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ABSTRACT
RDF graphs are often generated by mapping data in other (semi-)
structured data formats to RDF. Such mapped graphs have a repeti-
tive structure defined by (i) the mapping rules and (ii) the schema
of the input sources. However, this information is not exploited
beyond its original scope. SHACL was recently introduced to model
constraints that RDF graphs should validate. SHACL shapes and
their constraints are either manually defined or derived from on-
tologies or RDF graphs. We investigate a method to derive the
shapes and their constraints from mapping rules, allowing the gen-
eration of the RDF graph and the corresponding shapes in one step.
In this paper, we present RML2SHACL: an approach to generate
SHACL shapes that validate RDF graphs defined by RML mapping
rules. RML2SHACL relies on our proposed set of correspondences
between RML and SHACL constructs. RML2SHACL covers a large
variety of RML constructs, as proven by generating shapes for the
RML test cases. A comparative analysis shows that shapes generated
by RML2SHACL are similar to shapes generated by ontology-based
tools, with a larger focus on data value-based constraints instead
of schema-based constraints. We also found that RML2SHACL has
a faster execution time than data-graph based approaches for data
sizes of 90MB and higher.

CCS CONCEPTS
• Information systems→ Data exchange; Extraction, transforma-
tion and loading; Graph-based database models; Resource Descrip-
tion Framework (RDF).
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RML, R2RML, SHACL, RDF shapes, Shape generation
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1 INTRODUCTION
RDF graphs are often generated by mapping data in other struc-
tures and formats to an RDF representation. There are different
approaches to mapping non-RDF data to RDF, among which di-
rect mapping [1] and customized mapping, e.g., [7, 8]. In direct
mapping, an RDF representation is automatically generated from a
non-RDF source; RDF terms in this representation are derived from
the source’s structure and content according to the direct mapping
specification. In customized mapping, declarative mapping rules
are used to define a custom RDF representation for one or more
data sources. Such rules specify which RDF vocabulary terms are
applied to the non-RDF sources. The structure of an RDF graph
generated with customized mapping can be derived from the map-
ping rules: its structure is determined by (i) the structure of the
non-RDF sources they are based on, and (ii) the mapping rules that
define the sources’ RDF representation.

The shape of an RDF graph, which is defined nowadays using
e.g., the W3C recommended shape language, SHACL [12], is often
desired. Shapes can be (i)manually defined using e.g., editors [3, 15],
being time-consuming and error prone, (ii) mined from the RDF
graph [2, 9, 21, 23], requiring the processing of large knowledge
graphs, or (iii) derived from the graph’s ontology [5, 6, 19], being
limited to constraints that can be encoded in the ontology.

We propose an approach to derive the shapes of RDF graphs
which are generated with mapping rules and make that shapes
explicit using SHACL. The data owners can then define themapping
rules to generate the RDF graph and derive the shapes in one step.
Our approach can derive (i) the logical schema of a mapped RDF
graph (as when deriving shapes from the ontology), as well as
(ii) data-level restrictions such as URI patterns (as when deriving
the shape from the RDF graph).

In this paper, we present RML2SHACL: an approach to gener-
ate SHACL shapes that validate an RDF graph that was generated
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from RML mapping rules. RML [8] is a generalisation of the W3C-
recommended mapping language R2RML [7] that makes the map-
ping language extensible towards integrating other formats than
relational databases. Our approach is applicable both to RML and
R2RML, since we only rely on the parts shared between those two
languages; we will refer to the intersection of R2RML and RMLwith
the name “[R2]RML”. RML2SHACL relies on a set of correspon-
dences between [R2]RML and SHACL constructs we propose. We
provide a Python implementation of RML2SHACL and report on
initial experiments that confirm this implementation’s feasibility.

Our contributions in this paper are: (i) a set of correspondences
between [R2]RML and SHACL terms; (ii) an approach to generate
SHACL from [R2]RML mapping rules that integrate data; (iii) an
algorithm and a proof of concept implementation of our approach;
(iv) a validation of correctness and proof of complete support for
RML based on the RML test cases; and (v) comparative evaluations
with ontology-based and RDF-graph-based tools.

The remainder of this paper is structured as follows. In section 2
we discuss related work on shape generation and preliminaries
on RML and SHACL. In section 3 we propose our approach for
generating shapes from mapping rules. In section 4 we discuss our
implementation and in section 5 our validation. In section 6 we
give conclusions.

2 RELATEDWORK AND PRELIMINARIES
In this section we first give an overview of approaches to shape
generation, and then expand on the shape language and mapping
language we use in this paper.

2.1 Related work on shape generation
Shapes can express different types of validation constraints, rang-
ing from simple data checks (“does this string match that pattern?”)
over cardinality checks for given properties (“does this node have
at least 𝑛 times this predicate?”) to composition of shapes by logi-
cal connectors (“does this node match this shape and/or/xor that
shape?”). The two notable RDF shape languages are ShEx [20] and
the W3C-recommended SHACL [12], the latter we discuss in more
detail later in this section.

Shapes can be generated manually or derived automatically. The
automatic approaches can be further subdivided into approaches
that derive shapes from ontologies or RDF graphs. Shapes are often
generated manually, however, writing shapes by hand is costly and
error-prone [6]. Editors for writing shapes, e.g., [3, 15], make shape
generation less error-prone, but the process is still costly.

In previous works, automated approaches emerged as well where
ontologies and the RDF graph itself were used to generate shapes
to validate a graph. Approaches that generate shapes from ontolo-
gies1,2 [5, 6, 19] are not dependent on data size, but they cannot
derive any constraint beyond what the ontology already covers.
Deriving shapes from an RDF graph2 [2, 9, 18, 21, 23] is possible for
any RDF graph, but the computational cost is at least linear in the
data size [4]. RDF graph-based approaches suggest shapes based on
available instance data and typically rely on confidence thresholds
or a “human in the loop” [2] to add credence to these suggestions.

1https://www.topquadrant.com/products/topbraid-composer/
2https://pypi.org/project/shaclgen/

2.2 Preliminaries
In this subsection we summarize the aspects of RML and SHACL
that are relevant to this paper.

RML. There are other mapping languages that generate RDF
graphs from heterogeneous sources: xR2RML [17], ShExML [10],
and SPARQL-Generate [13], but we consider RML because it is
the most broadly used. RML [8] generates RDF graphs from het-
erogeneous data sources, relying on triples maps, subject maps,
predicate-object maps, term maps, references and iterators.

A triples map (fig. 1/listing 3) describes how triples are generated
from a data source by arranging a set of term maps in subject,
predicate and object positions. A triples map has one subject map
(fig. 1, 1 /listing 3, lines 2-4), a termmap in the subject position, and
multiple predicate-object maps (fig. 1, 2 /listing 3, lines 5-7), each
consisting of two term maps: one in the predicate (the predicate
map) and one in the object position (the object map).

A term map (fig. 1, 1 /listing 3, lines 2-4) describes how RDF
terms are generated from source data: the node kind of the RDF
term (literal, blank node or IRI), its URI template, the data type
(fig. 1, 3 /listing 3, line 13) or language tag of the literals, and more.
A class can also be declared for termmaps in the subject position: all
subjects generated by that term map have the declared class (fig. 1,
4 /listing 3, line 3). One special type of term map is used to link
between triples maps: the referencing object map (fig. 3, 1 /listing 5,
lines 13-14). If this type of object map is used, a parent triples map
is specified, and the parent triples map’s subjects are generated as
the referencing object map’s objects.

Term maps use references (fig. 1, 5 /listing 3, line 7) to refer
to specific pieces of source data, for example a reference might
be a column name or attribute name. References are scoped to
iterations that are defined by an iterator. The iterator defines how
a data source is iterated through, for example row-based iteration
for tables, or iteration through a given array for JSON sources.

The example mapping rules in listing 3 are written for the CSV
source in listing 1, and the result of these rules is the RDF graph
in listing 2. The same mapping rules are given in fig. 1 in the
MapVOWL visual notation [11].

SHACL. SHACL is the W3C-recommended language for express-
ing constraints on RDF data [12]. To express constraints on an RDF
graph, SHACL uses the concepts of a data graph, a shapes graph,
shapes, targets and constraint components.

The data graph is the RDF graph under validation, it can be, for
example, a named graph in a SPARQL endpoint or a turtle file. An
example data graph is shown in listing 2. The shapes graph con-
tains the constraints the data graph will be validated against, in
the form of a set of shapes. An example shapes graph is shown in
listing 4 and its visual representation using the ShapeVOWL visual
notation [15] is shown in fig. 2. Shapes are RDF descriptions of con-
straints on the data graph, using targets and constraint components.
Figure 2/listing 4 contains exactly one shape: :personShape.

A target of a shape describes which nodes in the data graph will
be validated by a shape. One type of target is class-based targets,
stating that all instances of a given class will be validated by a
shape. In our example, :personShape has all instances of the class
:Person as target (fig. 2, 1 /listing 4, line 2). The other target types
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in SHACL core state that all subjects or objects of a given property
are targeted by a shape, or that specific given nodes are targeted
by a shape. Constraint components describe the conditions against
which nodes targeted by a shape are validated. There are more than
25 different types of constraint components in SHACL core and
they describe various conditions such as checking whether nodes
satisfy a string pattern (fig. 2, 2 /listing 4, line 5). One important
type of constraint components are property constraint components
(fig. 2, 3 /listing 4, lines 6-7): these check whether nodes reachable
through a path (fig. 2, 4 /listing 4, line 6) conform to a shape.

3 GENERATING SHAPES FROM MAPPINGS
In this section, we propose the generation of shapes from mapping
rules in two parts, first we explain how to generate a SHACL shape
from a single [R2]RML triples map, using a set of [R2]RML-to-
SHACL correspondences, and then we generalize this approach to
generating shapes for multiple triples maps, requiring the merging
and interlinking of shapes generated for single triples maps.

3.1 Shapes from one triples map
Our approach generates SHACL shapes for the RDF graph that is
generated from a set of [R2]RML mapping rules. These shapes are
generated considering, at this stage, only the information available
in the mapping rules. The two steps to generating shapes from
mapping rules are: (i) choose appropriate targets, and for each
target, (ii), generate constraint components.

Choosing targets. Our approach generates class-based shape tar-
gets, because it is the most commonly used targeting approach.
Statistics collected from real shapes show that class targets are used
in 83% of cases, while subjects-of (sh:targetSubjectsOf), objects-
of (sh:targetObjectsOf) and node targets (sh:targetNode) oc-
cur only 14%, 2% and 1% of cases, respectively [14].

Our approach determines all classes declared in the mapping
rules and for each class generates a shape with that class as target.
In our example, the class target (fig. 2, 1 /listing 4, line 2) is derived
from the :Person class declaration in the mapping rules (fig. 1,
4 /listing 3, line 3). As stating subjects’ classes with rr:class or
with a predicate-object map with rdfs:type as predicate is not
required, a class can also be inferred from the domain of the predi-
cates used in predicate maps. For example, if in fig. 1/listing 3 the
:Person class were not declared explicitly, the target in fig. 2/list-
ing 4 could still be inferred from the domain of :firstName.

The other three SHACL core targeting approaches: node targets,
subject-of targets, and object-of targets are also less preferred for the
following reasons: node targets are applicable when the nodes in the
output are known, because they are constant or because the targets
are specified after executing the mapping rules. The latter does not
fit in our mappings-based approach of shape generation. Subject-of
and object-of targets are not preferred in our case, because it can
not be known if a predicate will be present in the output graph. For
instance, the generation of the predicate or object could rely on a
reference which might be null and then no RDF triple is generated.

Generating constraint components. For each class target, we add
constraint components to its generated shape relying on the cor-
respondences between [R2]RML and SHACL terms in table 1. For

1 id;firstName;lastName;age

2 101; Jane;Doe;25

Listing 1: Example non-RDF data source

1 :people /101 a :Person ; :age 25 ;

2 :firstName "Jane" ; :lastName "Doe" .

Listing 2: Example RDF graph

1 :personTriplesMap a rr:TriplesMap ;

2 rr:subjectMap [

3 rr:class :Person ;

4 rr:template "http :// example.com/people /{id}" ] ;

5 rr:predicateObjectMap [

6 rr:predicate :firstName ;

7 rr:objectMap [ rml:reference "firstName" ] ] ;

8 rr:predicateObjectMap [

9 rr:predicate :lastName ;

10 rr:objectMap [ rml:reference "lastName" ] ] ;

11 rr:predicateObjectMap [

12 rr:predicate :age ;

13 rr:objectMap [ rr:datatype xsd:integer ;

14 rml:reference "age" ] ] .

Listing 3: Example RML mapping rules

:people/{id}
:Person

:firstName

{firstName}

{lastName}

{age}
xsd:integer

1

2

3

4

5

6

:lastName

:age

Figure 1: Example RML mapping rules (MapVOWL)

1 :personShape a sh:NodeShape ;

2 sh:targetClass :Person ;

3 sh:class :Person ;

4 sh:nodeKind sh:IRI ;

5 sh:pattern "http :// example.com/people /.*" ;

6 sh:property [ sh:path :firstName ;

7 sh:nodeKind sh:Literal ] ;

8 sh:property [ sh:path :lastName ;

9 sh:nodeKind sh:Literal ] ;

10 sh:property [ sh:path :age ;

11 sh:nodeKind sh:Literal ;

12 sh:datatype xsd:integer ] .

Listing 4: Example SHACL shape
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Person
:personShape

    xsd:string

    xsd:string

    xsd:integer

:firstName

:lastName

:age
         pattern(“http://example.
                       com/people/.*”)

nodeKind(IRI)

(^.*$)

appliesonClass(:Person)

      :Person

1

2

5
6

3

4 7

Figure 2: Example SHACL shape (ShapeVOWL)

[R2]RML SHACL
rr:subjectMap, sh:NodeShape
rr:SubjectMap

rr:predicateObjectMap, sh:property,
rr:PredicateObjectMap sh:PropertyShape

rr:class sh:class, sh:targetClass
rr:predicate sh:path

rr:referencingObjectMap sh:node

rr:termType sh:nodeKind

rr:datatype sh:datatype

rr:language sh:languageIn

rr:constant sh:in

rr:template sh:pattern

Table 1: [R2]RML terms and corresponding SHACL terms.

each triples map that generates entities of a class, we derive con-
straint components based on the properties of the triples map’s
subject map and predicate-object maps. For the subject map, con-
straint components are added directly to the class’s shape, since
the generated subjects have the class that this shape validates. For
example, in fig. 2/listing 4 the sh:class ( 5 /line 3), sh:nodeKind
( 6 /line 4) and sh:pattern ( 2 /line 5) are derived from the subject
map’s properties (fig. 1, 1 /listing 3, lines 2-4).

For the predicate-object maps (fig. 1, 2 /listing 3, lines 5-7), prop-
erty constraint components are added to the class’s shape (fig. 2,
3 /listing 4, lines 6-7), as these constraint components can validate
the predicates and objects generated by the predicate-object map.
These property constraint components have a path that is derived
from the predicate specified in the predicate-object map. For ex-
ample the path :firstName (fig. 2, 4 /listing 4, line 6) is derived
from the predicate map with the same value (fig. 1, 6 /listing 3,
line 6). The property constraint components check nodes reach-
able through that path, so the checks performed by the property
constraint component are derived from the predicate-object map’s
object maps, again following table 1. For example, the sh:nodeKind
constraint component (fig. 2, 4 /listing 4, line 7) is derived from
the object map generating literals (fig. 1, 6 /listing 3, line 7).

In the above, we treat the entire output of [R2]RML mapping
rules as one data graph. However, [R2]RML can generate multiple
data graphs, either by (i) generating multiple named graphs with
rr:graph(Map) or (ii) writing to multiple output locations with

1 :otherPersonTriplesMap a rr:TriplesMap ;

2 rr:subjectMap [

3 rr:class :Person ;

4 rr:template "http :// example.com/people /{id}" ] ;

5 rr:predicateObjectMap [

6 rr:predicate :firstName ;

7 rr:objectMap [ rml:reference "firstName" ] ] ;

8 rr:predicateObjectMap [

9 rr:predicate :lastName ;

10 rr:objectMap [ rml:reference "lastName" ] ] ;

11 rr:predicateObjectMap [

12 rr:predicate :country ;

13 rr:objectMap [

14 rr:parentTriplesMap :countryTriplesMap ] ] .

Listing 5: Extended example RML mapping rules

rmlt:target [22]. Yet, our approach can also be restricted to, e.g.,
only generate shapes for one named graph or output target.

3.2 Shapes from multiple triples maps
[R2]RML mapping rules are used to integrate multiple sources into
one RDF graph, and these sources can have overlapping or comple-
mentary data. Both cases require mapping rules for which the shape
generation approach explained so far (section 3.1) is incomplete
and we explain a more complete approach in this section.

Sources with overlapping data contain the same types of entities
(e.g., people) and similar attributes of those entities. These data
sources typically contain overlapping sets of attributes of the enti-
ties: some attributes are shared between sources (e.g., all sources
contain people’s names and identifier) while other attributes are
not (e.g., only certain sources know people’s age or country of
birth). Following the approach in section 3.1, we would generate
different shapes for each data source, even though the shapes would
be redundant with each other and could be merged.

Sources with complementary data contain similar entities but
different attributes. One source refers to a type of entities, and
another source contains more information about those entities.
For example, one source contains information about people and
a code for their birth country, and another source contains more
information about countries. If complementary data sources’ RDF
representation is validated with shapes, the shapes for the sources
should be linked just like the sources; in our example the person
shape should refer to the country shape.

In the remaining, we explain how these cases are handled.

Sources with overlapping data. [R2]RML mapping rules can inte-
grate multiple sources with overlapping data by generating entities
with the same class from multiple sources. An example is shown
in fig. 1/listing 3 and fig. 3/listing 5: both triples maps create in-
stances of the :Person class with the properties :firstName and
:lastName. One triples map additionally adds the :age property,
and the other :country.

Our approach generates one shape for all triples maps that gener-
ate entities of the same class. This is achieved by generating a shape
which checks the properties that all instances of the class should
have (in our example, :firstName and :lastName) and optionally
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:people/{id}
:Person

{firstName}

{lastName}

:countries/{fullname}
:Country

1

:firstName

:lastName

:country

Figure 3: Extended example RML mapping rules
(MapVOWL)

checks the properties that only some of the class instances should
have (in our example, :age or :country). Determining which prop-
erties all of a class’s instances have, is done by looking at all triples
maps that generate instances of this class, and determining their
shared subject maps and predicate-object maps. Once these are de-
termined, a shape is generated for this class much like in section 3.1,
except that the non-shared properties are added as a disjunction
(sh:or), as shown on fig. 4, 1 /listing 6, lines 10-16.

Complementary data. Sources with complementary data can be
integrated into a knowledge graph by using [R2]RML mapping
rules with a referencing object map. If a referencing object map
is used, the terms generated by that object map are the subjects
generated by its parent triples map, which might have a different
source. For example, the object map in fig. 3, 1 /listing 5, line 14
generates IRIs for :Country instances from another source than the
source used to create :Person instances; such a scenario is likely
if the person source refers to countries by a code, while IRIs using
the countries’ full names are desired. Since the terms generated
by a referencing object map conform to the shape generated for
the parent triples map, the constraint components generated for
referencing object maps likewise refer to the shape generated for
the parent triples map. This is indicated in fig. 4, 2 /listing 6, line 16:
using sh:node, the objects of the :country predicate are validated
by :countryShape, the shape generated for the :Country class.

1 :personShape a sh:NodeShape ;

2 sh:targetClass :Person ;

3 sh:class :Person ;

4 sh:nodeKind sh:IRI ;

5 sh:pattern "http :// example.com /.*" ;

6 sh:property [ sh:path :firstName ;

7 sh:nodeKind sh:Literal ] ;

8 sh:property [ sh:path :lastName ;

9 sh:nodeKind sh:Literal ] ;

10 sh:or ( [ sh:property [

11 sh:path :age ;

12 sh:nodeKind sh:Literal ;

13 sh:datatype xsd:integer ] ]

14 [ sh:property [

15 sh:path :country ;

16 sh:node :countryShape ] ] ) .

Listing 6: Extended example SHACL shapes

Data: Set of mapping rules𝑀
Result: Shapes graph 𝑆

1 𝑆 ← empty graph;
2 for each class c declared in M do
3 𝑠 ← empty node shape with target class 𝑐;
4 𝑜 ← sh:or with empty list parameter 𝐿;
5 𝑇 ← all triples maps declaring 𝑐;
6 for each triples map tm in T do
7 𝑠𝑢𝑏 ← constraints for 𝑡𝑚’s subject map (table 1);
8 if sub is equal for all subject maps in T then
9 𝑠 ← 𝑠 ∪ 𝑠𝑢𝑏

10 else 𝐿 ← 𝐿 ++ 𝑠𝑢𝑏 ;
11 for each predicate-object map po of tm do
12 𝑝𝑐𝑐 ← property constraint component with 𝑝𝑜’s

predicate as path and with constraint
components for 𝑝𝑜’s object map (table 1);

13 if pcc is shared between all triples maps in T then
14 𝑠 ← 𝑠 ∪ 𝑐𝑐
15 else 𝐿 ← 𝐿 ++ 𝑝𝑐𝑐 ;

16 if L is not empty then 𝑠 ← 𝑠 ∪ 𝑜 ;
17 𝑆 ← 𝑆 ∪ 𝑠;
18 Return 𝑆

Algorithm 1: Pseudocode for generating SHACL shapes from
[R2]RML mapping rules

4 IMPLEMENTATION
We implemented our proposed approach to generating SHACL
shapes from [R2]RML mapping rules. We present the implementa-
tion’s pseudocode and then discuss the implementation itself.

Algorithm. The following pseudocode (alg. 1) is an algorithm for
the approach we proposed in section 3. For each class declared in
the mapping rules (loop on lines 2-15) constraint components are
generated that validate the properties of the class instances (lines 7,
12). The shared and unique properties are determined (lines 8, 13)
and the shared constraint component are added to the class’s shape
(lines 9, 14) while the unique properties are added to a disjunction
(lines 11, 15) that in its turn is added to the class’s shape (line 16).

Python implementation. A proof of concept implementation un-
der the permissive MIT license is available3. It is written in Python
using the RDFLib library.4 The implementation follows the ap-
proach explained in section 3 and formalized in alg. 1, without
merging shapes from multiple triples maps. The implementation
also has partial support for inferring target classes from predicates’
domains for certain cases, as explained in section 3.1.

5 VALIDATION
We assessed three aspects of our approach to generating shapes
frommapping rules: (i) the extent to which it covers the different as-
pects of the RML specification, (ii) whether it generates shapes that

3https://github.com/RMLio/RML2SHACL/tree/kcap21
4https://github.com/RDFLib/rdflib
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Person
:personShape

    xsd:string

    xsd:string

:firstName

:lastName

:address

OR
    xsd:integer:age

Address
:addressShape

1

2

         pattern(“http://example.
                       com/people/.*”)

nodeKind(IRI)

(^.*$)

appliesonClass(:Person)

      :Person

complyWith

Figure 4: Extended example SHACL shapes (ShapeVOWL)

are comparable with shapes generated by state of the art ontology-
based methods and (iii) at what data size our mapping-based ap-
proach is less costly than data graph-based approaches.

5.1 RML test cases
To verify if our approach generates meaningful shapes for a large
range of RML mapping rules, we validated our implementation
relying on the RML test cases.

Methodology. We applied our implementation on the mapping
rules of each of the RML test cases5. These test cases are designed
by the KG-Construct community group to (among other goals) have
high coverage of the different RML constructs. There are more than
300 test cases and they contain mapping rules with many different
combinations of RML constructs, such as term maps, source types,
language and data type maps. For each test case, we validate the
shapes graphs returned by our implementation using the SHACL-
SHACL shapes.6 SHACL-SHACL is itself a shapes graph that can
validate whether shapes graphs are well-formed.

Results. The results of these validations are positive: for all RML
test cases with well-formed mapping rules, well-formed shapes
graphs are generated. These results indicate that our implementa-
tion can cover a large range of different mapping rules and, thus, of
the RML specification. The shapes graphs generated for each test
case are published online, along with the code to run them.7

5.2 Comparison with ontology-based tools
Mapping-based and ontology-based approaches are similar, though
not identical: both require no user input and are independent of the
data graph’s size. Because of this similarity, it is interesting to inves-
tigate how shapes generated by both approaches are similar, where
their shapes differ and how they can be combined, if desirable.

Ontology-based approaches for shape generation take OWL,
RDFS and XSD restrictions as input. An OWL ontology for our
running example is given in fig. 5 and shown in listing 7 in the
VOWLnotation [16]: like the shape (fig. 2/listing 4) and themapping
rules (fig. 1/listing 3) shown earlier, the ontology encodes that
:Person instances have first and last names that are plain literals,

5https://github.com/kg-construct/rml-test-cases
6https://www.w3.org/TR/shacl/#shacl-shacl
7https://github.com/RMLio/RML2SHACL/tree/kcap21/shapes

Person

firstName

xsd:string

xsd:string

xsd:integer

lastName

age

Figure 5: Example OWL ontology (VOWL)

and age that is an integer. One remarkable difference with the shape
and mapping rules is that fig. 5/listing 7 does not contain an URI
template or pattern, as ontologies have no way to encode this.

Methodology. As representative of the ontology-based approaches,
we chose to compare with Astrea [6], a state of the art tool that
generates shapes from ontologies and requires no user input. Astrea
publishes both its code8 as well as a catalogue of generated shapes
from well-known ontologies online9. For each ontology in Astrea’s
catalogue, we generated mapping rules using a third party OWL-
to-RML tool10. From these generated mapping rules, we generate
shapes using RML2SHACL’s implementation. Then we observe the
similarities and difference of shapes generated by the two tools for
the same class. The shapes generated by both tools and the used
mapping rules are published along with the code11.

Results. We observe that both tools generate shapes with similar
structure, while the mapping-rules-based approach better supports
validating RDF properties related to data values (like URI patterns
and node kinds), and the ontology-based approach better supports
validating schema properties (like class disjointness).

Both approaches generate similar shapes for the same class: both
approaches generate shapes that validate mainly node kinds, data
types, and property paths. Samples of shapes generated by both
tools are shown in listings 8 and 9: these shapes are generated for the
:Item class in the OpenADR ontology12 and both shapes validate

8https://github.com/oeg-upm/astrea
9https://astrea.linkeddata.es/catalogue.html
10https://github.com/oeg-dataintegration/owl2rml
11https://github.com/RMLio/RML2SHACL/tree/kcap21/shapes/astrea_test
12https://w3id.org/def/openadr
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1 :Person rdf:type owl:Class .

2 :firstName rdf:type owl:DatatypeProperty ;

3 rdfs:domain :Person ;

4 rdfs:range xsd:string .

5 :lastName rdf:type owl:DatatypeProperty ;

6 rdfs:domain :Person ;

7 rdfs:range xsd:string .

8 :age rdf:type owl:DatatypeProperty ;

9 rdfs:domain :Person ;

10 rdfs:range xsd:integer .

Listing 7: Example OWL ontology

1 rml2shacl:triplesMapItem_000/shape

2 sh:nodeKind sh:IRI ;

3 sh:pattern "http ://www.example.com /.*" ;

4 sh:property

5 [ sh:nodeKind sh:Literal ;

6 sh:path :hasItemDescription ],

7 [ sh:nodeKind sh:Literal ;

8 sh:path :hasScaleCode ] ;

9 sh:targetClass :Item .

Listing 8: Shape generated by RML2SHACL

1 astrea:eb103427682b59681883e1aa14df7b2e

2 sh:nodeKind sh:IRI ;

3 sh:property

4 astrea :627 e8be20efe1fd3c04d5e3b9876377b ,

5 astrea :841377 b51482efab5bbd280e2513f34c ;

6 sh:targetClass :Item .

7 astrea :841377 b51482efab5bbd280e2513f34c

8 sh:datatype xsd:string ;

9 sh:nodeKind sh:Literal ;

10 sh:path :hasItemDescription ;

11 sh:pattern ".*" .

12 astrea :627 e8be20efe1fd3c04d5e3b9876377b

13 sh:datatype xsd:string ;

14 sh:nodeKind sh:Literal ;

15 sh:path :hasScaleCode ;

16 sh:pattern ".*" .

Listing 9: Shape generated by Astrea

whether :Item instances are IRIs that have :hasItemDescription
and :hasScaleCode properties whose objects are literals.

The tools can generate shapes that are different in style but equal
in meaning. For example, for predicates with a given class as range,
RML2SHACL refers to the range class’s shape explicitly by using
sh:node, while Astrea’s shapes will check simply if the objects
have the range class with sh:class (which is enough: instances
of that class are targeted and validated by that class’s own shape).
There are other, smaller, stylistic differences: use of blank nodes vs.
IRIs for shapes (e.g., listing 8, lines 5-7 vs. listing 9, lines 7-11), and
in- or excluding names, labels and descriptions of shapes.

RML2SHACL can generate more specific constraint components
than Astrea in two cases: URI patterns and node kinds. Mapping
rules use URI templates to generate URIs and from these templates,

pattern constraint components can be derived (e.g., listing 8, line 4);
such information is not available in ontologies. Likewise for node
kinds, such information is not always encoded in ontologies, so
ontology-based tools cannot determine whether nodes are literals
or IRIs or blank nodes, meanwhile mapping rules encode how nodes
are generated, so typically their node kinds are encoded in mapping
rules. This is reflected in generated shapes where, for the same
nodes, Astrea’s shape has sh:LiteralOrIRI as node kind, while
RML2SHACL has the more specific sh:IRI.

Shapes generated by Astrea sometimes contain more constraint
components than RML2SHACL’s shapes. One such occasion is
when the ontology contains owl:disjointWith statements for
classes, which Astrea can translate to equivalent sh:not constraint
components. We also noticed Astrea cleverly generates certain con-
straint components based on latent information not necessarily
taken from the ontology. These constraint components therefore
could also be added to RML2SHACL’s implementation. Such derived
constraint components are based on facts like these: literals with a
datatype have a corresponding string pattern (e.g., an xsd:integer
is a string of numbers) (used in listing 9 lines 11, 16), and literals
are strings unless stated otherwise (used in listing 9 lines 9, 13).

5.3 Comparison with RDF graph-based tools
To verify the merits of an approach which is not dependent on
the data-size, we compared our approach against approaches that
generate shapes from an RDF graph while measuring resource use.

Methodology. From the open source RDF-graph-based shape gen-
eration tools: ShaclGen13, RDF2Graph [23] and RDFShapeInduc-
tion [18], we chose to compare against ShaclGen, as the other
two were either deprecated14 (no updates in 6 years and errors
on running) or contained no installation instructions15. We gener-
ated RDF graphs of different sizes using the BSBM data generator:
from 500 products (graph size 45MB) up to 5000 products (graph
size 440MB). We then ran SHACLGen five times on each generated
RDF graph, measuring the average execution time per size. We also
ran RML2SHACL on the BSBM RMLmapping rules five times while
measuring time. Our experimental set-ups are publicly available16.

Results. Our experiment confirms that the resource cost of RDF-
graph-based tools for shape generation increases at least linearly
with the RDF graph’s size. We found that once the RDF graph’s
size exceeds 90MB (1000 products), execution time of these tools
is higher than the execution time of mapping-based tools, which
remains constant relative to data size, as shown in fig. 6. Constant
execution time comes at a cost: the BSBM data relies for a part
on dynamically generated classes. These classes are invisible to
mapping-based approaches, but data-based approaches can (and
ShaclGen does) generate shapes for these classes.

6 CONCLUSION
We present a novel approach for making RDF shapes for RDF graphs
generatedwithmapping rules. Our approach is automatic, i.e., needs
no user input, and does not depend on the graphs’ size.
13https://github.com/uwlib-cams/shaclgen
14https://github.com/jessevdam/RDF2Graph
15https://github.com/rifat963/RDFShapeInduction
16https://github.com/RMLio/RML2SHACL/tree/kcap21/
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Figure 6: Resource use of data graph-based tools (full line)
increases with the data graph size, while that of mapping-
based tools (dashed line) remains constant.

Our experiments confirm that our mapping-based approach gen-
erates shapes from a large range of mappings, similar to ontology-
based approaches, with slightly more constraint components that
are data value-based and slightly less constraint components that
are schema-based, and faster than data-graph based approach for
data sizes of 90MB and higher.

RML2SHACL brings shape generation to a new class of use cases:
those where no manual intervention or excessive resource use is
desired and where either no ontology is available, or different con-
straint components are desired than those encoded in ontologies.

In the future we will investigate generalizing our approach by
also generating RDF shapes encoded in ShEx [20].

Since the shapes generated by our mapping-based approach and
by ontology-based approaches are complementary, we will research
further on how to combine the two approaches. Our approach could
be enhanced by taking more information (besides domains of pred-
icates) from ontologies, e.g., cardinalities or data ranges. Mapping
rules can use a selection of terms from different ontologies, so gen-
erating shapes from mapping rules makes it possible to integrating
and selecting the relevant information from different ontologies.

The relation betweenmapping-based and RDF graph-based shape
generation also deserves further investigation. From the mapping
rules “skeleton shapes” could be generated which will necessarily
validate, then data analysis could suggest more constraint compo-
nents to add to these skeletons. Data analysis might be easier on
non-RDF source data than on RDF graphs, since the source data
typically is more rigidly structured (e.g., tabular), might have more
available analysis tooling, or might even have a pre-set schema.
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