian
map on the one hand, and the ones where the population is more
evenly spread on the other hand (like Belgium and Spain). In areas
with an unevenly spread population, it is recommended to apply
a clustering technique instead of coordinate rounding. Lastly, the
scale also has a major impact on the optimal generalization strategy.
The experiments conducted in this paper were all scoped to one
country. Upscaling to multiple countries, continents or even the
world has consequences. For instance, masking ZIP codes is no
longer feasible. Overlap can occur between ZIP codes of different
countries, and formats can differ. In order to work with ZIP codes,
the technique described in experiment result 6 can be applied. The
coordinate rounding method and the K-means clustering method
also become less feasible as they introduce an artificial border on
the 180th meridian. This would make it impossible to pair for exam-
ple Alaskan and eastern Russian records, even if they are relatively
close to each other. The divisive and agglomerative clustering meth-
ods described in this paper apply goniometric formulas to calculate
the distance between two points and are therefore not impacted by
this phenomenon. Downsizing the scale to one or multiple cities
instead of a whole country also impacts the selection procedure.
First of all, ZIP codes become unfeasible as one city only contains
one or a few ZIP codes. It should also be noted that smaller areas
probably also result in smaller datasets. When applying the cluster-
ing methods, the group sizes for each generalization level should
scale along with the dataset size.

The purpose of the data can influence the optimal hierarchy cre-
ation strategy. First of all, while our test results demonstrate that
it is advisable to apply one of the proposed clustering strategies,
use cases exist that rely on zip codes (e.g. post delivery). In these
instances, applying the ZIP code strategy is still preferred.

When the decision is made to apply a clustering strategy, the
selection is also steered by the purpose of the dataset. If the data
will be employed in use cases where the precise location is of major
importance, it is advised to apply the K-Means strategy, as the

latter has proven to result in the lowest average distance between
a location and its generalization. If, however, the purpose of the
dataset requires strong similarity between closely related records,
it is advisable to apply the agglomerative strategy, as this strategy
performs outstanding in grouping the nearest neighbors together.

Guidelines for using the clustering approach. Caution has to be
taken when applying clustering algorithms to location generaliza-
tion. The quality of the formed clusters can be impacted by the
requested group sizes. Small decreases in size between two gener-
alization levels cause unevenly formed clusters, especially when
using the K-Means algorithm. Therefore, halving the number of
requested clusters each level is recommended.

The quality of the generalization hierarchies can be increased by
working in two phases. In a first phase, a large range of groups can
be requested and fed through an anonymization tool. Afterwards,
a smaller range can be defined based on the generalization level
selected by the anonymization tool in the first phase.

The clustering approach results in favorable privacy properties.
An interesting side-effect of applying the clustering techniques in-
stead of the traditional location generalization methods is that the
anonymity level increases. When applying a coordinate rounding
method, a rectangle can be drawn on a map in which all records
contained by that generalization are located. This also applies to
ZIP code translation (and masking of ZIP codes), where it is also
possible to draw the exact area on a map that contains all records of
that specific equivalence class. This is not the case when applying
one of the clustering techniques proposed in this work. Once the
location data is generalized, it is impossible to exactly reconstruct
the borders of each cluster. This makes execution of background
knowledge attacks significantly harder as more uncertainty is intro-
duced, and no trivial mapping between locations in two different
datasets can be made.

A note on performance. The different hierarchy generation meth-
ods have various performance properties. Utilizing the traditional
ZIP and coordinate rounding techniques requires almost no extra
memory or calculation time. Most computing time is spent on the
calculation of all the ZIP centers. However, this is a preprocessing
step. While these methods are the most easy ones to perform, our
research shows that they often do not result in the most favorable
results. The hierarchical algorithms require a pre-calculated geo-
detic distance matrix between all the points. This matrix scales
with the size of the dataset squared (N2), causing a big inflation in
memory usage. However, its size can be halved by removing all
duplicate values in the symmetric matrix resulting in a memory
usage of 37GB for 100 000 records. The agglomerative clustering
method uses more memory (up to 280GB for 100 000 records) im-
proving the calculation time, this can be avoided by creating a
proper implementation of the algorithm. The K-Means algorithm
is the fastest and most memory efficient clustering algorithm. The
algorithm uses approximately 60% of the calculation time needed
for the agglomerative method and even less when compared to the
divisive method. This computational efficiency is partially caused
by utilizing the minibatch K-Means implementation.
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Table 6: ARX results for Belgium.

Generalization level #suppressed Avg. class size #Eqv. Classes Distance to generalization
K ZIP CR KM HA ZIP CR KM HA ZIP CR KM HA ZIP CR KM HA ZIP CR KM HA

5 3,0,1 6,0,1 1,0,1 2,0,1 496 1472 582 290 34 37 27 54 2904 2647 3636 1835 6716 8223 5107 8547
10 3,0,1 7,0,1 2,0,1 2,0,1 2213 603 627 1418 37 118 55 59 2656 845 1819 1679 6718 16564 7531 8536
20 4,0,1 7,0,1 3,0,1 3,0,1 156 1732 732 1908 292 128 110 124 342 770 905 791 20144 16569 11302 13260
50 4,0,1 7,0,2 4,0,1 4,0,1 641 3346 674 1020 304 274 273 281 327 353 364 352 20136 16580 17463 20213
100 4,0,1 8,0,2 4,0,2 4,0,2 2024 739 905 1223 317 782 547 564 309 127 181 175 20111 31278 17461 20211

7 CONCLUSIONS
This paper presented an alternative approach for creating gener-
alization hierarchies. Three clustering strategies were proposed,
namely K-means, agglomerative clustering and divisive clustering.
Our experiments expose favorable results for the presented clus-
tering methods compared to the traditional strategies, both with
respect to the remaining utility as well as the anonymity level. This
effect is achieved due to multiple factors. Firstly, our approach ap-
plies a more intelligent strategy to group locations. This results
in more equally distributed generalization hierarchies and at the
same time decreases the amount of records suppressed during the
anonymization process. Secondly, in contrast to the traditional
methods, the clustering approaches enable users to fix hierarchy
level sizes. This increases the flexibility and also allows for intelli-
gent tuning after an initial anonymization step. Lastly, we argue
that, depending on the purpose of the data, alternative methods can
be applied in order to maximize the utility of the anonymized data.
Future research will investigate the effect of including additional lo-
cation metadata in the clustering process. For example, an attribute
that distinguishes rural and urban regions could potentially further
increase the utility of the resulting anonymized dataset.
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