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Abstract
cREAtIve targets the development of novel highly-adaptable em-
bedded deep learning solutions for automotive and traffic mon-
itoring applications, including position sensor processing, scene
interpretation based on LiDAR, and object detection and classi-
fication in thermal images for traffic camera systems. These ap-
plications share the need for deep learning solutions tailored for
deployment on embedded devices with limited resources and fea-
turing high adaptability and robustness to changing environmental
conditions. cREAtIve develops knowledge, tools and methods that
enable hardware-efficient, adaptable, and robust deep learning.

CCS Concepts
• Computing methodologies → Neural networks; Machine
learning; Artificial intelligence; • Computer systems organi-
zation → Sensors and actuators; Embedded systems; • Hard-
ware→ Reconfigurable logic applications; Robustness.
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1 Introduction
Artificial Intelligence (AI) and in particular Deep Learning (DL)
solutions have been successfully introduced in many domains for
their efficiency, especially in classification tasks. Systems that in-
volve embedded sensors, such as security cameras and self-driving
cars, require state-of-the-art DL algorithms to perform robust detec-
tion, tracking, recognition, or navigation. However, such systems
possess limited bandwidth, have zero latency tolerance, and are
constrained by privacy issues. They therefore require the use of
specific embedded hardware and cannot rely on cloud-based solu-
tions. Consequently, tailored DL solutions must be developed to
meet the constraints on accuracy, data storage, power consumption,
and latency to cope with limited resources.
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Figure 1: Splitting up the highly complex problems into sim-
pler neural network problems.

The project cREAtIve [1] is built around the development of
novel highly-adaptable embedded DL solutions for automo-
tive and trafficmonitoring applications. In particular, cREAtIve
will improve the state-of-the-art in the following three applications:

• Stable sensor measurements for position sensors,
• Scene interpretation based on LiDAR point clouds,
• Object detection and classification in thermal images for
traffic camera systems.

These applications share the need for a DL implementation tailored
to deployment on embedded devices with limited resources while
still being robust to changing environmental conditions.1

The core of our project vision assumes that most available DL
networks are over-dimensioned. Since they are designed to be gen-
erally applicable, they are much more powerful than what is needed
for most specific applications. As shown in Fig. 1, we aim to achieve
robustness by exploiting application-specific information. We use
Neural Networks (NNs) to automatically remove as much variability
at the input side as possible. In addition, we allow the remaining in-
formation extraction system to specialize to the stable aspects of its
operating conditions and to automatically reconfigure when these
conditions change. In this way, our methodology effectively decom-
poses a highly complex problem into a combination of simpler, and
therefore, less computation-intensive NNs.

2 Consortium as a Whole
The cREAtIve project centers around the common research needs
of the three applications (i.e. sensors, point cloud processing, and
object detection in thermal images), which will be optimized by
the respective application partners (i.e. Melexis [2], XenomatiX [3],
and FLIR [4]), with the help of the research partners.

The three research lines at the core of cREAtIve are (i) DL solu-
tions that have to be implemented on (ii) embedded systems with
limited resources, and with a specific focus on (iii) adapting the sys-
tems to changing environmental conditions. These three research
lines are fully covered by the research partners (i.e. ETRO-VUB [5]
for specific DL algorithms, DSLab-UGent [6] for DL implemen-
tations, and HES-UGent [7] for adaptability). easics [8] also sits
at the core of the project with its expertise in resource-limited
implementations.

1An example of where specialized learning can be particularly beneficial is traffic
monitoring, which has to be robust to highly variable weather conditions and various
environments where the cameras are placed.

3 Innovation Goals and Recent Achievements
3.1 Robust AI-empowered Sensors
Traditional Hall effect andmagnetoresistive sensors are widely used
in the automotive industry. Typical use cases include determining
vehicle velocity, combustion engine ignition timing, anti-lock brak-
ing systems, etc. The simplicity and accuracy of hall sensors made
them very successful, but they tend to be more and more affected
by stray magnetic fields present in vehicles, resulting in perturba-
tions of the sensor readouts. These fields are produced by electric
currents that can be particularly large (e.g. currents of hundreds of
amperes to power the traction motors).

In cREAtIve, we have investigated AI-based solutions to filter
out perturbations in the hall effect sensor of Melexis. Concretely, a
NN is designed to predict one-dimensional (1D) movements using
noisy hall sensor readouts.

3.1.1 Data Generation Ð In order to train a NN, synthetic data was
generated through physically-based simulations. A visualization
of the simulated magnetic field for a 2-pole magnet is provided in
Fig. 2a. The 𝑥 and 𝑦 axes represent the spatial position of the field.
Its strength along the 𝑥-axis, denoted as 𝐵𝑥 , is color coded. Similar
data are computed for 𝐵𝑦 and 𝐵𝑧 . Final sensor readouts are obtained
by sampling, transforming and interpolating those fields based on
the magnet positions, orientations, and sensor configurations.

An example of a sensor consisting of a rectangular 1mm2 die
with the hall plates uniformly distributed is also shown in Fig. 2b.
As a proof of concept, 1D magnet movements are predicted by the
NN. In our experiments, the 𝑥-axis is taken as the to-measure axis.
Gaussian noise is added along the 𝑦-axis, rotational orientation of
the magnet, and sensor readouts.

3.1.2 Experimental Assessment Ð The designed NN is compared
with one of the state-of-the-art Hall effect sensors of Melexis. To
preserve potential proprietary technology, no details regarding the
network architecture are disclosed.

For our experiments, we have employed a uniform 1mm2 2 × 2
sensor with the Hall plates being sensitive along the 𝑧-axis. We
note that this is merely a test case, and that other configurations
might produce superior results. We also remark that the flexibility
in sensor layout is enabled by the ability of the NN to produce accu-
rate magnet predictions regardless of Hall plate placement, unlike
traditional solutions which enforce specific hall plate positioning,
such as the arc-tangent method. The results when predicting the

(a) (b)

Figure 2: (a) The simulatedmagnetic field and (b) an example
sensor of 1mm2 with 16 hall plates used for data generation.
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(a) (b)

Figure 3: Comparison of the prediction accuracy of the pro-
posed NN and Melexis’ current solution for a 2 × 2 hall sen-
sor with 1 mm2 die.

magnet trajectories are depicted in Fig. 3. The same network was
used for both test cases. From the figure, it is clear that the pro-
posed AI-based solution vastly outperforms the state-of-the-art.
Additional experiments also revealed that results were consistent
irrespective of the magnet trajectory.

3.2 Deep Learning for Point Cloud Processing
The advent of geometric DL has led to the development of novel
methods that generalize structured deep neural models to non-
Euclidean domains (e.g. point clouds [15], graphs [23], and mani-
folds [19]). The ability to apply Deep NNs (DNNs) on point clouds
is particularly important for the automotive industry due to the
rising popularity of LiDAR for navigation purposes. Due to their
underlying data capturing methods, raw point clouds captured by
LiDAR (or any Time-of-Flight camera) inherently exhibit noise.
Those perturbed points make it more difficult to perform oper-
ations such as object detection and point cloud registration, es-
pecially for objects at larger distances. In this context, the main
contribution of cREAtIve is designing a digital twin of XenomatiX’s
XenoLidar [3], allowing the generation of sufficient and diverse
training data for DL-based noise removal. Unlike previous LiDAR
simulations [16, 22], the proposed method exploits GPU rendering
capabilities to significantly reduce the time necessary for acquiring
synthetic data.

3.2.1 GPU-Accelerated Data Acquisition Ð The principle idea be-
hind the LiDAR simulation is reversing the 3D rendering pipeline
employing data stored in the framebuffer. The LiDAR is simulated
by sampling the framebuffer and computing its corresponding 3D lo-
cation in camera space using the z-buffer. Each such sample cor-
responds to a ray being cast in the scene with the position of the
LiDAR coinciding with the camera. Camera parameters should be
chosen to mimic the LiDAR’s field of view.

Generating datasets using the previously described method pro-
duces clean point clouds, which are regarded as the ground truth
by the NN. Training data is generated by applying Gaussian noise
to each point with respect to the ray’s directions. Similar to real
captured data, the amplitude of the noise is a function of the dis-
tance with respect to the emitter. Compared to the full simulation
of XenomatiX that relies on raycasting, the aforementioned simula-
tion speeds up data acquisition thousandfold. We note though that
deviations from the true LiDAR exist. The digital twin uniformly

casts rays, which does not reflect the XenoLidar’s sampling. Fur-
thermore, the small baseline between receiver and emitter is not
considered. Nevertheless, our experiments show that the proposed
method proves sufficiently accurate for creating robust models for
denoising purposes of real scenes captured by the XenoLidar.

3.2.2 Experimental Results Ð The architecture of the denoising
NN was inspired by [13]. Its design, however, lies outside the scope
of cREAtIve and is therefore not detailed. Rather, we will evaluate
the synthetic data and its capability of training NNs operating on
real data. To do so, two different scenarios are investigated, the first
one being a controlled environment used to calibrate the XenoLidar.
Specifically, this setup consists of the LiDAR being placed 20 meters
in front of a calibration wall.

A top-down view of the noisy and denoised point clouds for one
specific frame captured by the XenoLidar is provided in Fig. 4. The
colors indicate the measured distance with blue starting at 20m and
red being 21m and beyond. The grey line indicates a distance of
20m. The figure clearly demonstrates the denoising capability of
the NN, hence, significantly improving the measurements of the
calibration wall.

The second dataset comprises a real driving scenario. For this
scene, no ground truth is known. Figure 5 shows a top-down view
of the captured scene. Unlike the previous experiment, multiple
frames are stitched, producing a denser point cloud. The colors
indicate the amount of reflected signal, with blue and red indicating
low and high reflectivity, respectively. When closely examining the
figure, it is clear that more structure is obtained in the point clouds
after denoising. Features such as road markings and pedestrian
crossings are much more refined in Fig. 5b compared to Fig. 5a.

(a) (b)

Figure 4: The (a) input and (b) denoised point cloud results
obtained for the wall calibration test scene.

(a) (b)

Figure 5: The results obtained for stitching realworld LiDAR
data (a) prior and (b) after denoising.
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3.3 Design of novel Deep Learning Object
Detection and Classification Algorithms for
Thermal Imaging

Training DNNs for specific hardware is particularly difficult due
to the lack of sufficient training data. On the other hand, manually
annotating the data is very tedious and time consuming, and in
many cases barely feasible due to the vast amount of data required.
As shown in Section 3.2, a possible solution is to generate syn-
thetic data through the use of a digital twin. Another solution is to
automate the labeling process.

For this use case, cREAtIve has investigated the automated label-
ing of thermal images using NNs operating on the RGB spectrum.
Real-life thermal and RGB video sequences are simultaneously cap-
tured by a single FLIR camera. Labels are extracted from the RGB
data and projected to the thermal domain. The main difficulty here
lies with the thermal and conventional RGB camera having different
camera specifications (e.g. focal length, field-of-view, etc). Using
the acquired labels, a NN can be trained specifically for thermal
images.

3.3.1 Data Projection Ð Since the intrinsics and extrinsics are
different for both cameras, a simple affine transformation does not
suffice for mapping the labels from the RGB spectrum to the thermal
domain. Rather, a projection must be applied.

We compute the transformation matrix T that minimizes the
distances of points in the RGB domain and their projections in the
thermal image by solving an optimization problem. To facilitate this
process, visually distinctive points (such as the corner of a car or top
frontmirror) are chosen.We empirically determined that computing
a reliable transformation matrix requires roughly 100 points, ideally
covering a large portion of the image planes. It is important to note
that a different camera configuration would require a different T.
For this work, each reference point was carefully selected manually.
This process, however, can be automated using standard computer
vision techniques.

3.3.2 Experimental Results Ð For evaluating the proposed method,
labels were extracted from the RGB video sequence using the model
from [24] trained on the COCO dataset [18]. Next, the acquired
labels are projected to the thermal channel using the techniques
described previously and a NN operating solely on the thermal spec-
trum was trained. We note that for the employed video sequences,
RGB and thermal streams are perfectly synchronized in time. No
time synchronization is therefore necessary.

Figure 6 provides results when using the RGB and thermal net-
works. The labels extracted from the RGB domain are shown in
Fig. 6a, whereas their projection to the thermal spectrum is given
in Fig. 6b. Results obtained when applying the NN designed specif-
ically for thermal data is shown in Fig. 6c. Finally, the results ob-
tained from inference on the thermal channel using the RGB net-
work is shown in Fig. 6d. Note that the projected labels are indeed
of high quality, but not always capture the full object in the thermal
domain due to visibility differences of both cameras. Yet, the NN
trained specifically for thermal data using those labels does detect
the complete car.

(a) (b)

(c) (d)

Figure 6: The results obtained by the NNs. The acquired la-
bels for RGB (a) are projected on the thermal image (b). In-
ference for an infrared image using NNs trained for thermal
andRGBdata are shown in (c) and (d), respectively. Note that
the RGB network fails to detect any cars when applied on
thermal data.

3.4 Hardware Trade-offs for Deep Networks
In embedded systems, resources and power consumption are con-
strained. At the same time, we need low latency implementations.
This drives embedded systems for vision applications towards hard-
ware solutions specifically tailored to the problem at hand.

cREAtIve investigates the benefits of FPGA implementations
against more mainstream architectures such as GPUs, DSPs, or
processors. DL networks implemented on an embedded system
require many trade-offs to be made to ensure the network adheres
to the physical constraints. These trade-offs in the context of FPGA
implementations are quantified to be used for the network training
algorithm. We also ensure that the chosen network topology can
be easily scaled and ported to other FPGA instances with differ-
ent requirements. Furthermore, we have investigated scaling and
associated resource scheduling methods.

3.4.1 Optimizing Object Detection Models for Embedded Systems Ð
In computer vision, it is common to downscale models by changing
the backbone network (e.g. from VGG to MobileNet), reducing the
input resolution (e.g. from 512 × 512 to 300 × 300 in SSD), reducing
the number of layers (e.g. from 50 to 18 in ResNet) or a combination
of these. To further reduce the computational cost, techniques such
as pruning and quantization are often utilized.

In cREAtIve, two additional model compression techniques were
developed specifically for object detection, an important vision task
in embedded systems which is deployed on our FLIR cameras. Our
first technique focuses on the backbone or feature extractor net-
work of the object detector. These networks are usually pretrained
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on a very general dataset such that they can be used in a wide
range of scenarios. When using such a backbone network in an
embedded object detector for a specific domain (e.g. traffic moni-
toring), multiple parts of this network can be pruned as they are
redundant or have no influence in the specific task. In this project,
we developed a pruning method that uses dropout-based sensitiv-
ity analysis to determine the redundant convolutional layer in the
feature extractor.

Our second technique compresses the head of the object detector,
which predicts classes and exact locations of the objects in an image.
The raw output of the NN is a list or predictions for a predefined
grid of possible object locations. This large network output then
goes through a post-processing step to produce the final detection
predictions. In this project, we reduce the predictions made by
the network by pruning those that can be covered by neighboring
predictions. This technique is able to save both computations that
happen during inference of the NN as well as the often costly
computations that happen in the post-processing step.

3.4.2 Hardware Design Space Exploration Ð On the hardware side
of the design space exploration, we built a tool that lets users con-
figure easics AI core to be deployed on FPGAs. This tool takes two
sets of inputs:

(1) Hardware configuration input such as the Multiply-And-
Accumulate (MAC) units of the convolution engine and size
of the different data buffers.

(2) The network specifications of the DL model, in ONNX for-
mat [12].

Based on these inputs, the tool estimates the required FPGA
resources as well as the inference time of the DL model. The for-
mer reports a list of commercially available FPGAs that satisfy the
required resources together with the resource utilization for each
listed FPGA. The latter estimates the running time of the DL model
when it would run on the actual FPGA. Given a fixed DL model,
one can change the hardware configuration input to evaluate the
performance of different hardware setups. Similarly, given a fixed
hardware configuration, one can change the DL model structure to
see the effect on the hardware utilization and latency.

3.5 Adaptable Embedded Deep Networks
One of the objectives of cREAtIve is to enable the adaptation of
the resource-efficient implementations for the three targeted ap-
plications to specific environmental conditions, without giving up
on the resource constraints. It is impossible to provide separate
hardware solutions for each different situation and change between
them as we do not have enough resources to store several full FPGA
configurations. The challenge hence is to investigate how adap-
tation can be best implemented in hardware, given the resource
constraints.

Most Convolutional NN (CNN) implementations on FPGAs typ-
ically rely on DSP blocks to implement MAC operations for ef-
ficiency reasons [20, 25]. Therefore, using cost-optimized FPGA
boards (which contain a limited number of DSP blocks) for the CNN
implementations is a challenging task.

Weight pruning has been shown to be an efficient method to
reduce the computational complexity of a CNN while maintain-
ing accuracy [21]. Magnitude-based weight pruning [17] removes
weights below some threshold value. The threshold value itself
may vary depending on the application, specific environmental
conditions, network layer, etc., and thus, may have to be adapted.

To exploit the substantial opportunity offered by weight pruning,
a hardware controller is designed to automatically identify and
perform the sparse matrix operations using Lookup Tables (LUTs)
instead of the DSP blocks. As a result, by allocating the DSP blocks
to the non-sparse matrix operations, this approach enables a better
management of the DSP block resources, allows smaller FPGA
boards to perform more work, and hence lowers the overall system
cost.

Furthermore, in the scope of the development of nearbAI [9],
the easics AI core product family, some techniques have been in-
vestigated to address run-time NN changes (e.g. changes in weight,
weight accuracy, conditional execution, etc.) with minimal or no
delay.

3.5.1 Hardware Controller Ð The overall system to implement the
controller consists of three main modules which are connected
using the AXI bus interface:

(1) CPU Controller for scheduling the operations and inputs,
(2) FPGA Controller for weight pruning and performing the

matrix multiplications, and,
(3) Main Controller to interface between CPU and FPGA Con-

trollers. The Main Controller monitors the input stream and
triggers the FPGA Controller to select the appropriate pa-
rameters for weight pruning.

Due to the lack of space, we will focus on the MUX-based FPGA
Controller which is shown in Fig. 7. As can be seen, a number of
multiplexers are used to introduce the weight pruning capability
and adjust the threshold parameter values. The controller consists of
similar modules for each layer type of the CNN (i.e. Convolutional,
Fully-connected, Pooling). When the threshold value needs to be
modified, the Main Controller triggers the first MUXwhich controls
the MUXs in each layer type. Furthermore, if the Output Evaluator
detects sparse matrix operations, LUTs are used to implement the
computations. Otherwise, the input tensor matrices are multiplied
by the weights using the available DSP blocks.

Based on our evaluations on the Xilinx SoC board, 1349 LUTs are
required to implement the FPGA Controller with weight pruning
capability. This overhead is acceptable if enough DSP computations
can be saved by weight pruning and it can be further reduced by 8%
using the Parameterized Reconfiguration (PR) technique [14].

3.5.2 Reconfigurable Hardware Implementation Ð We have inves-
tigated run-time modifications on a CNN model to optimize the
trade-off between speed and accuracy depending on conditions
only known at run-time. A number of techniques are developed
to allow dynamic switching between weights and weight resolu-
tions, and to support these types of modifications on the easics AI
core. The implementation follows the same scheme as described
in Section 3.5.1 where a Main Controller is responsible for taking
global decisions (e.g. which set of parameters is needed), and then
configures the FPGA Controllers. Applications include coping with
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Figure 7: MUX-based FPGA Controller with weight pruning
capability.

the varying signal-to-noise ratio of sensor readings (e.g. due to
varying illumination of an image sensor).

4 Project Outcome
The consortium will showcase two physical demonstrators to vali-
date the innovation goals of the capabilities of cREAtIve:

(1) Traffic Monitoring Demonstrator Ð This demonstrator
will illustrate the DL-based solutions for object detection
and classification in thermal images acquired with FLIR cam-
eras (Section 3.3), assess the hardware-performance trade-
offs for deep networks (Section 3.4), and highlight the adap-
tation capabilities of the devised deep networks (Section 3.5).

(2) Automotive Demonstrator Ð This demonstrator will il-
lustrate the sensor denoising methodology (Section 3.1) as
well as show the capabilities offered by DL-based process-
ing of point clouds generated by the LiDAR systems of

XenomatiX (Section 3.2), enabling an improved object detec-
tion, tracking and classification compared to existing con-
ventional solutions. The hardware-performance trade-offs
as well as the adaptation capabilities of the devised net-
works (Sections 3.4 and 3.5) will also be demonstrated.

Furthermore, the project provides a proof of concept of adaptive
CNN implementations on an automatically reconfigurable FPGA
and show the benefits of this approach to at least one of the appli-
cations.
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