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Abstract—Video services are evolving from traditional two-
dimensional video to virtual reality and holograms, which offer
six degrees of freedom to users, enabling them to freely move
around in a scene and change focus as desired. However, this
increase in freedom translates into stringent requirements in
terms of ultra-high bandwidth (in the order of Gigabits per
second) and minimal latency (in the order of milliseconds).
To realize such immersive services, the network transport, as
well as the video representation and encoding, have to be
fundamentally enhanced. The purpose of this tutorial article is
to provide an elaborate introduction to the creation, streaming,
and evaluation of immersive video. Moreover, it aims to provide
lessons learned and to point at promising research paths to enable
truly interactive immersive video applications toward holography.

Index Terms—Immersive video delivery, 3DoF, 6DoF, omni-
directional video, volumetric video, point clouds, meshes, light
fields, holography, end-to-end systems

I. INTRODUCTION

The COVID-19 crisis has unveiled the importance of re-
mote communication, with people wanting to meet, collabo-
rate, teach, and consume video content online. Many video-
conferencing tools and streaming services are available to
accommodate this need, accounting for about 66% of Internet
traffic in 2022 [1]. However, many applications require more
than today’s traditional two-dimensional (2D) content. For
instance, a doctor looking to operate on a patient remotely
requires a reliable three-dimensional (3D) model of the pa-
tient’s body. A psychologist looking to treat a phobia through
exposure therapy can benefit from immersive video, simulating
real-life scenarios within a safe environment [2]. Numerous
other examples can be found in healthcare, education, and
entertainment [3, 4].

Over the last years, many applications have evolved toward
more immersive modalities such as omnidirectional (or 360-
degree) video [5]. Using a head-mounted display (HMD),

this type of video allows the user to rotate their head in
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Fig. 1. Overview of the structure of this paper.

three directions (pitch, yaw, and roll), providing the user with
three degrees of freedom (3DoF). However, to cnable full
immersiveness through an HMD, the user needs to be able
to freely explore the virtual scene with six degrees of freedom
(6DoF), i.e., the body can move in three dimensions (along the

x-, ¥-, and z-axis) as well. While 6DoF video could unlock

the next generation of immersive experiences, it has yet to be
adopted by the industry.

The purpose of this tutorial paper is to provide a thorough
description of current solutions for immersive video delivery.
In particular, the contributions of this article are as follows:

(i) We introduce a generic immersive video delivery chain,
covering the required components for three relevant, im-
mersive video formats: omnidirectional video, volumetric
video, and 6DoF imagery video;

(i) We review the latest developments related to algorith-

mic and software-based solutions for content capturing,
compression, transmission, and quality perception in the
context of video on demand (VoD), live video, and real-
lime communication;

We highlight challenges and potential research directions
for future immersive video delivery architectures.

(ii1)

The remainder of this paper is organized as illustrated in
Figure 1. Section II presents the background to this tutorial,
focusing on different representations for immersive video and
their applications in different domains. Section III introduces
an end-to-end immersive video delivery chain with a high-level
description of its components that this tutorial paper focuses
on. Sections IV, V | and VI provide a thorough overview of
current state-of-the-art advances in different immersive video
formats, focusing on omnidirectional video, volumetric video,
and image-based video, respectively. Section VII provides
a brief guide to the deployment of 6DoF immersive video
streaming. Finally, Section VIII outlines potential research
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paths to make truly interactive immersive experiences a re-
ality.

II. BACKGROUND ON IMMERSIVE VIDEO

According to the Cambridge Dictionary, “immersion™ is
defined as “the fact of becoming completely involved in
something”™ [6]. In visual media, the term refers to deeper
viewer involvement in the content — be it in a story, a game,
or a remote conversation. Most often, it is associated with
virtual reality (VR), where the user can interact with an
artificial 3D visual or other sensory environments through
the use of computer modeling and simulation. In the former
case, interaction is usually enabled through the use of an
HMD, a display device that can be worn on the head and
covers one or both of the user’s eyes. By tracking the user’s
position and rotation through a built-in inertial measurement
unit (IMU), the displayed video can be adapted to match the
user’s movement within a virtual environment.

Such interaction requires carefully designed video formats
that allow the HMD to render the current field of view, ie.,
the extent of the observable world the user sees at any given
moment. In this regard, a distinction has to be made between
captured video and computer-generated imagery (CGI). In the
former case, the virtual environment is created through video
directly captured by advanced cameras or camera setups. Thus,
events in the virtual environment reflect physical actions that
occurred in the real world. In the latter case, the video is
generated through computer graphics, an approach dopted in
applications such as VR games and simulators. An example is
the ITT VR crane & equipment simulator [7], which allows a
crane operator in training to interact with physical joysticks.
The addition of depth perception can make understanding the
motion of the crane’s chains easier, and being able to glance
up/down or left/right (e.g., to check the mirrors) can make the
experience comparable to actually operating a crane [8]. While
such CGI-based applications are very relevant, this article
focuses on captured VR video.

The remainder of this section introduces the three main
immersive video formats currently in use, ordered by band-
width requirements from low to high (as shown in Figure 2).
Section II-A provides details regarding omnidirectional video,
Section II-B deals with volumetric media, and Section II-C
delves into light-field video. In addition to describing their
working principles, these sections also analyze their real-life
applications.

[

Fig. 3. Virtual reality exposure therapy applied to arachnophobia [2].

A. Omnidirectional Video

The concept of panoramic or omnidirectional photography
has been around since the mid-1800s when the first patent for
a 150-degree camera was granted [9]. By the end of the 19th
century, the Al-Vista, the first mass-produced omnidirectional
panoramic camera, was released in the United States [10].
In the 100 years that followed, panoramic cameras were
further advanced. By the late 1990s, hardware and software
were sufficiently developed to allow the stitching of multiple
images together. The first omnidirectional videos were created
(e.g., at Doo Interactive Offices [11]) in the early 2000s, and
the first commercial omnidirectional video cameras (e.g., the
Ricoh Theta m15 [12]) were released in the 2010s. With the
advent of these new devices, immersive video applications
were introduced in several domains.

1) Healthcare: Omnidirectional video has played an es-
sential role in mental health, with VR-based therapy actively
being used to counter anxieties. By immersing patients in a
virtual environment, they can be confronted with their fears at
their own pace without being exposed to any physical dangers
or discomfort. A recent study by Monaghesh et al. showed
that integrating VR in therapy can improve symptoms in
patients suffering from paranoia [13]. Another study by Minns
et al. discussed VR exposure therapy (VRET) applied to self-
contained interventions that require no therapist guidance [2].
Their results suggested that adopting automated VRET in the
context of arachnophobia (i.e., a fear of spiders) provides a
promising self-help treatment under real-world conditions (see
Figure 3). Omnidirectional video is also being used to prepare
trainees for surgery, as is discussed below.

2) Education:
has been used extensively for educational purposes. Here, the

Over the last decade, omnidirectional video

user is immersed in an authentic environment that stimulates
learning. For example, the ability to look at a surgical field re-
motely with stereoscopic vision allows a trainee to learn what
typically happens inside an operating room and get familiar
with the required procedures followed by medical personnel.
This can lead to a better perception of the workflow, team
dynamics, and integration of additive technologies without the
trainee needing to be present on-site [14]. Omnidirectional
video can also be used to immerse children who cannot
attend school (e.g., due to long-term illness) in an authentic
school environment or to make students familiar with specific
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environments without the need for physical travel (e.g., in
the context of geography) or exposure to more challenging
situations (e.g., in the context of public speaking).

3) Entertainment: Several commercial products, such as
YouTube [15] and Facebook [16], adopted omnidirectional
content delivery in 2015 [17]. Where the focus was initially on
video on demand, these services quickly moved to live video
as well. Different capturing and broadcasting engines, such
as XSplit [18], allow users to process omnidirectional camera
inputs and direct the resulting video to these services. At the
time of writing, both YouTube and Facebook offer omnidirec-
tional video resolutions up to 4K [19, 20]. This allows users to
stream and render high-quality video content, enabling them
to remotely attend sports events, join an enthusiastic crowd
al a concert, or enjoy a roller-coaster ride from within their
homes.

B. Volumetric Video

Recently, more advanced applications have emerged. In
2021, ABBA announced the “Hologram Concert” tour, where
an innovative show format will feature the four band members
as holographic avatars [21]. Omnidirectional video is no longer
sufficient in this case. While 3DoF solutions allow the user
to turn their head, the subject’s position is still fixed within
the scene. Three additional degrees of freedom are required
to allow total freedom of movement, resulting in immersive
media with 6DoF.

To provide a 6DoF experience, all considered objects within
the scene require a three-dimensional representation. Typically,
two types of technologies to capture such content are con-
sidered: volumetric video-based and image-based solutions.
In volumetric video-based solutions, objects are represented
through a collection of points in space. Because the position
of each point is known, the object can be rendered from any
position and viewing angle [22]. Sampling many points of an
object, each containing information on the geometry (x,y,z
and texture (e.g., YUV or RGB values), results in a so-called
point cloud.

The concept of point clouds can be extended to meshes, i.e.,
collections of triangles that, together, form a three-dimensional
representation of an object. The coordinates of the triangles’
vertices can be used to render the object based on the
user’'s position and viewing angle, taking into account the
texture components ol each triangle. Meshes are less suited
for tiling and culling than point clouds because triangle and
uv parameterization continuity cannot be respected. However,
meshes better exploit graphics pipelines such as mipmaps and
anisotropic filtering, resulting in higher visual quality at larger
bitrates [23] (see Section V).

The first object to be captured in three dimensions is the
Stanford bunny (see Figure 4), which was captured in 1994
as a model consisting of nearly 70000 triangles [24]. Since
then, the field of volumetric video has seen exceptional growth
in development. Soon, it was used to make scans of people,
objects, and even buildings and has proved essential in the
success of early motion-tracking devices such as Microsoft’s
Kinect [25]. In recent years, volumetric video has also received

P(1,2,1)

Fig. 4. Front image of the Stanford bunny [24] (left) and a point cloud
representation (right). The object’s geometry is determined by the (x, v, z)
coordinates of each poinL

increased attention as a means for the generation of more
complex scenes. By capturing objects (e.g., humans) with a
grid-like camera setup, a 3D model can be generated by merg-
ing points captured by different cameras and views. Bringing
multiple objects together into a single scene, an advanced
immersive video experience can unfold (see Figure 5, where
a scene is shown that is captured at 30 frames per second
(FPS)).

Today, point clouds and meshes are used in a plethora of
applications, including gaming, spatial planning, self-driving
cars, and Industry 4.0. Below, only those applications related
to captured volumetric video are presented in more detail.

1) Healthcare: Volumetric video can be used in remote
medical consultations and procedures. For instance, providing
a general practitioner with a 3D view of a patient’s upper
arm could enable a more substantiated diagnosis. Complex
and urgent medical operations can be performed remotely by
providing a surgeon with a high-quality visual feed, potentially
extended with an auditory and tactile feed [26]. This use case
requires ultra-high bandwidth (order of Gb/s) and ultra-low
latency (order of ms). To meet these extreme requirements, an
advanced network infrastructure, a limited physical distance to
restrict propagation delay, and hardware capable of real-time
en-/decoding are required to deliver the content. Due to these
limitations, remote surgery has not become common practice
yet.

2) Education: Similar to omnidirectional video, volumetric
video can be used for educational purposes. Provided with
the ability to move around with 6DoF, a user can familiarize
her-/himself with new, unknown environments such as an
operating room or the cockpit of an airplane. By extending
such visual interaction with other sensory modalities such as
touch (e.g., through haptic gloves that can transfer a user’s
hand movement to the virtual environment), the user can also
interact with 3D objects as if they were on-site. This opens up
new paths for remote interaction-based learning and training.

3) Entertainment: The ability to create complex 3D scenes
from captured video objects allows the user to move around
in the immersive environment with 6DoF. This environment
can consist of multiple human objects (e.g., in the case of
a virtual orchestra) or objects in an enclosed area (e.g., a
muscum hall where several artifacts are displayed). Having
the ability to freely explore the content (e.g., walk in between
the members of the orchestra or the audience or circle objects
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Fig. 5. A scene consisting of four point cloud objects from the 81 dataset [27].
Every object is captured at 30 FPS, resulting in a volumetric video.

to inspect them from all sides) can increase one’s sense
of immersion, ultimately resulting in a more engaging and
enjoyable experience of entertainment content (see Section V).

4) Remote Conferencing: Today, many video-conferencing
tools are available to accommodate the need for remote
communications. Truly immersive communication and social
interaction, however, require users to interact with each other
in the virtual environment as they would in the real world.
To this end, a 3D model of all peers is required, captured in
real-time, and sent over the network. This introduces several
new challenges related to data processing, compression, and
rendering (sce Section V).

C. Light Fields and Holography

Similar to volumetric video, image-based approaches for
immersive video have also seen a significant increase in re-
search interest. Rather than using a 3D representation, image-
based solutions render the view from a set of pre-acquired
images, each captured at a different angle and tilt. As indicated
in Section VI, current efforts focus on improving camera se-
tups, light field compression, saliency detection, and rendering.
In contrast to point clouds and meshes, however, live end-to-
end content delivery is rarely considered by research. This is
primarily due to the complex capturing task, which requires
advanced setups with (ideally) multiple tens or even hundreds
of cameras running simultancously to create a unified view of
the scene. Thus, the majority of works in this field so far has
focused either on static content, where a single camera rig can
be used to capture an object or scene over time or on video
on demand, which allows ample time to preprocess all content
before it is made available on the server side.

Ongoing research efforts at Google have recently ad-
vanced state-of-the-art light field video technologies. Brox-
ton ef al. [28] proposed a new camera rig and focused on
light field compression and in-browser rendering. As a result of
this research, 96 cameras can capture content simultancously,
resulting in videos that enable 6DoF, although with limited
movement (a volume diameter of 70 ¢cm) and limited visibility
(a 180-degree field of view (FoV)). The system relies on cloud
computing to process the videos, using hundreds to thousands
of machines in parallel. To process 150 video frames, cor-
responding to five seconds of video at 30FPS, a total of
4271 central processing unit (CPU) hours is required, which

is equivalent to 28.5 CPU hours per frame [28]. The resulting
light-field video can be consumed in a regular browser with a
resolution of 1800 x 1350.

The above numbers illustrate why the end-to-end delivery
of image-based solutions is currently not practical. In terms
of computational and storage capacity, significant technical
advancements are needed to enable the convenient streaming
of light fields and holograms. All in all, the four limiting
factors of volumetric media-based streaming also apply here:
(i) tight synchronization between cameras in the same grid
is required, (ii) high compression is needed to deal with the
large amounts of generated data. (iii) bandwidth and latency
requirements restrict contemporary content delivery services,
and (iv) rendering often requires a significant amount of client
resources, which are not available on low-end devices.

Light field image and holography imaging technologies are
currently under development, with many ongoing research
efforts to improve their technical capabilities and address the
challenges associated with their end-to-end delivery. While
their current applications are mainly limited to specific fields
such as entertainment, medicine, manufacturing, and art, it is
expected that in the near future, these technologies will find
broader applications in various domains. With advancements
in camera technology, compression techniques, and rendering
methods, we expect to see an increased use of light field and
holographic imaging in ficlds such as education, architecture,
engineering, and construction. Additionally, once the technical
challenges are overcome, we can expect to see more practical
and convenient ways of delivering light field and holographic
content, making these technologies more accessible to a wider
audience.

II1. IMMERSIVE VIDEO DELIVERY CHAIN

All of the applications described in the previous section
would benefit from a mature end-to-end system to capture,
compress, deliver, and render content. However, 6DoF video
has yet to be adopted by the industry. In fact, three signif-
icant barriers stand between current technology and remote
immersive life-like experiences, namely (i) content realism,
(ii) the motion-to-photon latency, and (iii) accurate human-
centric quality control [29].

First, current capturing, encoding, and rendering techniques
require intensive computation and expect bandwidths in the
order of gigabits per seccond (Gb/s) [30] while still needing
to achieve an entirely realistic representation. Second, the
motion-to-photon latency. i.e., the total delay between a change
in the user’s actions (e.g., looking in a different direction) and
the reflection of this change in the displayed content, should
not exceed 10-20 milliseconds (ms) [31]. Third, to ensure
that the end user feels present in the immersive environment,
it is vital to keep their quality of experience (QoE) at the
highest possible level [32, 33]. Lack of synchronization or
quality degradations should be minimized to avoid feelings of
cybersickness or loss of immersion.

To tackle these challenges, there is a need for optimizations
in all areas of the delivery chain, presented in Figure 6. Below,
an overview of the required system components is given. First,
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Fig. 6. End-to-end immersive video delivery chain.

Sections III-A, III-B, and III-C deal with the processes taken
care of on the server side. Second, Section III-D provides a
thorough overview of relevant network protocols and optimiza-
tions. Finally, Sections ITI-E, III-F, and III-G present the tasks
required on the client side.

A. Capturing

‘When 3DoF are considered, omnidirectional video cameras
are the de-facto standard. As a first step toward immersive
video delivery, one or multiple cameras must capture the
scenery and objects of interest. Existing camera systems
can roughly be classified into three categories: mirror-based
systems, systems with depth-aware stitching, and systems with
depth-enabled light field rendering. Each of these systems
has its advantages and drawbacks, which are discussed in
Section IV.

When the user is offered 6DoF content, all considered
objects within a scene require a three-dimensional representa-
tion. As introduced in the background section, objects can be
captured either with image-based or volumetric video-based
solutions. Image-based solutions require a representation at
different angles and tilt, capturing a plethora of images either
consecutively (e.g., using a single camera array o capture a
static scene) or simultaneously (e.g., using multiple cameras to
capture a dynamic scene). Image-based solutions thus rely on
dense representations, where the video is made available on
the server side as a sequence of images. Sparse representations,
in contrast, require a collection of points in space containing
information on geometry and texture. As the position of each
point is known, the object can be rendered from any position
and viewing angle [34].

Compared to image-based solutions, more complex pro-
cessing is required (see the following subsection), and more
computational resources are needed to display the content
based on the user’s position when using sparse representations.
However, these solutions reduce storage and bandwidth re-
quirements since there is no need to store and transfer an image
for every angle and tilt. Sparse representations are discussed
in Section V, making a distinction between point clouds and
meshes; dense representations are discussed in Section VI,
where both light fields and holography are addressed.

‘ :

Edge
computing

(@)

Wireless
network

VR user

B. Processing

Once the content is captured by one or multiple cameras,
it must be processed before compression can occur. In om-
nidirectional videos, for example, the spherical content is
mapped on a 2D rectangular format using sphere-to-plane
projection mapping (see Section IV). When multiple cameras
are used (e.g., in a camera rig to capture volumetric video),
resulting feeds have to be merged in order to present the
consumer with a single, unified representation of the content
(see Sections V and VI).

C. Encoding

Regardless of the considered representation, (i) compres-
sion, (ii) random access, and (7ii) packaging for view-aware
streaming are needed to guarantee delivery over current and
future network infrastructures.

1) Compression: Even when sparse representations are
used, 6DoF solutions require significant amounts of data. As
an example, a relevant point cloud dataset [27] contains objects
(moving people) that require an average of 4.8 Gb/s per object
at a frame rate of 30 FPS [36]. This is because for each of the
captured points (approximately one million per frame in this
dataset), geometry (x, y, z) and texture (e.g., RGB values) are
registered (sce Section V). Advanced compression techniques
are required to reduce the content’s bitrate with throughput
limitations in the order of 100 Mb/s to 20Gb/s today.

2) Random Access: Compression techniques should not
only focus on reducing the amount of data required to rep-
resent an object but also on so-called random access. In
traditional video formats, it must be possible to decode a
video sequence from particular points in time, e.g., when
picking up a live stream. This is realized by the provision
of random-access points (RAPs), which break prediction to
the past frames by using I-frames (key frames), which are
typically inserted every two to ten seconds [37]. In the case
of immersive video, random access is also needed under spatial
segmentation. The client should be able to decode only those
parts of the content that are relevant to the end user. This way,
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TABLE 1
ORDER OF MAGNITUDE OF SEVERAL PERFORMANCE METRICS RELATED
TO DIFFERENT GENERATIONS OF MOBILE NETWORKS [38].

3G 4G 5G 6G
Roll-out 2000 2010 2020 2030
Peak data rate 21 Mb/s 100Mb/s 20Gb/s 1 Th/s
Latency 100 ms 10ms I ms 100 ps
Rate per area 1 kb/s/m? 100kb/s/m> 10Mb/s/m> | Gb/s/m>
Devices/km 10* 10° 100 107

the bandwidth requirements are significantly reduced since
only the region of interest (ROI), e.g., a view, is transmitted
to the end user. A trade-off, however, 1s established between
the compression efficiency and random access that should be
addressed.

3) Packaging: The content can be prepared for streaming
once compressed. To this end, the video is generally packaged
into streamable units containing several frames (temporal
aspect) or regional parts (spatial aspect) of the video. While
separate files can be used for this purpose (e.g., each contain-
ing two seconds of video), specific byte ranges can also be
retricved based on the streaming session’s metadata (more on
this in the subsection below).

Several compression techniques have been proposed in
the last few years, targeting one or more of these three
aspects for omnidirectional video, point clouds, meshes, light
ficlds, or holography. The main challenge is to find the right
balance between the execution time of the encoding and the
compression ratio: the former should be as low as possible,
particularly when live video is considered, in order to limit
the end-to-end delay, while the latter should be as high as
possible to limit the bandwidth required for content delivery.
In Sections IV, V, and VI, an overview of state-of-the-art
approaches will be provided.

D. Transmission

Once the content has been captured and encoded, it can be
transmitted to the end user. Naturally, the adopted network
carrier plays an essential role in the transmission of video
content. Several network technologies and standards have been
developed in the last decades, resulting in the mobile networks
we know and use today. To illustrate ongoing progress, Table I
provides an overview of several metrics related to different
generations of mobile networks. Even though 3G’s and 4G’s

peak data rates are 21 Mb/s and 100 Mb/s, lower values are
often recorded in practice [39, 40].

Today, 5G allows for a theoretical maximum of 20 Gb/s,
with a recent measurement study reporting values up Lo
3Gb/s [41]. While these values are generally sufficient to
enable high-quality omnidirectional video (see Section IV),
they do not necessarily suffice to enable highly interactive
immersive video experiences with 6DoF movement. In this
regard, the promise of 6G to allow for a peak data rate of up to
1 Th/s is of utmost importance for immersive video services.

In light of interactivity, network latency also plays a crucial
role. Whereas 3G and 4G offered latencies between 100 ms
and 10ms, 5G enables latencies down to 1ms. This 1s es-
pecially important in applications requiring tactile feedback
(e.g., remote surgery), which requires an end-to-end latency of
1 ms [42]. The promise of 6G to even further reduce latency
is expected to provide significant opportunities for immersive
video applications.

The latency reported above corresponds to the access net-
work, which, as pointed out, might be crucial for some immer-
sive applications, e.g., involving tactile feedback. However, we
are primarily interested in the end-to-end delay of the system,
as explained in the following paragraph. Figure 7 presents an
overview of relevant video streaming protocols, indicating the
expected end-to-end delay for traditional 2D video. Taking
this delay into account, a distinction can be made between
three types of delivery: (i) VoD, where the content has already
been captured and encoded, and the end-to-end delay is of no
importance; (ii) live, where the end-to-end delay is ideally
limited to the order of seconds; and (7ii) real time, where the
end-to-end delay should remain lower than a few hundreds of
milliseconds. These three types are elaborated upon below.

1) Video on Demand: Today, most on-demand content
providers use approaches based on the hypertext transfer
protocol (HTTP) combined with the (ransmission control
protocol (TCP) for video streaming. While carly approaches
used progressive downloads, the concept of HTTP adaptive
streaming (HAS) is now the go-to approach for HTTP-based
content delivery. Using HTTP allows reusing the existing
optimized and scalable network infrastructure of the Internet,
while firewall and network address translation (NAT) traversal
is guaranteed.

In HAS, the video content is encoded using several quality
representations, temporally segmented, and stored within a
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Fig. 8. The concept of HAS [43]. The video is encoded at different bitrates
and temporally segmented so that the client can change the quality of the
video based on, e.g., available bandwidth.

content delivery network (CDN) (sece Figure 8). During a
streaming session, the client uses a rate adaptation heuristic
to decide on the quality of each of the segments based on
the network conditions, the buffer status, the device character-
istics, and the user’s preferences [44]. The segment duration
is generally between one to ten seconds, depending on the
provider and the considered use case.

Early HAS solutions include Microsoft smooth streaming
(MSS) [45] and Apple’s HTTP live streaming (HLS) [46],
developed in 2009. While MSS is used by 29% of video
developers today, HLS is used by 73% [47]. Although support
for HLS was initially limited to 10S devices such as iPhones
and iPads, native support has since been added to a wide range
of platforms, including Android, Linux, and Microsoft devices.
It has now grown to be the most prominent delivery format
for HTTP-based delivery.

Next to these proprietary suites, the media pictures expert
group (MPEG) has defined protocols and interfaces for HAS in
the dynamic adaptive streaming over HTTP (DASH) standard,
which was finalized in 2011 [48]. DASH defines, among oth-
ers, the content of the media presentation description (MPD),
which contains the required metadata for the client (e.g., the
base uniform resource locator (URL) and the available quality
representations). This standard allows compliant players to
request and play content from any HTTP server, increasing
reusability, scalability, and reach.

Sections IV, V, and VI will discuss how recent studies and
commercial products have adopted HAS to deliver immersive
video on demand.

2) Live Video: 1In contrast to on-demand video streaming,
live video streaming ideally limits the end-to-end delay to the
order of (tens of) seconds. Once the content has been captured
and processed, it needs to be made available as quickly as
possible. To this end, an ingestion protocol such as the real-
time messaging protocol (RTMP) is typically used. RTMP is
a TCP-based protocol that maintains persistent connections to
deliver video content [49]. Tt defines several virtual channels
with a specific task, such as handling remote procedure calls
(asynchronously) and sending video stream data, audio stream
data, or control messages. Contrary to HTTP-based solutions,
RTMP is a stateful protocol requiring a dedicated streaming
server to deliver the content. This hampers scalability, which
is one of RTMP’s major drawbacks. Nevertheless, RTMP is
used by broadcasters to overcome limited playback support
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Fig. 9. The concept of LL-DASH [50]. Because of CMAF’s higher granular-
ity, the live delay can be significantly reduced compared to traditional DASH.

by initially encoding their live streams with RTMP and then
transcoding the content for delivery to a range of players and
devices. Service platforms such as YouTube and Facebook rely
on the protocol to ingest the captured content to the cloud,
where it can be transcoded and made available to HAS-based
solutions, which provide higher scalability.

The content must be made available to the client in the next
step. In an effort to overcome the higher latency observed
in HTTP-based content delivery, the low-latency HLS (LL-
HLS) protocol was introduced by Apple in 2019 [46]. LL-
HLS reduces latency by dividing video segments into smaller
parts — “partial segments™ — listed separately in the client’s
playlist. Contrary to regular segments, a partial segment does
not need to contain an I-frame since it is not expected to
be decodable independently. When a video streaming session
starts, the client requests the most recent partial segment and
part of the streaming data containing the most recent I-frame
to decode the video. Partial segments can have a duration as
low as 200 ms so they can be packaged and published much
earlier than their parent segment. This allows the client to
remain closer to the live signal, resulting in a reduced end-to-
end delay.

DASH has adopted low-latency streaming over HTTP using
the CMAF with chunked transfer encoding (CTE) [51]. Similar
to the approach used in LL-HLS', CMAF-CTE divides video
segments into smaller parts — referred to as “chunks™ — that
can be requested independently of one another. An illustration
of this concept is shown in Figure 9, where a segment duration
of five scconds and a chunk duration of one second are
considered. When playout is immediately started for regular
DASH, the previously released segment is retrieved and played
out, resulting in a delay of seven seconds. When the client
wails for a new segment to be released, the playout has to be
delayed for three seconds, after which a minimum delay of five
seconds is perceived. When CMAF is considered, however, the
available chunks can be retrieved immediately, resulting in a
lower end-to-end delay.

Another approach to reducing latency involves adopting
QUIC for video delivery [52]. QUIC is a protocol built

"Note that both LL-HLS and LL-DASH are compatible with the CMAF
standard with respect to the segment format.
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on top of user datagram protocol (UDP) that multiplexes
several streams — each carrying a unique file or resource —
to cover a single connection. This approach avoids head-of-
line (HOL) blocking on the transport layer, resulting in faster
recovery. Unlike TCP, QUIC’s handshake during connection
establishment combines the negotiation of both cryptographic
and transport parameters. This means that a single negotiation
for QUIC and transport layer security (TLS) is sufficient,
reducing the connection establishment time by one round-
trip time (RTT). Furthermore, since QUIC runs in user space
rather than kernel space, the protocol allows customizing the
transport layer to the application’s needs [53]. Because of
these advantages, QUIC is now supported by major browsers
such as Google Chrome, Mozilla Firefox, and Microsoft Edge.
In the following sections, the application of QUIC to both
omnidirectional video and volumetric video delivery will be
discussed.

3) Real-Time Video: The latency due to TCP’s congestion
and flow control, along with its in-order delivery requirement,
makes TCP unsuitable for real-time communication. While
UDP-based approaches with built-in reliability on the appli-
cation layer (e.g., real-time transport protocol (RTP)) result in
lower delays, they generally do not go below the one-second
threshold. However, Web real-time communication (WebRTC)
is a suite of real-time communication protocols that reduce the
end-to-end delay to a few hundreds milliseconds [54]. Google
released WebRTC as an open-source project in 2011 as a
means of real-time communication between browsers, mobile
platforms, and Internet of things (IoT) devices. It has been
adopted by 25 to 28% of streaming services [35], particularly
for remote video conferencing. WebRTC is, however, peer-
to-peer in nature, requiring each sender to encode a separate
stream for each of the receivers. This hampers scalability so
that only smaller groups of clients can directly communicate
with each other. Although some approaches have been pro-
posed to improve scalability and increase video quality (e.g.,
[55]), WebRTC cannot deliver high-quality video at scale.
Still, it has shown promising results in augmented reality and
volumetric video streaming, as discussed in Sections IV and V.

4) In-Network Optimizations: ~With the adoption of 5G,
software-defined networking (SDN) also becomes feasible.
SDN allows for programmatically and dynamically adjusting
network configurations by separating the data layer from the
control layer. Packets are sent on the former, while their
routing is softwarematically defined by the latter [56]. This
allows for intelligent decision-making in the network, includ-
ing bandwidth shaping, packet prioritization, rerouting, and
caching. In the context of 6DoF video streaming, SDN can be
adopted to meet stringent requirements in terms of bandwidth
and latency. Initial SDN-based solutions have recently been
proposed in the context of immersive video streaming, as
discussed in the sections below.

On top of SDN, network function virtualization (NFV) al-
lows network functions to be deployed as virtualized software
entities running on commodity hardware. Various services in
6DoF video streaming can be mapped to respective network

functions and deployed as a service function chain (SFC) [5].
The SFC can be distributed to different locations in accordance
with various requirements such as hardware capacity, band-
width, distance, latency, reliability, and their respective trade-
offs. Multiple network functions can run parallel, reducing the
processing delay [57]. Intelligently placing SFC components
in the network, the end-to-end latency can be reduced signif-
icantly, as illustrated further in this tutorial.

Given the high complexity of capturing, encoding, and ren-
dering immersive video, required operations may be unfeasible
on end devices due to complexity constraints and energy
consumption. Cloud and edge processing is an enabler for such
services, offloading computational tasks to the network. Recent
solutions have successfully applied in-network solutions in the
context of omnidirectional and volumetric video, as shown in
Sections IV and V.

E. Decoding

The decoding of delivered video content is closely de-
pendent on the selected encoder. In the case of real-time
video, both encoding and decoding times should be lim-
ited to a minimum. Typically, low-complexity compression
techniques are used in this case, resulting in fast execution
with a limited compression ratio. In the case of VoD, only
the decoding step poses a limiting factor since the encoding
can be executed offline. In practice, the encoder for the
standardized AVC and HEVC is indeed of higher complexity
than the decoder. Since both components are dependent on one
another, compression will be discussed in a single subsection
in Sections IV, V, and VL.

F. Rendering

Rendering of immersive video strongly depends on the
content representation and the type of scenario (e.g., 3DoF
versus 6DoF streaming). Most often, HMDs render the con-
tent, ensuring the user feels immersed in the VR scene.
Well-known examples include the HTC VIVE [58] and the
Oculus Quest [59], although many other commercial HMDs
are available today. Even though physical hardware is not
the main topic of this paper, (in-network optimizations for)
immersive video rendering will be discussed for different
content representations.

G. Perception

It is crucial to continuously monitor the user’s perception
of the video streaming service on the client side. In the case
of VR applications, this perception is directly related to the
user’s feeling of immersiveness, which can be understood as
the combination of the user’s perception of quality (i.e., QoE)
and the user’s well-being (i.e., absence of cybersickness).

The user’s QoE has traditionally been assessed utilizing
standardized tests [60]. These tests are performed by letting
subjects rate the quality of impaired video sequences, where
the average score over all subjects is the mean opinion score
(MOS). However, since the users can explore a large environ-
ment, they likely watch different portions of the content. This
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TABLE 11
COMPARISON OF DIFFERENT CAMERA SYSTEMS [31].

System Advantages Disadvantages
Mirror-based ¢ Parallax-free setup * Bulky system
+ Easy stitching * Calibration needed
+ Almost no overlap * Sensilive to damages
* High resolution (10K, 60 FPS)
+ Full lens control
* Real-time 2D/3D processing
* Capable of live transmission
Depth-aware stitching (segmented * Small form factor, light weight + Usually closed system, no lens control
stereo, stereo by extreme overlap) * Robust and compact * Restricted real-time processing, limited use for live events
* Easy handling * Reduced resolutions (due to overlap)
* No calibration + Extreme distortions are possible for stereo by extreme overlap
+ Existing stitching software
+ Established post production
Depth-enabled light field rendering  + Parallax-free + Complex computing
¢ Enables producing novel views * Supervised post production
+ Stll error-prone process

No real-time capabilities yet

makes it difficult to compare scores among users. Furthermore,
while subjective evaluations provide the most accurate manner
to assess QoE, they can only be performed after the experi-
ence. To provide feedback while in the immersive session,
objective metrics can be used to estimate the user’s subjective
perception. Several attempts exist to expand two-dimensional
video metrics toward three-dimensional content, all of which
will be discussed in the following sections.

With the increasing availability of VR systems, more fre-
quent reports of cybersickness have appeared [61]. Question-
naires are the most common form of detection, where the
simulator sickness questionnaire (SSQ) is the most popular
option [62]. To cope with the required real-timeliness, several
methods can be used. Verbal single-question rating scale
questionnaires allow symptom severity analysis over time [63].
Alternatively, objective-based options, such as postural insta-
bility, have been proposed. Postural instability states that the
user starts losing stability due to cybersickness. In practice,
this approach can disturb the participant if not well embedded
in the experience, requiring the user to position themselves
on a standardized stance every few minutes. Both approaches
will be discussed in the remainder of this manuscript.

IV. 3DOF OMNIDIRECTIONAL VIDEO

This section provides a thorough explanation of the working
principles of the building blocks presented in the previous sec-
tion for the case of omnidirectional video. First, Section TV-A
presents the working principles for capturing omnidirectional
video. Then, Section IV-B deals with the encoding intricacies,
preparing the content to be streamed through the network as
VoD (Section IV-C) or live video (Section IV-D). Section IV-E
deals with in-network optimizations for video delivery, while
Section IV-F introduces currently used techniques for render-
ing and perception analytics. Finally, Section IV-G presents
an overview of relevant datasets, covered studies, and surveys
related to omnidirectional video streaming.

A. Capturing
Capturing a full omnidirectional video is typically done
by multiple cameras mounted on a sphere. Each camera’s

<
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Segmented stereo (left) and stereo by extreme overlap (right) [31].

>
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Fig. 10.

views are stitched together to combine the individual views
into a single sphere. Existing camera systems can roughly
be classified into mirror-based systems, systems with depth-
aware stitching, and systems with depth-enabled light field
rendering. A summary of the advantages and disadvantages of
these systems is included in Table I, based on [31].

Multi-camera arrangements for capturing such videos re-
quire the focal points of all camera views to coincide at
a common point so that stitching can be performed ideally
parallax-free, i.e., so that there is no difference in the apparent
position of an object viewed along different cameras. 3D
content can be captured by stereo camera pairs with a relatively
small overlap arranged in a star configuration. However, such
systems typically suffer from parallax errors, which can be
reduced by using mirror-based systems [64]. Another option
is to use stereo camera pairs with extreme overlap. In Fig-
ure 10 on the right, the stereoscopic content is created from
overlapping images captured by fish-eye or wide-angle lenses,
or clusters of cameras.

B. Processing and Compression

In order to be able to compress omnidirectional video, it
is essential to represent the content in a rectangular picture
through sphere-to-plane projection mapping. The equirectan-
gular projection (ERP) is the most basic and widely used.
It is based on mapping longitude and latitude lines to even
straight lines in the projected rectangular picture. Despite its
wide support, ERP is a non-equal area projection, which means
that it is not an area-preserving projection, i.e., two regions
of the projected rectangular picture with the same area do



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. Y, MONTH YEAR 10

AN

4

Fig. 11. Pyramid, truncated pyramid, and multi-resolution CMP generation.

not necessarily apply to an area on the sphere of the same
dimension. This effect is highly noticeable around the poles,
where ERP suffers from severe oversampling. This means that
areas in the vicinity of the sphere poles are represented with
a much higher number of pixels in the projected picture than
other parts closer to the sphere equator. ERP is a projection
typically used for viewport-independent streaming solutions,
as discussed in the following section.

Several projections can be used for viewport-independent
streaming solutions different from ERP that aim at preventing
the geometric distortions inherent to ERP as they are detri-
mental to the coding efficiency of many codecs that employ a
translatory motion model. Another commonly used projection
is the CMP. In CMP, the camera surroundings are projected
onto the six faces of a cube. Consequently, the sample value
of each sample on a cube face stems [rom a rectilinear
projection of the camera surroundings onto the position of
that sample. The resulting pictures for each cube face are then
arranged in the rectangular frame. Although CMP is also a
non-equal area projection, the over-sampling and geometric
distortion issues of ERP are sharply decreased. Hence, gains
in coding efficiency can be demonstrated compared to ERP.
Additional projections have been investigated in the last few
years, achieving a projection closer to the equal area and
thus reducing content discontinuities leading to an increase
in coding efficiency. Although some significant gains have
been achieved by such projections [65] (ie., up to around
10% compared to using ERP). such projections come at
the cost of higher complexity. However, such projections
are viewportl-agnostic projections, i.e., they do not take into
account any particular viewport, and they. therefore, suffer
from the problem that they include a substantial number of
pixels for video areas that are not even presented to the user
as they are located outside of the user’s viewport.

A more efficient solution can be provided by viewport-
adaptive coding and transmission schemes. This means that
the content and, therefore, the streaming strategies are such

that they adapt to the viewing direction of the user over
time. Sphere-to-plane projections that achieve this purpose
are herein referred to as viewport-specific projections. With
these projections, a higher amount of pixels per degree is
assigned to the content closer to the target viewport than
to content farther away. Examples of such viewport-specific
projections are shown in Figure 11: the pyramid projection
(left), the truncated pyramid projection (middle), and a multi-
resolution CMP variant (right). The figure illustrates how these
three viewport-specific projections are generated. At the top,
the geometric primitives are illustrated. At the same time, the
second row shows the unrolled surfaces, and the bottom row
gives possible arrangements of the polygon faces within a
rectangular video frame. In the case of the pyramid or the
truncated pyramid, the base of the polygon corresponds to
the viewing direction of the user. Thus, the sampling density
of the projected frame is highest in the arca that the user
observes. In the case of the multi-resolution CMP, the faces
of the polygon not corresponding to the viewing direction of
the user are downsampled before being arranged within the
rectangular frame.

One of the drawbacks of viewport-specific projections is
the large number of projections that need to be offered
simultaneously for a service in order to be able to match any
given user orientation and provide a smooth quality transi-
tion when switching from one viewing direction to another.
Therefore, this solution comes with a considerable overhead
cost for rendering on the content generation side, encoding,
and transmission (e.g., caching). An alternative solution is
to offer an omnidirectional video split into several tiles and
let a client choose which tiles to download, potentially at
different resolutions, based on the user’s current viewport,
as described in the following subsection. This approach may
require parallel decoders to decode multiple tiles, typically
carried out in software leading to power consumption/battery
issues. However, when constraint encoding is used employing
motion-constraint tile sets as described in high-efficiency video
coding (HEVC), a single hardware decoder can be used,
provided all tiles are re-arranged in a single bitstream. For
more information, the reader is referred to [66].

A further aspect to consider when encoding each of the
individual tiles is that the encoded bitrate of cach of the tiles
needs to be accounted for a given target cumulative bitrate
corresponding to the user’s tile selection. Ideally, an operation
point is sclected that matches a reasonable target bitrate that
is not exceeded for any possible viewing orientation’s tile
combinations. In order to avoid using a joint rate control for
tiles that accounts for any of the possible combinations, which
is a complex problem, Skupin et al. [67, 68] provide a solution
that uses the spatiotemporal activity metrics, ie., the standard
deviation of the Sobel filter and the standard deviation of frame
differences over time. The spatiotemporal activity metrics of
each of the tiles are used to estimate each tile’s complexity and
determine each tile’s target bitrate separately while providing
a solution for the combinatorial problem.
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Fig. 12. Tiled high resolution (HR) and low resolution (LR) for omnidirec-
tional video streaming.

C. Transmission: Video on Demand

As mentioned in Section II, omnidirectional video is typ-
ically not used for remote communications but for VoD or
live scenarios in which the user enjoys 3DoF movement. This
section discusses two flavors of VoD streaming for omnidi-
rectional video: viewport-independent and viewport-dependent
approaches.

1) Viewport-Independent Delivery: Viewport-independent
approaches refer to streaming solutions that are agnostic to
the users viewing orientation. They rely on transmitting the
whole omnidirectional video to the user at a particular quality
or resolution independent of the viewing orientation of a user
at a particular time. Several commercial content providers,
including YouTube and Facebook, use this approach. In this
regard, no changes are needed compared to traditional video:
the same rate adaptation heuristics can be used to deliver the
content to the end user. It should be noted, however, that this
approach wastes significant amounts of bandwidth on parts of
the video that are never consumed. For this reason, viewport-
dependent delivery has been proposed in the literature.

2) Viewport-Dependent Delivery: Viewport-dependent so-
lutions consider information on the user’s viewport when
retrieving the content, allocating the most significant part of
the available bandwidth to the user’s region of interest. Two
options exist: viewport-dependent projections and tile-based
encoding.

In light of the former, Corbillon et al. [69] describe an
approach based on viewport-specific encodings where a fixed
number of streams maltching different viewports are offered.
When such a solution is used, two aspects need to be op-
timized. First, the number of streams matching a particular
direction has to be determined and be high enough so that
a smooth transition can be achieved when switching from
one stream to another based on changes in the viewing
direction of the user. Second, the streaming algorithm has
to take into account the viewing direction of the user and
adapt accordingly, e.g.. when using DASH, the client needs to
change representation when the viewing direction changes as
fast as possible so that the representation can be shown that has
the highest visual quality on the viewport. The fact that several

Bit rate Bit rate

Fig. 13. The concept of HAS applied to tile-based omnidirectional video [43].
The video is encoded at different bitrates and both temporally and spatially
segmented so that the client can change the quality of each tile based on, e.g..
available bandwidth.

viewport-specific encodings are required for this approach to
work correctly — and therefore, several such versions need to
be stored at CDNs — poses a significant disadvantage.

In the case of tile-based encoding, the content is spatially
segmented into different regions (i.e., tiles). Each of the tiles
is encoded at different quality representations (e.g.. using
different resolutions or quantization parameter values) and
made available in the CDN. The client can then choose at what
quality to consume each tile depending on the user’s viewport.
This approach is illustrated in Figure 12, where the video is
tiled and provided in two different resolutions. Although tile-
based streaming requires encoding several bitstreams (i.e., at
least one per tile and quality representation), the approach
comes with lower storage space requirements and overhead
for coding and rendering compared to viewport-specific pro-
jections [70].

To client needs to be able to make informed decisions on the
quality representation of each tile to use tile-based delivery ef-
fectively. As shown in Figure 13, this introduces an additional
dimension to the rate adaptation process. In this regard, we
discuss the application of the following components: (a) rate
adaptation, (b) viewport prediction, and (c) saliency detection.
Next to those, we also discuss the importance of random
aCCess.

a) Rate Adaptation: In traditional HHAS-based solutions,
rate adaptation is required to adapt the quality of the video to
the network characteristics, the client’s buffer, and the user’s
preferences. With tile-based solutions, an additional spatial
dimension is added, resulting in higher complexity.

Tile-based streaming for panorama videos using MPEG-
DASH has been studied in [71], with different tiles being
downloaded at different qualities. Implementing the GPAC
open-source player allows for the experimentation of different
adaptation policies for tiled video content, which could consist
of downloading all tiles at the same quality or prioritizing tiles
within the region of interest. Hosseini and Swaminathan [72]
show the benefits of using a viewport-aware adaptation tech-
nique for tile-based streaming of omnidirectional VR video.
The authors identify three priority regions, assigning assigning
a higher priority to tiles including or being closer to the view-
port of the user, and increase the quality of each tile region per
region as long as the bandwidth budget has not been exceeded
following such a priority. Petrangeli et al. [73] propose an
adaptive bitrate (ABR) heuristic for an advanced tiling scheme,



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. Y, MONTH YEAR 12

differentiating between regions close to the horizon (four tiles)
and those near the zenith and nadir (one tile each). The quality
of the six resulting tiles is then selected based on the user’s
current and predicted viewport position, considering the avail-
able bandwidth. Van der Hooft et al. [74] propose two ABR
heuristics for generic uniform tiling schemes. These heuristics
determine the great-circle distance between the viewport’s
center and each tle’s center, and rank the available tiles
accordingly. Tiles closer to the center are assigned a higher
priority and, consequently, a higher quality representation.
Because of this, a higher visual quality can be obtained
compared to the ABR heuristics proposed by Hosseini and
Swaminathan [72] and Petrangeli et al. [73].

Further studies for the streaming of omnidirectional video
have been carried out based on reinforcement learning. For
instance, Fu ef al. [75] developed a hierarchical reinforcement-
learning-based bitrate adaptation method named 360HRL.
360HRL introduces a re-downloading mechanism to tolerate
the inaccurate viewport prediction and addresses the resulting
complicated rate adaptation problem by two agents. The first
agent is responsible for downloading a new segment for con-
tinuous playback or re-downloading an old segment to correct
wrong bitrate decisions caused by inaccurate viewport esti-
mation. The second agent determines the appropriate bitrates
for the selected segments. Gains are compared to using the
same algorithm without re-downloading older segments when
inaccurate viewport prediction has been performed. Such an
approach may only be helpful when the prediction is made for
a considerable interval of a few seconds (e.g., 3 s). Otherwise,
re-downloading an old segment might not be feasible when
predicting for shorter intervals of around 1s in the future.
However, a trade-off has yet to be compared between using
a short-term prediction without a re-downloading step and a
longer-term prediction with a re-downloading step.

b) Viewport Prediction: Quick adaptation to the changes
in the viewing orientation requires a low-latency operation
mode for DASH streaming. This requires the ABR algorithm
to work with small buffer sizes, which is challenging. Algo-
rithms working with small buffers can lead to very frequent
quality switches to happen or playback interruption. Therefore,
in order to provide a good quality experience to the users
when using a viewport-dependent approach, it is crucial to
use a streaming strategy that relies on predicting future user
viewing orientation to be able to show high-quality content
most of the time and still be capable of building large enough
buffers to cope with throughput variations.

Several studies focus on predicting a user’s viewport for
omnidirectional video streaming. LaValle et al. [76] and
Azuma [77] study the prediction of a fixation point using two
methods that consider constant velocity and constant acceler-
ation. More advanced prediction models have been proposed
in the literature based on a linear regression model (LRM) or
weighted LRM (WLRM) [78]. While no accurate comparison
can be found among the described prediction algorithms, it can
be expected that more complex algorithms outperform simpler
ones. Even so, the authors show that inaccuracies always
happens when predicting the future viewport: they report that

Fig. 14. Saliency detection for omnidirectional video [80], with the original
content (top) and corresponding saliency map (bottom).

when predicting 2 s in the future, only 80% of the predictions
achieve an error lower than 10 degrees compared to the real
viewing direction [78].

Irrespective of the algorithm used for the viewport predic-
tion, the predicted value determines which tiles to download
and how to prioritize those. For instance, an algorithm is
developed in [79] that improves the performance of the tile-
based streaming system by using a simple prediction model
based on the current viewing orientation together with a
movement speed (i.e., very similar to [76]) that combined with
a confidence value of the prediction steers an unequal quality
distribution of the tiles within and outside of the predicted
viewport. The confidence value is computed by deriving a
correlation between the movement speed used for prediction
and the time interval in the future that is predicted with the
error that the prediction might make. Note that although a very
simple prediction has been used in [79], a similar approach can
be used with more complex prediction algorithms as long as
a similar confidence value is derived.

c) Saliency Detection: While viewport prediction can be
used to predict a single user’s future movement and region
of interest, saliency detection can be used to determine the
most relevant parts of the video content based on historical
data from other users. So-called saliency maps are generated
by inferring regions/arcas of an image that attract human
altention in a scene, e.g., by analyzing the viewing behavior
of participants. As an example, Figure 14 shows the saliency
map of a single frame from a study by Yang et al. [80]. The
generated heatmap shows that foreground objects (e.g., hot-air
balloons) receive more attention than the background (e.g., the
sky). Knowing this, the client can anticipate the user’s future
focus and retrieve tiles that historically received greater visual
attention at higher quality. Several studies consider such an
approach tailored to omnidirectional video [81, 82, 83].
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Fig. 15. Unequal RAP (URAP) configuration with two streams.

Fig. 16. SIDR configuration with four streams.

The concept of saliency detection can be combined with
viewport prediction, incorporating the viewing history from
prior users as well as information on the current user’s move-
ment. This requires the client to access historical data; it can
thus not be used in live video streaming (see Section IV-D).

d) The Importance of Random-Access Points: The gen-
eral assumption for tile-based omnidirectional video streaming
approaches is that it is acceptable to show a lower quality/reso-
lution for a short time, e.g., when switching to another viewing
orientation. However, fast switching capability is considered
a required feature, as showing low quality/resolution content
for a long time would lead to poor perceived performance.
Sanchez et al. [79] analyze the impact of the adaptation delay
in terms of the Bjontegaard delta (BD) rate. However, there has
yet to be a proper subjective evaluation of the visual impact
of shown lower quality/resolution for a short time. At the
same time, informal experimentation points to a reasonably
low acceptable value of a couple of hundreds of milliseconds
(up to 300 ms).

Note that in order to be able to adapt quickly to changes
in the viewing orientation, viewport-dependent approaches
require the content to be encoded with frequent RAPs, ie.,
video frames which are encoded in such a way that they and
frames following it in decoder order do not depend on previous
frames. The time that a client needs to wait for a RAP to be
available to switch to other streams that match the new view-
port needs to be short enough, i.e., lower than the mentioned
300ms, so that low-quality content is not shown for so long.
Therefore, RAPs must be available at least every 300 ms or
more frequently. Since very frequent RAPs within a bitstream
are detrimental to coding efficiency, a URAP configuration is
typically used, where two versions of the content (each tile) are
offered with different RAP periods. The client decides which
one to download depending on whether a RAP is required,
e.g., due to the viewing orientation being changed or not. The
URAP configuration is illustrated in Figure 15, where each
box corresponds to a segment containing several frames, and
those indicating RAP contain a RAP at the beginning.

Although the URAP configuration allows reducing the num-
ber of RAPs downloaded, once a switch to a short RAP period
bitstream occurs, it is necessary to stay at that stream until a
RAP is available at the long RAP period bitstream. Authors
in [84] described another configuration, called SIDR, that
allows to mitigate the penalty of frequent RAPs by increasing
the RAP frequency available to a client without increasing the
RAP frequency of individual encoded streams. The concept is
illustrated in Figure 16 with four bitstreams, cach of which has
a long RAP period, but the RAPs are shifted so that the same

availability of RAPs is achieved, as in Figure 15 for the URAP
case. Authors in [85] show that using SIDR configuration
compared to URAP configurations can provide gains from 3%
to 6% for tile-based omnidirectional video streaming.

Irrespective of which schemes are used to provide frequent
RAPs, the segment lengths for a viewport-dependent streaming
service need to be kept short, i.e., lower than the mentioned
300ms, so that fast switching to match the user’s viewport
is possible. Note that such segment lengths are substantially
shorter than what is typically used for video on demand and
live video with HAS.

D. Transmission: Live Video

The solutions discussed so far cover on-demand scenarios
only, with no end-to-end delay limitations. In this section,
we discuss how recent developments related to low-latency
streaming enable the live delivery of omnidirectional video
and benchmark the experienced camera-to-display delay for
the YouTube Live platform.

1) Adopting HTTP Adaptive Streaming: 1In live video
scenarios, the content has to be released as quickly as possible
once it has been captured. Complex tile-based encoding is
generally not considered in this context, as it introduces a sig-
nificant delay. Instead, the content is encoded and forwarded
to the CDN through RTMP, as discussed in Section III. Once
a new part of the content has been made available in the
CDN, it can be requested by the client. To this end, HAS-
based approaches can again be used. However, an essential
difference with VoD scenarios is that, at any point in time, only
a limited amount of new segments can be retrieved from the
server. To know precisely what segments have been released,
the client’s MPD is typically updated periodically to announce
the availability of new video segments.

By default, YouTube Live provides video through a normal
latency mode, with a segment duration of five seconds. To
establish the corresponding end-to-end delay, we run an ex-
periment with omnidirectional video. For capturing, we use an
Insta360 Pro 2 camera, which generates equirectangular video
at either 1080p or 4K resolution and forwards the content to
OBS Studio [86]. Then, OBS Studio uses RTMP to deliver the
content to YouTube, with the recommended output bitrates
of 4.5Mb/s and 23.5Mb/s for 1080p and 4K resolution,
respectively. An Intel® Core™ i7-8850H CPU @ 2.60 GHz
with an NVIDIA GeForce GTX 1050 Ti and 16 GB of random-
access memory (RAM) is used to conduct the experiment.

Table III reports (i) the live delay between OBS and the
video stream, as reported by YouTube, (ii) the live delay
between OBS and the video stream, using a virtual clock,
and (7ii) the camera-to-display delay, using a physical clock.
As can be observed, the default option for YouTube live
video results in a camera-to-display delay of approximately
29.5 seconds for 1080p resolution and 44.2 seconds for 4K
resolution. The difference between the two can be attributed
to the cost of additional processing required to deal with
the higher video resolution. Also worth observing is that the
camera itselfl introduces an additional processing delay of 1.8 s
and 3.2 s for 1080p and 4K resolution, respectively.
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TABLE 111
MEASURED END-TO-END DELAY FOR DIFFERENT LATENCY MODES IN
YOUTUBE LIVE [87], USING AN INSTA36(0) PRO 2 CAMERA [88] THROUGH
OBS STUDIO [86]. THE RESOLUTIONS (RES.) FOR CAPTURING (C) AND
STREAMING (S) ARE REPORTED, ALONG WITH THE SEGMENT/CHUNK
DURATION, THE REPORTED DELAY (RD), THE MEASURED DELAY (MD),
AND THE CAMERA-TO-DISPLAY DELAY (CTD).

Res. (C) Res. (S) Latency Duration (s) RD (s) MD (s) CTD (s)
1080p 1080p Normal 5 (segment) 27.3 27.7 295
1080p 1080p Low 2 (segment) 5.2 5.6 7.4
1080p 1080p  Ulira-low 1 (chunk) 2.0 24 42

4K 4K Normal 5 (segment) 40.5 41.0 442
4K 1440p Low 2 (segment) 6.2 6.7 9.8
4K 1080p  Ulira-low 1 (chunk) 3.0 3.6 6.8

2) Parameter Tuning: Parameter values of both DASH
and HLS can be tuned to reduce the end-to-end latency. By
lowering the segment duration to two seconds, the encoding
process can start as soon as two seconds’ worth of frames is
available. The buffer on the receiver’s end can also be reduced
(e.g., to ten seconds) since the granularity of the segments is
significantly higher. However, using a lower segment duration
does come with an encoding overhead. Since segments are
typically independently decodable, an I-frame is needed at the
start of every segment. Thus, higher bitrates are required to
achieve the same visual quality [89]. Note that, as discussed
in IV-C, viewport-dependent delivery requires segments of
around a few hundred milliseconds of length, which are
substantially shorter than typically used for live streaming.

The reported values do not consider such short segments. In-
stead, when parameters are tuned with YouTube’s low-latency
profile, a segment duration of two seconds is used. As can
be observed from Table III, this results in a camera-to-display
delay of 7.4 seconds for 1080p resolution and 9.8 seconds
for 4K resolution. Compared to the normal-latency mode, the
delay can thus effectively be reduced by approximately 75%.
However, it should be noted that the playout resolution is
limited to 1440p for the low-latency profile [87]. Thus, there
is a trade-off between the video quality and the delay.

3) Low-Latency Delivery: Same as for traditional video,
it is possible to apply low-latency HTTP-based protocols to
omnidirectional-video streaming. YouTube Live, for instance,
offers support for LL-DASH with CMAF containers contain-
ing one second of video [90], and this is through the ultra-
low-latency profile. As shown in Table III, this results in a
camera-to-display delay of 4.2 seconds for 1080p resolution
and 6.8 seconds for 4K resolution. Compared to the normal-
latency mode, the delay can thus effectively be reduced by
approximately 85%.

An important conclusion is that if the quality is important,
a 4K resolution can be achieved with a camera-to-display
delay of 44.2s. In contrast, if latency is important, a 1080p
resolution can be offered with a camera-to-display delay as low
as 4.2s. This illustrates clearly the trade-off between quality
and delay for omnidirectional video streaming.

4) Partially Reliable Delivery: As discussed in Section III,
QUIC can be used to lower the delay compared to HTTP-
based approaches. Ravuri ef al. [91] propose a hybrid delivery
scheme based on QUIC, in which tiles within the user’s

viewport are sent reliably. In contrast, those not visible to
the user are sent unreliably. Results show that the perceived
throughput and the startup delay (i.e., the time between the
client requesting the video to start and the actual playout of
the first segment) can be improved significantly compared to a
scenario in which all data is sent reliably. For instance, adopt-
ing the proposed scheme in scenarios with 1 Tb/s throughput,
5ms delay, and 5% packet loss reduces the startup delay by
approximately 76% compared to video delivery over HTTP/2.
However, the authors acknowledge that their approach suffers
because HEVC, used to create independent video tiles, is less
robust against packet loss. Indeed, Oztas ef al. [92] showed
that HEVC is more sensitive to packet loss than advanced
video coding (AVC), especially in scenes with high motion.
Consequently, non-reliable packet delivery in lossy networks
can result in reduced video quality or, in some cases, a failure
to render certain tiles.

E. In-Network Optimizations

While over-the-top delivery can be sufficient for omnidi-
rectional video, some works consider the use of multi-access
edge computing (MEC) to address the limited computation
capability of VR devices [93]. Rather than decoding the
received content on a local machine and rendering the video
on the user’s HMD, edge resources are used for these tasks.

In the case of non-tiled coding, the full video is transmitted
from a CDN to an edge device. Here, the content is first
decoded to a raw video format. Then, a 2D stream is generated
that resembles the user’s viewport based on the user’s yaw,
pitch and roll in the scene. To extract these values, the
client’s device can continuously forward information on the
user’s focus to the edge [94]. The matching viewport is then
generated based on the forwarded values, and compressed
using lightweight 2D video codecs. Resulting frames are sent
out to the client’s device as quickly as possible (e.g., through
UDP-based unicast) and rendered on the user’s HMD.

A major drawback to this approach is the impact of the
network latency between the client and the edge device on
the motion-to-photon latency. By the time an update on the
user’s yaw, pitch and roll has arrived, the user might already
have moved their focus slightly further. This can result in
an increased delay between the user moving and the HMD
rendering the corresponding viewport, ultimately leading to
nausea and cybersickness (see Section IV-F). To address this
issue, the user’s viewport can be predicted on the edge device
in real time. As an example, Liu et al. use recurrent neural
networks (RNNs) to predict what part of the video will be
consumed next by the user, based on historical observations.
Results show that this approach reduces the interaction latency
and increases the user’s QoE compared to decoding the video
and rendering the viewport on the client’s device.

In the case of tiled coding, optimizations with respect to
latency can go one step further by delaying the decoding
of tiles that are currently out of scope of the user’s region
of interest. This results in fewer computations, ultimately
reducing the decoding delay compared to an approach in which
the whole scene is considered.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. Y, MONTH YEAR 15

F. Perception

In contrast to traditional 2D video, QoE assessment and
modeling for omnidirectional video have to address several
additional challenges that make an adaptation of existing
methods non-trivial. Beyond the impact of encoding, geo-
metric distortions, and displays (not within the scope of this
article), media delivery-related challenges are mainly driven by
dynamic influencing factors such as temporal impairments like
stalling, delays and quality fluctuations, different rendering
strategies as well as viewport changes.

When experiencing omnidirectional video, stalling events
(i.e., intermittent playback freezes due to, e.g., rebuffering)
can strongly affect QoE and the viewer’s sense of presence
and immersion in ways comparable to traditional 2D video
streaming. This has been demonstrated by the results of QoE
studies like [95, 96, 97], in which subjects were exposed to
different stalling patterns in traditional 2D screen-based and
HMD omnidirectional video viewing settings. Despite some
disagreement regarding the overall magnitude of the QoE
impact of stalling in HMD viewing conditions (which is also
influenced by end-user interaction and exploration behavior),
existing research agrees that the mere presence of stalling
events already significantly degrades QoE, turning stalling
prevention (e.g., by bitrate adaptation) into a key priority for
omnidirectional video delivery.

In this respect, results of existing studies suggest that many
stalling-related QoE phenomena and trade-offs known from
traditional 2D video (see [98]) can be observed for omnidirec-
tional video, too: for example, stalling is more tolerated in the
beginning than toward the end of a clip (encouraging the use of
larger playback buffers resulting in longer startup times), with
single longer stallings being preferred over multiple shorter
ones [97].

Since reducing omnidirectional video’s genuinely high
bandwidth requirements is critical for smooth playback, sev-
eral studies have investigated the QoE impact of parameters
like resolution, bit-rate, and quantization parameters (QPs). In
this regard, the results of [99] and [100] suggest that at higher
bitrates (above 1.5Mb/s), choosing higher video resolutions
(like UHD) generally enables higher QoE. Furthermore, ac-
ceptable QoE requires minimum bitrates ranging from 1.5
to 12Mb/s, depending on the complexity and tempo of the
content shown [100]. Moreover, bitrate changes (particularly
relevant for adaptive omnidirectional video streaming) cause
media quality fluctuations (including temporal distortions)
that, in general, tend to have a higher QoE impact in lower
bitrate playback situations [101].

While many fluctuation-related perceptual phenomena (e.g.,
recency clfects, peak-end rule) known from traditional 2D
adaptive video streaming occur in omnidirectional video, too,
the situation is more complex due to the impact of viewport
changes and rendering strategy. In contrast to full-view stream-
ing, viewport- and tiling-based streaming solutions introduce
additional spatio-temporal fluctuations and artifacts due to
selective streaming of different parts at different quality levels
based on the current/predicted viewport position [102]. The
resulting increase in the number of influencing factors and

parameters (e.g., tile grid, prediction algorithm used, etc.)
represents a serious challenge for QoE research in terms of
comparability, reproducibility, and generalizability of results
(see [103] for a comprehensive overview of related studies
and issues).

In addition, evaluating the consumption of omnidirectional
videos with an objective metric, as done for traditional video
(e.g., for compression efficiency), is more complex. Some au-
thors have been working in this field. Yu et al. [104] investigate
how to assess the quality of omnidirectional videos using
different projections. They have developed a sphere-based
peak signal-to-noise ratio (S-PSNR) metric to approximate the
average quality for all possible viewports. They also suggest
a weighted S-PSNR metric that sets a higher weight to some
sphere points than others. Such metrics have been used in
standardization activities as described in [105]. The reliability
and accuracy of these metrics have been verified by showing
a good correlation with subjective quality assessments done
by a group of experts and viewing orientation traces. Such
evaluation methods allow the evaluation of the video quality of
omnidirectional videos encoded using a viewport-agnostic pro-
jection without requiring viewing orientation traces. However,
for viewport-dependent transmission schemes, the transmitted
bitstreams vary depending on the temporary viewing direction
of the user. Therefore, the peak signal-to-noise ratio (PSNR)
is calculated for several viewport traces instead of using
the described metrics. Thus, datasets with user traces are
crucial for quality assessment and research on algorithms for
improving viewport-dependent transmission (see Table IV).

As shown in Table VI, several surveys on omnidirectional
video have appeared in the last years, where the topic of per-
ception is frequently addressed. For instance, Xu et al. [114]
focused their review on compression and perception, where
perception was studied from subjective and objective per-
spectives. In another review, Chiariotti et al. [111] included
an analysis of the possible factors that can affect QoE in
omnidirectional video environments and a saliency analysis.
While different aspects have been highlighted, the surveys
agree that the open challenges regarding novel/adapted QoE
techniques for omnidirectional video are related to saliency
and viewport prediction. First, an adaptation of techniques
from the 2D environments to omnidirectional video is required
as the current 2D quality metrics have proven inaccurate. This
means taking geometric distortion and viewer attention into
account as well as other dynamic factors (e.g., changes in
quality). Second, accurate viewport prediction techniques will
be critical in QoE estimation as they will clearly map the
subjective assessments to the objective results derived from
the content viewed by the user.

Cybersickness is usually not included in the surveys tackling
the perception of omnidirectional video, but it has been
analyzed independently. The SSQ has become the de-facto
standard in the context of omnidirectional video [99, 116, 117,
118]. The SSQ consists of a set of questions regarding the
severity of symptoms on a scale of 0-3. Scores are computed
for three categories (nausea, oculomotor, and disorientation).
The most comprehensive study can be found in [117], which
addressed sickness in tile-based omnidirectional video stream-
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TABLE IV
DATASETS RELEVANT TO OMNIDIRECTIONAL VIDEO STREAMING.

Dataset Year Description

360° Video Viewing [106] 2017

A dataset of both content data (such as image saliency maps and motion maps derived from omnidi-

rectional videos) and sensor data (such as viewer head positions and orientations derived from HMD

SENSOTs).
AVTrack360 [107] 2018

scenario.
Salient360 [108] 2018
Wild-360 [109] 2018

annotations.

A dataset of twenty different entertaining omnidirectional videos on an HTC Vive HMD in a task-free

A dataset of nineteen videos, along with 98 static images.
An omnidirectional video saliency dataset, containing challenging videos with saliency heat-map

TABLE V
STUDIES RELEVANT TO OMNIDIRECTIONAL VIDEO STREAMING. A DISTINCTION IS MADE BETWEEN VIEWPORT-INDEPENDENT (VI) AND
VIEWPORT-DEPENDENT (VD) APPROACHES. IN SOME CASES, PROTOCOLS AND EVALUATIONS ARE NOT AVAILABLE (N/A) OR NOT SPECIFIED (N/S).

Study Year Target Protocol Evaluation Focus
VI Facebook [19] 2018 Live DASH N/A Live streaming
YouTube [20] 2018 Live DASH N/A Live streaming
Zare et al. [110] 2016 Both  N/A Bitrate savings HEVC-based tiling and encoding
Skupin et al. [66] 2016 Both  DASH N/A HEVC-based tiling and encoding
Hosseini and Swaminathan [72] 2016 VoD DASH Local (N/S) Multi-tile bandwidth saving
VD Corbillon et al. [69] 2017 Both  DASH Bitrate savings  Viewport-specific encodings and adaptation
Petrangeli et al. [73] 2017 VoD  DASH Local (WiFi) HTTP/2 server push and multi-tile rate adaptation
van der Hooft ef al. [74] 2019 VoD DASH Emulation (4G) Multi-tile per-segment rate adaptation
Sanchez et al. [79] 2019 Both  DASH Bitrate savings HEVC-based tiling and adaptation strategies
Ravuri et al. [91] 2022 VoD Custom (QUIC) Emulation (5G) Partially reliable video delivery
TABLE VI
SURVEYS RELEVANT TO OMNIDIRECTIONAL VIDEO STREAMING.
Authors Year Component Description
Chariotti [111] 2021 Coding, quality perception A survey presenting the latest developments in the relevant literature on four of the most

Fan et al. [112] 2019

Capturing, delivery, rendering

important ones: (i) omnidirectional video coding and compression, (ii) subjective and
objective QoE and the factors that can affect it, (iii) saliency measurement and viewport
prediction, and (iv) the adaptive streaming of immersive omnidirectional videos.

A survey presenting the current literature related to omnidirectional video streaming
for practical experiments. Therefore, it reviews systems built for real experiments and
includes video and viewer datasets.

A review focusing on the current state of QoE technologies applied to VR video
streaming. The authors first pinpoint the main influencing factors of QoE and VR
video streaming. Then, they summarize works focusing on user QoE for VR evaluation.
Third, QoE modeling for VR video, QoE optimization and machine learning (ML)
techniques are presented. The review finalizes with a set of current challenges and

A survey of omnidirectional video streaming on different projections, compression,
and streaming techniques. This is combined with a review of the latest ongoing
standardization efforts for enhanced degree-ol-freedom immersive experience and an

overview ol the open research challenges.

A survey of on omnidirectional video/image processing from the aspects of perception,

Ruan and Xic [103] 2021 Quality perception
research directions.
Shafi et al. [113] 2020 Generic
Xu et al [114] 2020 Compression, quality perception
assessment and compression.
Yaqoob et al. [115] 2020 Generic

A survey on adaptive omnidirectional video delivery solutions considering end-to-end

video streaming with a special focus on standardization efforts.

ing viewed with HMDs. Results show that while network
delay clearly affects the QoE (above 47 ms RTT), the sickness
propensity did not change significantly. The reason is that in
tile-based streaming, only rendering behavior in motion-to-
high-resolution latency is affected, but not motion-to-photon
latency. Sickness is, however, influenced by the session du-
ration [117] and the type of camera motion [119]. Even
if broadly used, the SSQ has several drawbacks. Several
symptoms contribute to more than one category. It can lead to
oversensitivity and bias depending on the user taking the test.
It takes too long to complete, making some participants lose
their attention. Finally, as it was initially created for pilots in
the air force [61], it lacks the generality for omnidirectional
video applications.

G. Datasets, Studies, and Surveys

An overview of relevant datasets for omnidirectional video
delivery is presented in Table IV. An overview of covered
studies is presented in Table V, while relevant surveys are
listed in Table VI.

V. 6DOF VOLUMETRIC VIDEO

This section discusses the required components for volu-
metric video streaming with 6DoF. First, Section V-A dis-
cusses how content is captured and preprocessed. Then, Sec-
tions V-B and V-C elaborate on the compression of both
point clouds and meshes before presenting an overview of
state-of-the-art approaches for transmitting volumetric video
in Sections V-D to V-G. Sections V- and V-I discuss the
impact of quality degradation on the user’s perception. Finally,
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Fig. 17. Camera setup by Sky Studios, used to create a VR experience in
the National History Museum in London, UK [120]. More than 100 depth
cameras were used to create volumetric video.

Section V-J provides an overview of relevant datasets, covered
studies, and surveys related to volumetric video streaming.

A. Capturing and Processing

Volumetric video is generally captured in two different
ways. Light detection and ranging (LiDAR)-based cameras
can be used to capture surroundings, such as an office, a
building, or even an entire city [121]. However, these methods
cannot be used for point cloud video as they are not suited for
dynamic, close-range scenarios. Instead, specialized camera
setups are typically used. Several production studios have
recently built their own camera rig (see Figure 17). In these
setups, specialized depth cameras (such as the Intel RealSense
cameras [122]) simultaneously capture objects from different
angles, merging different point clouds to form a single, unified
scene.

This, of course, requires careful calibration of the different
cameras. To automize this process, so-called point cloud
registration techniques are used to detect the alignment of
different point clouds. Today, the iterative closest point (ICP)
algorithm, proposed by Besl and McKay in 1992 [123], is
still one of the most effective approaches for mathematical
optimization. ICP is a refinement algorithm that iteratively
attempts to improve the alignment of two sets of points. To
this end, it requires as input a reference and a source point
cloud, a threshold 7 for the reduction of the distance between
consecutive iterations, and optionally an initial estimation of
the required transformation to speed up the process (available
when the angular distance between two cameras in a grid is
known, for instance). Then, starting from either the provided
transformation or the identity transformation, the following
steps are repeatedly executed to refine the transformation:

1) For each point in the source point cloud, match the closest

point in the reference point cloud (or a subset thereof).

2) Determine the transformation (rotation and translation)

that minimizes the mean square error using the eigenval-
ues of the cross-covariance matrix.

3) Transform all points in the source point cloud using the

resulting transformation.

4) Terminate when the difference in successive mean square

errors exceeds the threshold 7, or go back to step 1 if not.

Depth
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Fig. 18. 3D mesh generation and production workflow.

Mesh Post-

Processing

Fig. 19. Example of a dense depth map calculated per frame for each stereo
camera pair.

It is possible to mathematically prove the convergence of
this approach [123], resulting in the eventual termination of
the algorithm. Because of its ability to refine transformations
to high accuracy, ICP is supported by well-known tools for
volumetric data processing, such as MeshLab [124] and the
point cloud library (PCL) [125]. However, while optimization
approaches are often used to refine the registration process of
point clouds of limited size, their computational complexity
does not allow them to handle the sheer volume of data (in the
order of millions of points) needed for demanding applications
such as autonomous driving and high-quality video delivery in
real time. Furthermore, determining the optimal alignment of
point clouds with limited overlap (such as those registered by
different cameras) is not a straightforward task.

State-of-the-art approaches tend to apply deep learning (DL)
techniques such as neural networks to find the required trans-
formation from one point cloud to the other [126]. However,
as discussed in a recent survey by Huang et al. [127], (deep)
ML approaches currently suffer from a lower accuracy than
optimization approaches. This is because many variations im-
pact the point cloud registration process (e.g., those introduced
by (mobile) sensors or changes in the environment), which
ML approaches are not well equipped to handle. Although the
authors report that DL methods can achieve high registration
accuracy on a specific dataset, their robustness and general-
ization ability to other datasets and applications are yet to be
determined.

Once the content has been captured, a point cloud/mesh
production workflow is followed (see Figure 18). First, a
foreground and background segmentation process is performed
in the keying stage. Then, a depth estimation process is applied
in which depth information with high accuracy for each pixel
is generated from each stereo pair with the 3D information,
as illustrated in Figure 19. Afterward, a related 3D fusion



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. Y, MONTH YEAR 18

Fig. 20. Example of the resulting point cloud and 3D models such as meshing,
simplification, and texturing (from second left to right).

process is carried out, and the depth information from every
stereo camera pair is merged, resulting in a 3D point cloud.

If a mesh representation is desired, a meshing step follows,
consisting of a depth-based surface reconstruction that results
in a high-density mesh with a large number of vertices and
faces. A geometric simplification is performed next to simplify
the resulting high-density mesh to a single consistent mesh,
referred to as mesh reduction. The simplified meshes are
texturized using a 2D texture map into a standard 2D image file
format. In the final stage, the resulting meshes are temporally
registered to obtain animated meshes. An example of the
described process applied to the 3D point cloud is shown in
Figure 20.

The application of volumetric video comes with limited
storage and bandwidth costs since redundancy is kept to a
minimum, i.e., cach point in space is represented at most once.
Nevertheless, the size of the data is still significant: a single
object comprising one million data points would require at
least 6 MB if we consider three byte-sized integer coordinates
(geometry) and three byte-sized integer color values (texture).
The amount of data significantly increases when dynamic
scenes with moving objects are considered. For instance, the
8i dataset [27] includes four dynamic point cloud objects with
bitrates up to 5.7 Gb/s each. Approximately 19.2Gb/s would
be required to combine the four objects; thus, there is a need
for point cloud compression (PCC).

B. Compression of Point Clouds

Many older works on PCC exist, including those by
Gumbhold et al. [128] and Merry et al. [129]. These works are
based on a one-dimensional traversal of the point cloud, where
the geometric distances between the points determine the
traversal order. Compression performance is limited because it
is impossible to take into account 3D spatial correlations [130]
fully. For this reason, most approaches today are based on
cither the exploitation of three-dimensional correlations or
mapping the point cloud to two-dimensional images by pro-
jection or mapping.

To exploit spatial correlations, kd- and octree-based ap-
proaches are often used. One example of the latter is the
encoder proposed by Mekuria et al. [131], which recursively
divides the bounding box of the point cloud object into eight
subparts, corresponding to the child nodes of a tree-based
structure. Non-empty children are subdivided further in each
step, resulting in an octree of voxels. This subdivision is made

Fig. 21.

lustration of the patching process in the V-PCC codec, both for
geomelry (left) and texture (right) [22].

for consecutive frames so that correlations can be used to
achieve better compression performance. The iterative closest
point algorithm computes a transformation, which is then
compressed through a quaternion quantization scheme.

In 2017, MPEG launched a call for proposals on PCC [132],
using the codec by Mekuria et al. [131] as a benchmark for
point cloud video. Out of nine proposals, MPEG selected the
one with the best performance (in terms of PSNR) as the
reference encoder for V-PCC [22]. This codec decomposes
a point cloud into a set of patches using orthogonal projection
onto a two-dimensional grid. The resulting patches are merged
into two separate video sequences containing the geometry
and the texture information, respectively (see Figure 21).
These sequences are then compressed using traditional video
compression techniques, resulting in significantly higher com-
pression rates for the same visual quality [22].

Several recent works have improved this codec by using
different approaches to encode the patches generated by V-
PCC more efficiently. Costa et al. [133] consider both patch
sorting (i.e., ordering the patches according to a given metric)
and patch positioning (i.e., placing the patches in a 2D frame)
to do so. In their work, generated patches are first ordered
according to a pre-defined absolute sorting metric (e.g., using
the patches’ height as a sorting metric). Then, one by one,
the best patch position is defined by performing an exhaustive
search among all suitable positions and determining the one
that optimizes a positioning metric (e.g., the extension area,
defined as the number of blocks associated with the extension
of two patches). The compression efficacy can be increased
by 0.8% using this approach.

Another compression approach that recently got traction is
the adoption of super resolution (SR) to volumetric video. In
traditional video, SR allows the creation of a high-quality ver-
sion from a low-quality version and a generated model [134].
In learning-based SR, this model consists of a deep neural
network (DNN), which is initially trained on high-quality
frames. Then, in an inference phase, the server sends the low-
quality version and the model to the client, which infers a
high-quality frame. Since the combined file size of the former
is typically much lower than that of the latter, bandwidth usage
can be reduced significantly. Several works have proposed
the application of learning-based SR to static point clouds,
considering a single frame only (e.g., [135, 136]). However,
research on dynamic video, in which multiple, dependent
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point cloud or mesh frames are consumed, is scarce. This
is partly because commodity devices are generally unable to
handle the computational complexity of SR on the client side.
Zhang et al. [137] recently published a study on possible
optimizations for volumetric video with SR, among which
(i) careful model trimming in the feature extraction stage by
removing several layers of the generated network, (i) the
adoption of motion vectors for consecutive frames, avoiding
the need to infer frames one by one, and (iii) viewport-adaptive
inference, in which a high-quality version is only inferred
for objects that are within the user’s viewport. However, the
highest frame rate achieved in this work — through adopting
a subset of the proposed optimizations — is 13FPS for a
point cloud video consisting of merely 100 thousand points
per frame. The application of SR thus remains a relevant and
challenging topic of research.

Also worth mentioning is that Lee et al. [138] recently
proposed a new framework for real-time point cloud streaming,
which uses parallel encoding through so-called parallel decod-
able trees (pd-trees). By using independent representations,
individual points can be decoded in parallel, significantly re-
ducing the decoding latency. Other approaches for point cloud
compression have also been proposed, but mainly focus on
static imagery [139] or LiDAR-based systems for autonomous
vehicles [140, 141]. Further details on these particular applica-
tions, which are out of the scope of this tutorial since they do
not deal with dynamic video, can be found in recent surveys
by Pereira et al. [142] and Cao et al. [143].

C. Compression of Meshes

Regarding meshes, two different applications for immersive
video streaming can be considered. On the one hand, meshes
can be used for rendering only: point clouds are used to
capture, encode, and decode the content, while the rendered
object consists of meshes corresponding to the considered
points in space. This approach is used by Zerman et al. [23],
who evaluate differences between rendering objects as a point
cloud or as a collection of meshes. On the other hand, meshes
can be used to represent and render three-dimensional objects.
In this case, meshes are encoded and decoded directly.

Many influential works on mesh-based compression
schemes exist [144, 145]. These older works, however, typ-
ically only consider the geometry of static objects, discarding
texture information or the nature of dynamic structures. Recent
work on this topic is limited, yet a few notable examples
exist. Pavez and Chou introduce a so-called polygon cloud,
a compressible representation of 3D geometry intermediate
between meshes and point clouds [146]. Polygons correspond
to triangles where the object’s surface is smooth but can also
be represented by lines or single points if needed. By applying
an adapted point cloud compression scheme based on the
region-adaptive hierarchical transform [147], the authors find
that, compared to static polygon clouds, the compression ratio
can be improved by a factor of 2 to 5.

More recently, Nasiri et al. [148] propose a framework to
compress three-dimensional mesh textures using a so-called
geometry-aware intra-coding algorithm. This algorithm con-
siders the topology of the associated meshes, so redundancies

Bandwidth

Bit rate Bit rate

Fig. 22. The concept of HAS applied to multi-object volumetric video [150].
Each object is encoded at different bitrates and temporally, so that the client
can change the quality of each object based on, e.g., available bandwidth.

in the texture map can be reduced. Most notable, however, is
Google’s Draco [149], a C++ compression library for point
clouds and meshes. Having been designed for high compres-
sion speed, it can compress meshed point cloud video in real
time on commodity hardware. Even though its compression
ratio is limited to a factor of 10, its fast execution makes it
a deserving candidate for inclusion in real-time 6DoF video
streaming systems.

D. Transmission: Video on Demand

Several studies have examined the application of volumetric
video streaming, where the video is streamed in an on-demand
fashion. Several works propose to use solutions based on
DASH, using a manifest that contains the metadata of consid-
ered point cloud objects [150, 151]. When a single point cloud
or mesh object is considered, a similar strategy to traditional
video can be adopted, in which the quality of this object is
adjusted to match the bandwidth in the network. However,
an additional spatial dimension is introduced when multiple
tiles or objects are considered (see Figure 22). Similar to
tile-based ommnidirectional video (see Section IV-C), advanced
rate adaptation is required to allocate the available network
resources where they are needed, ie.. to those objects that
are in the current viewport of the user. To this end, the same
three components can be used: (i) rate adaptation, (i) viewport
prediction, and (iii) saliency detection.

1) Rate Adaptation:  Similar to omnidirectional video
streaming, on-demand streaming of volumetric video requires
the ability to deal with dynamic environments. Variable con-
nectivity and bandwidth require adaptability, so rate adap-
tation is again an important factor. Initial works on rate
adaptation for volumetric video consider single point cloud
objects only. Hosseini and Timmerer [152] propose DASH-
PC, a DASH-based solution for single point cloud streaming.
Different quality representations are provided through point
cloud sampling rather than advanced compression schemes.
While this approach does not require additional coding (an
advantage in the case of live and real-time video, discussed
later), sampling offers limited compression. Furthermore, the
approach assumes that the video quality can be adapted on a
per-frame basis. Requesting frames one by one would result
in excessive requests per second, which is not feasible.

Focusing on single point cloud objects, more advanced rate
adaptation algorithms have been proposed that distinguish be-
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Viewport

Fig. 23. Example quality decision-making for adaptive point cloud delivery.
Objects are ranked according to their size in the user’s viewport, and assigned
a quality representation based on the amount of available bandwidth. In this
case, the highest quality was assigned to the object closest to the user, while
the lowest quality was assigned to objects outside of the viewport.

tween different spatial regions. For example, Park et al. [153]
divide a point cloud object down to the level of voxels and
propose a utility-based rate adaptation heuristic to determine
how the available bandwidth should be allocated among them
based on the user’s viewport. It is worth noting that this
approach does not use a traditional queue-based approach, in
which temporal segments are retrieved one after the other;
instead, a window-based approach is used, where voxels
belonging to different segments within a given time window
can be retrieved. The authors show that the proposed rate
adaptation algorithm, combined with window-based buffering,
significantly improves the visual quality of smaller details.

Other works followed suit, with Subramanyam et al. [154]
proposing to divide point cloud objects into four different tiles,
according to four virtual cameras placed around the object
in the xz plane. Han et al. [155] propose a segmentation
scheme that goes even further, uniformly dividing the point
cloud using different sizes. A rate adaptation heuristic, which
takes into account the visibility of each of the segments by
considering (i) the viewport position, (i) the occlusion of
segments, and (iii) the distance to each of the segments and its
impact on the visual perception. By ignoring points that should
not be rendered, the effective bandwidth can be reduced by an
average of 40% while still providing the same visual quality
in terms of the structural similarity index measure (SSIM).
A similar approach is used by Lee et al. [138], who apply
advanced culling of occluded points and sampled points further
away from the user, resulting in significant bandwidth savings
for the same SSIM values.

Other works go one step further, considering more com-
plex scenes consisting of multiple point cloud objects. Van
der Hooft et al. [150] propose PCC-DASH, a DASH-based
approach for delivering such scenes. In their work, objects
are encoded using the V-PCC encoder, using a group of
pictures (GOP) length of 30 - corresponding to one second
of video - with different parameter settings to provide mullti-
ple quality representations. Several rate adaptation algorithms
are proposed to allocate the available bandwidth among the
considered objects, taking the user’s viewport into account.
To this end, point cloud objects are first ranked, using metrics
such as the distance between the object and the current user’s
position (lower is better), the (potential) visible area of the
object (higher is better), and the visible area divided by the
bandwidth cost (higher is better), or a combination thercof.

Then, in a second phase, the available bandwidth is allocated
among these objects using three different schemes: (i) a greedy
approach, in which the highest possible quality is given to
the highest ranked point cloud object (taking the available
bandwidth into account), before moving onto the next; (ii) a
uniform approach, in which, starting with the highest ranked
object, the quality of the different objects is increased one
representation at a time; and (iii) a hybrid approach, in which
first the quality of objects within the viewport is improved
uniformly until either the highest quality is assigned, or no
more bandwidth remains, and only then the quality of objects
outside of the viewport is improved. An example of the
latter approach is illustrated in Figure 23, with objects ranked
according to the visual area of each object. The authors show
that the best results are obtained when the available bandwidth
is uniformly distributed among visible objects; when buffering
is considered, this approach requires accurate prediction of the
user’s location and focus to identify these objects correctly.
This aspect is considered next.

2) Viewport Prediction: ABR decision-making can benefit
from adopting ML algorithms to deal with the high complexity
of immersive media streaming. This is especially true since
the client must also anticipate future movement: as different
components, such as video coding and rendering, inevitably
add to the end-to-end delay, it is essential to predict, as
accurately as possible, where the user will be looking in the
VR scene, based on their past and current location. This allows
for proactively delivering only relevant content at any time,
with increased video quality [156]. Recently. the first datasets
containing user traces with 6DoF movement have been made
available, which can be used by ML algorithms to learn from
user behavior [157, 158].

In 6DoF scenarios, however, the complexity is significantly
higher than in the case of 3DoF since the movement of the
user’s position needs to be accounted for as well. Recent work
on this subject treats each of the 6DoFs independently, using
linear regression to predict the user’s movement based on
previous coordinates [159, 155]. This approach is suboptimal,
given the strong correlations typically found in human move-
ments. Both ABR decision-making and viewport prediction
can benefit from adopting more advanced ML algorithms to
deal with the high complexity of immersive media streaming.
Han et al. [155] take a first step in this direction, applying
multilayer perceptron (MLP) with a single hidden layer of
three neurons. However, the differences between linear regres-
sion and MLP in this work are statistically irrelevant. Further
research is required to improve the state of the art of 6DoF
viewport prediction.

3) Saliency Detection: Similar to omnidirectional video,
saliency detection can be considered to prioritize spatial re-
gions (i.e., objects or tiles thereof). Although the topic has
yet to receive significant attention in the context of volumetric
video, a recent study by Li ef al. incorporates saliency as
part of a multi-tile ABR algorithm to improve the perceived
quality of point cloud video [160]. Static saliency (i.e., the
saliency of a single frame) is detected based on the geometric
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and textural features of the point cloud object. In contrast,
dynamic saliency is extracted through motion estimation.
Subsequently, the detected saliency is combined with the tiled
video content in an attempt to provide fine-grained bitrate
adaptation in a DASH-based setup. Simulation results for a 5G
network scenario show that the proposed solution outperforms
approaches that do not consider tiling.

E. Transmission: Live Video

Volumetric video can also be used in live scenarios, where
the end-to-end delay is limited to the order of seconds. In live
content capture, Jansen et al. [161] propose a pipeline for vol-
umetric media-based video conferencing based on LL-DASH.
The experimental setup consists of at most four RealSense
cameras, which together result in point cloud frames consisting
of 50000 points, generated at a frequency of 10Hz. A single-
quality version of the point cloud streams is made available at
a bitrate of approximately 10 Mb/s using the encoder proposed
by Mekuria et al. [131]. DASH-based delivery is made possi-
ble through the GPAC toolset [162]. While the performance of
the proposed system is not thoroughly evaluated, the authors
conclude that the number of points per object contributes
highly to the system’s latency and achievable frame rate.

Another approach to reducing latency consists of the
adoption of QUIC for the delivery of point cloud video.
Ravuri et al. [91] propose a hybrid delivery scheme based
on QUIC, in which point cloud objects within the user’s
viewport are sent reliably, while those not visible to the user
are sent unreliably. Same as for tile-based omnidirectional
video, results show that the perceived throughput and the
startup delay can be improved significantly compared to a
scenario in which all data is sent reliably. However, the authors
acknowledge that their approach suffers from the fact that
current compression techniques for volumetric video (e.g.,
MPEG’s reference encoder [22]) are based on HEVC, which
is not robust against packet loss [92]. In the particular case of
V-PCC, non-reliable packet delivery in lossy networks even
results in a failure to decompress the delivered point cloud
objects.

F. Transmission: Real-Time Video

Hu et al. [163] present a prototype for capturing point
clouds with a single Azure Kinect camera. The depth and
color images are decompressed and merged before being
compressed by Google’s Draco [149]. A TCP server sends
data over a local WiFi network to a custom C# client in a
Unity application through sockets. Three types of rendering
procedures are evaluated: single-threaded CPU, multi-threaded
CPU, and graphics processing unit (GPU). The authors show
that, while GPU does outperform the other approaches, the
latency per frame at 1080p is 180 ms and 80 ms on a mobile
and a desktop device, respectively, resulting in frame rates
lower than 13 FPS for a single point cloud object. The authors
conclude that the latency and energy consumed in each stage
of the capturing-to-rendering pipeline are proportional to the
resolution of the point cloud, preventing the use of high-
resolution point clouds on commodity devices.

Fig. 24,
immersed in a virtual world where they can both see and hear each other
in real time.

Setup by Dijkstra-Soudarissanane et al. [165]. Two users are

Concerning  the  streaming  of  meshes,  Orts-
Escolano et al. [164] propose Holoportation, an end-to-end
system for augmented and virtual reality telepresence. Eight
pods capture RGBD streams, which are fused and transmitted
to the user with limited compression. The setup requires
approximately 2Tb/s per user and dedicated hardware on
the client side to render the data in real time. Dijkstra-
Soudarissanane et al. [165] propose a multi-view system for
real-time capture, transmission, and rendering of volumetric
media. This system relies on a multi-point control unit (MCU)
to shift processing from end devices onto a centralized server.
Through a relevant demonstrator, the authors show that two
end users can effectively communicate within an immersive
world (see Figure 24). However, the visual quality is relatively
low, i.e., many artifacts can be observed due to a limited
number of cameras in the setup.

G. Transmission: In-Network Optimizations

Some works address the fact that the real-timeliness of
6DoF systems is not yet feasible because the complexity
of encoders and decoders clashes with the limitations of
contemporary hardware [150]. Moreover, rendering complex
scenes with several objects may be unfeasible on end devices
due to complexity constraints and energy consumption. Similar
to omnidirectional video streaming, cloud and edge processing
can thus be seen as an enabler for such services, offloading
computational tasks to the network. The main idea is that cloud
or edge renders stereo views for volumetric objects on a plane
orthogonal to the viewing direction of the viewer and on the
particular position at which the object is present. These two-
dimensional rasterized views can be encoded with standard
video codecs. As illustrated in Figure 25, the end device can
integrate the pre-rasterized media onto a plane, adjusting to
the position and orientation changes of the user.

In this context, Qian ef al. [166] propose Nebula, a volu-
metric video streaming system for commodity mobile devices.
This system uses edge resources to transcode point cloud
content into regular video, thereby alleviating the client from
computational tasks and reducing the end-to-end delay. A
similar approach is proposed by Giil et al. [159], who use
the aforementioned linear regression to predict the user’s
movement and, based on the resulting prediction, generate
traditional, two-dimensional video which can be rendered on
the client side. Lee et al. [138] propose GROOT, a system for
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Fig. 25. Ilustration of cloud- or edge-enabled immersive media streaming.

VoD delivery of high-quality volumetric media. While captur-
ing and encoding are performed offline, advanced operations
such as frustum culling, user-view adaptation, and real-time
decoding through parallel optimizations make it possible to
stream and render single objects from the 8i dataset [27] at
30FPS.

H. Perception of Point Clouds

Compared to omnidirectional video, subjective quality eval-
uation for point clouds is still at an ecarly stage, with stan-
dards for testing methods and procedures still to be agreed
upon. Key parameters of point cloud quality evaluation study
design mainly relate to the presentation (interactive vs. pas-
sive, single-stimulus vs. double-stimulus), viewing technology
(2D/3D screen vs. VR HMD), and rendering scheme (e.g.,
raw points vs. cubes/ellipsoids) [167]. Subjective point cloud
quality studies have mainly featured static, non-animated
point clouds, focusing on the source- and content-level in-
fluencing factors such as coding, compression, and geometry
(see [168, 169, 170]). Their findings suggest that beyond the
aforementioned influencing factors, stimulus presentation and
model characteristics significantly affect quality rating results.
In contrast, only a few recent quality evaluation studies have

started to address delivery-related aspects of dynamic point
clouds (i.e., point cloud video) [36, 171, 172, 155, 173, 23].

In this respect, van der Hooft et al. [36, 171] have conducted
subjective QoE lab studies based on a passive presentation
protocol, where subjects assessed a number of video stimuli
containing the generated viewport of a scene consisting of
four point cloud objects featuring different programmatically
defined movement paths, emulated network conditions and
viewport prediction methods. Results confirm that bandwidth
limitations and compression have a significant impact on point
cloud video QoE and that better compression schemes for
animated volumetric media are required. Comparison between
single-stimulus (absolute category rating (ACR)) and double-
stimulus (degradation category rating (DCR)) rating sessions
show that despite similar scoring trends, ACR quality rat-
ings were more negative than for DCR, confirming a non-
negligible influence of stimulus presentation scheme on test
results. Results also revealed subjects’ fairly high expectations
regarding the visual quality of rendered volumetric video due
to traditional 2D video’s role as a mental reference [171]. In
a similarly designed non-interactive study, Cao et al. [172]
quantified the QoE of mesh and point cloud content as a
function of bitrate and observation distance. Results show
that point cloud compression is preferred at low bitrates,
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TABLE VII
DATASETS RELEVANT TO VOLUMETRIC VIDEO STREAMING.

Dataset Year Description

81 VFB [27] 2017

Four point cloud video sequences, each with a length of 300 frames or 10 seconds at 30FPS. A total of

42 RGB cameras, grouped in fourteen clusters of three cameras, were used to generate the objects.

81 VSLF [176] 2017

Owlii [177]
Panoptic Studio 3D [178]

2017
2017
been used to capture the video.

CWIPC-SXR [179] 2021

One point cloud video sequence with a length of 300 frames or 10 seconds at 30 FPS, as well as six
high-resolution static point clouds.

Four point cloud video sequences with a length of 600 frames or 20 seconds each at 30 FPS.

54 point cloud video sequences with a total length of six hours. Ten synchronized RGB+D cameras have

45 point cloud video sequences with a length between 596 and 2768 frames at a frame rate of 30 FPS.

Seven Kinect Azure DK devices have been used to capture the video.

while mesh compression scored higher at close observation
distances.

In contrast, Subramanyam et al. [173] evaluated dynamic
point clouds using interactive HMD-based setups to assess the
impact of different compression types and compare them with
omnidirectional video (3DoF) viewing. Their results reveal
a slight subject preference for point cloud (6DoF) in the
context of a quality rating task. They also found that personal
preferences and model quality (realism, level of detail) have
a pronounced impact on quality ratings, emphasizing the
importance of new test datasets that offer a diverse range of
models (see Table VII). For a more detailed discussion of the
state of the art and a toolkit for subjective point cloud quality
evaluation, please refer to [167, 170, 174].

I. Perception of Meshes

Several studies have evaluated the consumption and visual
perception of meshes. Zerman ef al. [23] conducted the first
study on QoE for meshes, showing that meshes offer higher
visual quality at larger bitrates than point clouds. At lower
bitrates, however, point clouds outperform meshes. In more
recent work [175], the same authors analyzed the user’s
behavior when consuming mesh-based augmented reality (AR)
video, studying the distribution of the user’s viewpoints and
their location relative to the content. Their results show that
users mostly watch the consumed meshes from a frontal view
at an average distance of 2.37 times the object’s height. While
this conclusion opens up several opportunities for mesh-based
video delivery (e.g., changing the mesh resolution based on the
expected user distance), it should be noted that only human
objects were considered in this study and that participants used
a smartphone (and thus, no HMD) to consume the content
remotely.

Other work has focused on predicting the subjective
user rating of meshes based on objective quality metrics.
Cao et al. [172] evaluated perceptual quality utilizing ACR and
DCR and used the results of their study to build a functional
model for the prediction of the MOS. Results indicate that their
model achieves Pearson correlation values between 0.964 and
0.972 between the observed and the estimated user ratings for
different mesh-based objects. Nehmé et al. [184] proposed a
full-reference metric for the quality assessment of 3D meshes.
This metric uses statistics on curvature (e.g., structure and con-
trast) and color (e.g., chroma and hue values), thus integrating
both geometry and color information. The proposed model
was evaluated on a custom dataset of 480 animated meshes

(made publicly available online) using five source models
with geometry and color distortions. While individual features
result in Pearson linecar correlation coefficients (PLCCs) for
the MOS between 0.30 and 0.70, the overall metric results in
a PLCC between 0.86 and 0.91, depending on the considered
content.

In more recent work, the same authors compared three sub-
jective methods (i.e., ACR with hidden reference (ACR-HR),
the double-stimulus impairment scale (DSIS), and the subjec-
tive assessment methodology for video quality (SAMVIQ))
for the evaluation of an immersive experience in which
the same five meshes are being used [185]. Evaluating the
three approaches based on consistency among two groups
of observers, the accuracy of the quality scores (ie., the
agreement between reviewers), and the confidence intervals
of the resulting scores, the authors showed that DSIS and
SAMVIQ outperform ACR-HR in terms of accuracy, with
DSIS achieving the highest accuracy in the shortest amount of
time. While this work focuses less on the correlation between
objective and subjective quality scores, it provides relevant
insights into subjective experiments for volumetric video.

J. Datasets, Studies, and Surveys

An overview of relevant datasets for volumetric-video deliv-
ery is presented in Table VII. An overview of covered studies
is presented in Table VIII, while relevant surveys are listed in
Table IX.

VI. 6DOF IMAGERY VIDEO

In this section, we will discuss image-based video streaming
with 6DoF. We will begin by examining content capturing
and preprocessing for light fields and holograms in Sec-
tions VI-A and VI-B. Sections VI-C and VI-D will delve into
the compression of these representations. Following that, we
will provide an overview of current state-of-the-art approaches
for on-demand image-based video delivery in Section VI-E.
We explore the effect of quality degradation on user perception
in Section VI-F before discussing relevant datasets, studies,
and surveys in Section VI-G.

A. Capturing of Light Fields

Image-based solutions render the view from a set of pre-
acquired images, each captured at a different angle and tlt.
Light fields, which describe the amount of light flowing in
every direction through every point in space [186], are often
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TABLE VIII

STUDIES RELEVANT TO VOLUMETRIC VIDEO STREAMING. IN SOME CASES, PROTOCOLS AND EVALUATIONS ARE NOT SPECIFIED (N/§).

Study Year Target Protocol Evaluation Focus
Jansen et al. [161] 2020 Live DASH Internet (N/S) Preliminary architecture for low latency
Hu et al. [163] 2021 Live  Sockets (TCP)  Local (WiFi) Prototype for capturing and delivery
Petrangeli et al. [151] 2019 Static  Generic Internet (WiFi) Multi-object quality selection
Hosseini and Timmerer [152] 2018 VoD  DASH Offline Single-object per-frame rate adaptation
& Park et al. [153] 2019 VoD  DASH Simulation (artificial) Multi-tile per-segment rate adaptation
2 Qian ef al. [166] 2019 VoD DASH Internet (4G) Preliminary end-to-end architecture
S van der Hooft et al. [150] 2019 VoD  DASH Emulation (4G) Multi-object per-segment rate adaptation
E Lietal [160] 2022 VoD DASH Simulation (5G) Multi-tile saliency-based rate adaptation
= Local (WiFi)
Ravuri ef al. [91] 2022 VoD  Custom (QUIC) Emulation (5G) Partially reliable video delivery
Subramanyam et al. [154] 2020 VoD Generic Offline Multi-tile per-segment rate adaptation
Wang et al. [180] 2021 VoD Generic Offline Multi-object/tile per-segment rate adaptation
Lee et al. [138] 2020 VoD  Custom (TCP)  Local (WiFi) Parallel decoding and rate adaptation
Han et al. [155] 2020 VoD  Custom (TCP)  Local (WiFi) VP prediction and VP-aware optimizations
Emulation (4G)
Internet (5G)
% Orts Escolano et al. [164] 2016 Live  N/S Local (cable) Prototype for capturing and delivery
E.‘ Dijkstra-Soudarissanane et al. [165] 2019 Live  WebRTC Local (N/S) Demonstrator for capturing and delivery
= Gul er al. [159, 156] 2020 VoD WebRTC Local (WiFi) VP prediction and low-latency delivery
TABLE IX
SURVEYS RELEVANT TO VOLUMETRIC VIDEO STREAMING.

Authors Year Component Description

Alkhalili ef al. [181] 2020  Streaming An overview of studies related to volumetric video streaming, focusing mainly on HAS
and ABR algorithms. Three studies for volumetric video [152, 153, 166] and one study
on omnidirectional video [182] are highlighted, discussing aspects such as bandwidth
savings, robustness to network variations, and latency perceived by the user.

Cao et al. [130] 2019 Coding An overview of PCC solutions, covering compression in one dimension (traversal
compression), two dimensions (projection-based compression), and three dimensions
(direct analysis). Four approaches are highlighted and evaluated in terms of performance
(PSNR) and fidelity (lossless or lossy), including MPEG’s V-PCC encoder.

Cao et al. [143] 2021 Coding A survey on PCC solutions, covering both static and dynamic point cloud objects.
Recent developments related to DL approaches are covered, and an evaluation of selected
approaches is conducted. Coding complexity and execution times are not considered,
however.

Dumic et al. [183] 2018  Quality perception An overview of subjective evaluation protocols for both 2D and 3D video quality
assessment. Several adaptations required for point cloud video are mentioned, along
with a description of objective quality metrics (e.g., based on PSNR).

Dumic and da Silva Cruz [167] 2020 Quality perception Presents a summary of advancements related to PCC and point cloud quality assessment,
along with a discussion of existing objective quality metrics. A general framework for
subjective evaluations is presented, showcasing its reliability by performing the same
evaluations at two different research facilities, with similar results.

Huang et al. [127] 2021 Capturing A survey on point cloud registration technigues. State-of-the-art approaches are eval-
uated on four datasets, constructed through depth or LiDAR sensors. Evaluations are
limited to static frames, rather than dynamic video.

Pereira et al. [142] 2020 Coding A taxonomy for the organization of existing PCC solutions. A total of 94 works are

covered in this survey, discussing, among others, the type of content (static or dynamic),
the included components (e.g., geometry and color), and the fidelity (lossy or lossless).
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used in this case. The radiance along light rays in a 3D space
with constant illumination can represent light fields. This can
be described by the plenoptic function L(x,y, z, ¢, #), which
is parametrized by the coordinates x, y, and z, and the angles
¢ and 6 (see Figure 26). Higher dimensions can be considered,
taking into account time, wavelength, and polarization angle.

In free space, the radiance along a ray remains constant
from point to point along its length. Thus, there is redundant
information along one dimension, leaving a four-dimensional
function that is referred to as the four-dimensional light field.
It can be parametrized by the parameters u, v, s, and ¢, where
u and v are the positions on the aperture or object plane and
s and ¢ are the positions on the image plane [187]. Thus,
the function L(u,v,s,t) can be considered as a collection
of images on the st plane, observed from a position on the
uv plane (see Figure 26). In other words, light field imagery

captures both spatial and angular information. Accordingly,
the uv plane refers to the angular domain, while the uv plane
refers to the spatial domain (see Figure 27). At the time of
writing, a light field video is considered a sequence of light
field images captured at a constant rate.

A single camera device can be used to capture light field
imagery from a limited range of angles [188]. These cameras
multiplex the spatial and angular domains into a 2D image,
known as a lenslet image. An example of such a device is the
Lytro Illum camera. The multiplexed 2D image can then be
converted into multi-view images. In more advanced scenarios,
however, a camera array (i.e., a setup in which multiple cam-
eras are positioned on a grid) is often used [189, 190]. A Lytro
ILLUM camera captures lenslet images at 3 FPS, making it
suitable for capturing only static light fields. Wang et al. [191]
developed a hybrid system using a 3 FPS Lytro ILLUM camera
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Fig. 26. Tlustration of the five-dimensional (left) and the four-dimensional
(right) plenoptic light field function L.

Fig. 27. Light field multi-view capturing. The uv plane refers to the angular
domain, while the st plane refers to the spatial domain.

and a standard 3 FPS 2D video camera to generate a full light
field video at 3FPS. A recent example of a camera array light
ficld camera is presented by Broxton ef al. [28], who have built
a hemisphere containing 96 cameras, each with a field of view
of 120 by 90 degrees (see Figure 28), capturing at a rate of
3FPS. In any setup, it is essential to ensure that differences
between neighboring images are small enough; recent work
considers an 0.3-degree difference in angle between images in
order to provide a smooth transition [5].

Light fields offer two main advantages. First, capturing con-
tent does not require complex preprocessing tasks: it suffices to
capture and store the different images, which are then ready for
transmission. Second, displaying content based on the user’s
position and focus requires modest computational resources
since the requisite images are readily available. However,
image-based solutions suffer from ample storage and band-
width requirements. Even when the content arrives on time,
contemporary handheld devices cannot load the resources in
real time. This is illustrated by Wijnants et al. [192], who
show that a high number of GPUs and cache optimizations
are required to stream a single, static object captured through
light fields. Nevertheless, light fields are a promising approach
for immersive video streaming.

Fig. 28. Tlustration of the light field capture rig
lon et al. [28].

proposed by Brox-
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Fig. 29. Recording a hologram.

B. Capturing of Holograms

Holography is the ultimate solution for 3D image tech-
nology as it can record light fields scattered off objects and
reproduce them later in the absence of original objects, similar
to sound recording, whereby a sound field can be reproduced
without the presence of the original sound generator. The
invention of holography dates back to 1948, and it is attributed
to Denis Gabor, who was awarded the Nobel Prize for this
discovery [193]. However, its development was delayed due
to the lack of coherent light sources until the invention of the
laser in the early 1960s. To capture holograms, a coherent light
beam is split into two beams. The first beam, i.e., the object
beam, is redirected toward the object(s), and the second beam,
i.e., the reference beam, is redirected toward the recording
medium. The object beam is reflected off the object(s) and
interferes with the reference beam on the recording medium,
resulting in a recorded interference pattern. The same reference
beam is used to reconstruct the object field along with all its
properties, i.e., light intensity, parallax, and depth. Figure 29
and Figure 30 show how a hologram is recorded and recon-
structed, respectively. Recording the object beam relative to
the reference beam enables recording the phase in addition to
amplitude, allowing the reconstruction of 3D images.

Digital holography was enabled by the emergence of re-
quired sophisticated electronic devices, i.e., charged-coupled
device (CCD) image sensors, spatial light modulators (SLMs),
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Fig. 30. Reconstructing a hologram.

and powerful computers [194]. The potential applications
of digital holography include, but are not limited to, mi-
croscopy [195], interferometry [196], quantitative phase imag-
ing (QPI) [197], surface measurements [198], 3D object
recognition [199], and 3D display systems [200]. Despite
significant progress in end-to-end holographic imaging, there
are still challenges in the holographic signal processing chain,
i.e., from acquisition to display, namely holographic display,
capturing, transform and coding, and quality evaluation [201].

Digital holograms can be recorded either by using an
optical setup, which yields the optically generated hologram
(OGH) or by using an electronic setup, which yields the
computer-generated hologram (CGH). The OGHs typically
come with three main challenges: (i) resolution limitations,
(ii) physical limitations, and (iii) optical distortions [201].
At the same time, the CGHs using one of the following
methods, ie. (i) point cloud method [202], (ii) polygon
method [203]. (iii) RGB+Depth method [204., 205], or (iv)
ray-based method [206], suffer from expensive computation,
and realistic scene rendering problems.

While commercial light field cameras are available, record-
ing digital holograms at high resolutions requires specialized
optical setups and expertise to build and operate [201]. How-
ever, the CGHs are much more compute-intensive than other
classical image renderings.

C. Compression of Light Fields

Multiple compression techniques have recently been pro-
posed to exploit a light field’s spatial and angular redun-
dancy to compress the large amounts of required data. Vi-
ola et al. [187] compare several compression techniques
applied directly to lenslet images and after conversion to multi-
view images. The authors show that the latter approach results
in better performance, achieving both higher PSNR values
and subjective user ratings. This is primarily due to the fact
that, once all content has been processed, similarities between

images can be used to compress data using existing video
codecs such as HEVC efficiently. Light field image compres-
sion methods are mainly of three groups: (i) transform-based,
(ii) traditional prediction-based, and (iii) learning-based.

1) Transform-Based Compression: In transform-based ap-
proaches, the redundancy in a 4D light field is exploited in a
transform domain. These approaches typically involve using
a transform, such as the discrete cosine transform (DCT) or
the discrete wavelet transform (DWT), to convert the light
field data into a different domain, where the redundancy is
more pronounced. This allows for more efficient compression
by exploiting the statistical properties of the transformed
data. For example, the multidimensional light field encoder
(MuLE) [207], which has been adopted by the joint pictures
expert group (JPEG) Pleno standardization committee, initially
converts partitions of the four-dimensional (4D) light field
into 4D blocks. 4D DCT is computed for each block, and
the transformed block is then encoded using an adaptive
arithmetic coder. In addition to DCT, other transforms such
as DWT [208], Karhunen-Lo¢ve Transform (KLT) [209].
and graph Fourier transform (GFT) [210] are also used to
transform light fields into a transform domain.

2) Prediction-Based Compression:  Several studies have
since proposed frame prediction schemes that include the
different images in an optimized order, resulting in a pseudo-
temporal video sequence that can then be compressed [211,
212]. Other works perform a second preprocessing step, cre-
ating a low-rank representation that aligns the light fields
according to the disparity across views from one depth plane
to the other [213]. The resulting representation is then again
encoded using HEVC, allowing higher compression rates for
the same visual quality. Ahmad et al. [214] interpret light
fields as multi-view sequences and use a multi-view extension
of HEVC (i.e., MV-HEVC) for improved compression.

3) Learning-Based Compression:  Learning-based view
synthesis approaches are a recent development in light field
compression. These approaches leverage the power of machine
learning techniques to improve the encoding efficiency of light
fields. One of the key advantages of these methods is that they
can synthesize new views from a sparse set of inpul views,
thereby reducing the amount of data that needs to be encoded.
This can significantly improve the compression efficiency and
the quality of the synthesized views. Hou ef al. [215] first
encode four corner views using HEVC. These views are then
decoded and fed to a learning-based view synthesis method
to reconstruct the remaining views. To improve the quality
of synthesized views, the prediction residuals between the
synthesized images and their corresponding original images
are converted to a pseudo-temporal video sequence and en-
coded with HEVC. Jia et al. [216] first convert sparsely
sampled light field image views to a pseudo-temporal video
sequence and encode the generated pseudo-video with HEVC.
A gencrative adversarial network (GAN) is then used to
reconstruct unsampled image views. Amirpour et al. [217]
present a light field compression method based on a video
frame interpolation network. They formulate the task of view
interpolation as frame interpolation in order to effectively
compress light field images. The method involves classifying
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image views into different layers and using the network to
synthesize the views within each layer, utilizing image views
encoded in previous layers as inputs.

However, efficient light field compression is still an issue
and remains a relevant topic of research. In addition to the
encoding efficiency, providing viewport scalability and random
access to the viewports are among the critical challenges in
light field compression [217].

In light field video compression, temporal redundancy is
exploited in addition to spatial and angular redundancy. This
is achieved using multi-view coding solutions, which leverage
spatial, temporal, and inter-view predictions to compress light
field videos. For example, Wang et al. [218] propose a new
prediction structure that extends inter-view prediction into
a two-directional parallel structure. Mehajabin et al. [219]
propose a method that utilizes the similarity among views for
prediction structure. Additionally, Wang et al. [220] propose a
learning-based method that utilizes a CNN to synthesize views
for improved compression efficiency.

D. Compression of Holograms

Compression of holographic data is a significant challenge
in holographic signal processing, especially for dynamic holo-
gram transmission. The large amount of data associated with
holograms can lead to a bottleneck in terms of bandwidth
requirements, with dynamic holography streaming potentially
requiring as much as 14 Tb/s [201]).

The CGHs can be encoded prior to conversion to holograms
considering their representations. For example, RGBD images
are encoded and transmitted in [221]. On the decoder side,
the bitstream is decoded, and the hologram is generated. Raw
holograms can be encoded in either the hologram or object
plane. To encode in the hologram plane, each hologram that
consists of complex numbers is divided into (i) real and
imaginary parts or (ii) amplitude and phase parts. They are
treated as 2D images and then encoded using conventional im-
age/video encoders. To encode in the object plane, holograms
are first backpropagated to the object plane, typically by using
numerical Fresnel diffraction or angular spectrum method,
and then similar to the hologram plane, they are encoded by
dividing into (i) real and imaginary parts, or (ii) amplitude and
phase parts. Encoding holograms in the hologram and object
planes has been compared in [222].

The JPEG Pleno Holography project aims to improve digital
hologram compression. This includes (i) collecting test data for
experiments, (if) supporting hologram compression consider-
ing its complex data representation, and (iii) designing quality
assessment procedures [223].

E. Transmission: Video on Demand

Recently, several studies have considered light fields and
holography as a means to on-demand immersive video delivery
with 6DoF. Similar to tile-based omnidirectional video and
volumetric video, the presence of multiple views requires the
client to make informed decisions on the quality at which these
are retrieved. In this context, three components are considered:
(i) rate adaptation, (7i) viewport prediction, and (iii) saliency

detection. Recent studies on each of these components are
discussed next.

1) Rate Adaptation:  Wijnants et al. [192] propose a
DASH-compliant framework for the interactive delivery of
static light fields, focusing on single objects. In this approach,
light field source images are encoded as segmented pseudo-
videos with multiple quality representations, allowing for
quality-variant access to specific portions of the light field. The
framework can render still content in real time by leveraging
video decoding to contemporary consumer-grade GPUs and
using disk-versus-GPU caching in order to retrieve source
images more quickly. Overbeck et al. [224] present a complete
system for acquiring, processing, and rendering light fields
using two light field camera rigs designed for portability.
The authors also propose a compression scheme based on
the VP9 codec, allowing high compression rates with real-
time, random-access decompression. The renderer decodes
the images on demand and reconstructs stereo views at a
consistent rate of 90 Hz on commodity hardware. However, it
should be noted that these works only consider static scenes
and are, therefore, not suited for immersive video.

Considering dynamic scenes, Daniel et al. [225] are the
first to propose an open streaming media standard for light
field video. This standard allows compliant displays to con-
sume a video stream consisting of three-dimensional frame
descriptions and use these to render scenes without specialized
HMDs. Several challenges to realize a functional framework
are identified in this work, focusing on encoding, streaming,
and rendering of light field video.

Considering the limitations of contemporary hardware, a
novel end-to-end system for light field video streaming has
recently been proposed by Broxton et al. [28]. Rather than
using a multi-plane image scene representation, the authors
use a collection of spherical shells to represent panoramic light
field content. This approach leads to higher compression rates
than traditional solutions, allowing the compressed represen-
tation to be rendered in real time on a consumer-grade gaming
laptop.

Lievens et al. [226] design, implement, and evaluate the
performance of a web-based static light field consumption
system. This system adaptively streams static light fields over
the network and then visualizes them in a vanilla web browser.
The evaluations show that static light fields can be consumed
in real time at AR/VR-compatible frame rates of 90FPS or
more on commercial off-the-shelf hardware.

El Rhammad et al. [227] propose a scalable progressive
compression framework based on Gabor-wavelets decomposi-
tion for holography streaming. In this framework, the observer
plane is divided into different blocks, and for each block, Ga-
bor atoms are assigned, considering the duality between Gabor
wavelets and diffracted light rays. Based on the importance
of different blocks for reconstruction, each group of atoms is
encoded in different packets. The packets are decoded pro-
gressively on the decoder side based on the viewer’s position,
and the corresponding hologram is reconstructed using a GPU
implementation [227]. In [228], a progressive coding method
that combines quality scalability with viewpoint scalability
based on Gabor wavelets decomposition is proposed.
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Amirpour et al. [229] propose a DASH-compliant view-
aware adaptive streaming for holography streaming. Four dif-
ferent strategies for holography streaming have been studied.
These strategies include (i) monolithic, (7i) single view, (iii)
adaptive view, and (iv) non-real-time streaming. These four
strategies were investigated and compared in terms of (a)
bandwidth requirements, (b) encoding time-complexity, and
(c) bitrate overhead. It remains to be investigated, however,
how the proposed schemes can be applied in live streaming
scenarios and to what extent they can reduce the delay in end-
to-end 6DoF imagery video streaming frameworks.

2) Viewport Prediction: Viewport prediction has not yet
been widely adopted or deployed in practical imagery video
streaming. Despite this, some efforts are underway to provide
random access to arbitrary views to avoid streaming the whole
video and instead stream the desired viewport. Random access
enables encoding and decoding a set of viewports rather than
the entire set, though it may decrease compression efficiency.
Amirpour et al. [230] propose a light field image compression
method that allows for viewport scalability, quality scalability,
spatial scalability, random access, and uniform quality dis-
tribution while maintaining high compression efficiency. The
light fields are divided into sequential viewport layers, and
each layer is encoded using the previous layer. Since a few
references are used to encode each view, the proposed method
improves the flexibility of light field streaming, provides
random access to viewports, and increases error resilience.
The experimental results demonstrate that accessing a desired
viewport requires less than 5% of the whole bitstream. The
method’s error resiliency is demonstrated by the ability to
reconstruct all viewports on the decoder side using deep neural
networks, even with a limited number of streamed views.
Avramelos et al. [231] demonstrate that using only the central
view as a reference for inter-coding other viewports in light
fields provides a desirable trade-off between random access to
the desired viewport and compression efficiency.

3) Saliency Detection: To further reduce execution times,
the application of saliency detection can be considered for
6DoF video streaming. Similar to 3DoF, predicting the user’s
consumption pattern could be used to optimize video stream-
ing, decoding, and rendering. Some works have already per-
formed saliency detection for light field video, using ML
approaches to identify relevant parts of the video [232, 233].
Recent work by Wang er al. [234] considers user movement
and gesture analysis to predict the future position of the
user and consecutively encodes and transmits a limited set of
views only. The proposed approach is evaluated on a limited
5 x5 camera grid, showing that compression bitrates for the
same visual quality can be reduced by 27% compared to the
approach proposed in [218].

F. Rendering and Perception

A passive approach is typically used to evaluate the quality
of degraded light fields subjectively. Light field multi-view
images are converted into a pseudo-video and assessed by
subjects. This way, the interactivity between content and
subjects (which allows changing perspectives, refocusing, efc.)

is ignored. Viola et al. [235] proposed an interactive setup
to evaluate the quality of the light field and compared both
interactive and passive methodologies in [236]. The statistical
analysis showed that both methodologies are highly correlated;
however, the interactive methodology leads to larger confi-
dence intervals.

The reliability of conventional objective metrics, including
full reference (FR) [237] and no reference (NR) image quality
assessment (IQA) approaches, 3D IQA methods, and video
metrics were assessed to evaluate light field images [238].
A FR light field quality metric is proposed in [239], which
considers (i) global spatial quality based on view structure
matching, (ii) local spatial quality based on near-edge mean
square error, and (iii) angular quality based on multiview
quality analysis. Another index is introduced by considering
the angular-spatial characteristic of the light field based on
focus stack [240]. Some NR light field image quality metrics
were also designed [241].

Image-based rendering systems are classified into three
types, namely (i) rendering without geometry, (ii) rendering
with implicit geometry, and (7ii) rendering with explicit geom-
etry [242]. Light ficld rendering takes image rendering toward
a “no-geometry-required” solution but uses multiple image
views. A light field rendering method was proposed in [243],
which generates new views without depth information by
interpreting the input images as 2D slices of a 4D function.
In this approach, the intersection points of the novel ray with
the uv and st planes (see Figure 26) are first calculated. The
nearest sampling rays in the light slab around the novel ray
are then selected to interpolate the novel ray.

Evaluating the perceived visual quality of rendered holo-
grams is one of the core challenges in holographic signal
processing due to their inherent difference from photographic
imagery. Ahar et al. [244] objectively and subjectively studied
the impact of standard compression techniques on the nu-
merically reconstructed holograms. The suitability of different
displays, namely holographic, light field, and 2D displays,
was studied, and it was shown that all displays show high
correlations. The performance of standard codecs at different
distances and perspectives was objectively evaluated in [245].
The quality of digital holography images encoded on the
object plane was evaluated subjectively in [246], and the
performance of objective metrics was assessed. Considering
the 3D properties of digital holograms, the quality of com-
pressed holograms was evaluated as a sequence of multiple
views in [247], and the performance of objective metrics was
assessed. Ahar et al. [248] conducted a dynamic subjective
quality testing of holograms considering focus and viewing
angle changes. Note that holographic signal processing is still
in its carly stages of development, and there are ongoing
research activities to address its challenges [201].

G. Datasets, Studies, and Surveys

An overview of relevant datasets for 6DoF image-based
video delivery is presented in Table X, while an overview of
covered studies is presented in Table XI. Table XII provides
a summary of important surveys and overviews that address
6DoF imagery video from various viewpoints.
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TABLE X
DATASETS RELEVANT TO 6DOF IMAGERY-BASED STREAMING.

Dataset

Year Type Description

ADLEVD [249]

EPFL [250]

HCI [251]

Light Field Intrinsic Dataset [252]

2021 Dynamic The dataset contains a total of nine groups of light field videos taken by a 10 x 10 light
field capture matrix composed of 100 cameras. The resolution of each camera is 1920
x 1056.

2016  Static The Ecole Polytechnique Fédérale de Lausanne (EPFL) dataset contains 118 light field
images taken by Lytro Illum light field camera.

2017  Static 24 synthetic, densely sampled 4D light fields with highly accurate disparity ground
truth.

2018 Both Real-world and synthetic light fields images and videos. The ground-truth intrinsic data
comprises albedo, shading and specularity layers for all sub-aperture images. In case of

% synthetic data, ground-truth depth, normals and further decomposition of shading into

= direct and indirect components are also provided.

,‘2:” MPI Light Field Archive [253] 2017  Static Nine synthetic and five captured real-world scenes, with scenes spanning a large variety

= of conditions in terms of lighting. All light fields are of identical spatial and angular

resolution (960 x 720 x 101).

Raytrix (R8) [254] 2018 Dynamic The R8 Raytrix dataset is composed of three video sequences recorded with a R8 Raytrix
video camera fitted with a 35 mm lens.

SINTEL [255] 2020 Dynamic A medium-scale synthetic 4D light field video dataset consists of 24 synthetic 4D light
field videos with 1204 x 436 pixels, 9 x 9 views, and 20-50 frames, and has ground-
truth disparity values.

SMART [256] 2016  Static Sixteen light field images from both indoor and outdoor category. They cover general
image content related features but also LF specific aspects.

B-com [257] 2016 Dynamic Hologram computed from the multiview-plus-depth data or a synthetic scene.

,:: EmergIMG [222] 2018  Static The sets of four phase-shifted holograms obtained by the phase shifting holography

2] technique.

Ef’ Interfere-II [258] 2016  Static The d:?tm;ct consists of six diffuse and six specular holograms generated from 3D point

S clouds.

= Tensor Holography [205] 2021 Static Computer-generated holography (MIT-CGH-4K) with 4000 pairs of RGB-D images and

corresponding 3D hologram.
TABLE XI
STUDIES RELEVANT TO 6 DOF IMAGERY-BASED VIDEO STREAMING.
Study Year Target Focus

% Wijnants ef al. [192] 2018  Static A standards-compliant architecture

= Overbeck er al. [224] 2018  Static A system for acquiring, processing, and rendering

= Daniel et al. [225] 2018 Dynamic An open streaming media standard for light field video of light field displays

_".:fo Broxton et al. [28] 2020 Dynamic An end-to-end system for high quality immersive light field video streaming

—  Lievens et al. [226] 2021  Static A web-based static light field consumption system, enabling real-time consuming at

AR/VR-compatible frame rates of 90 FPS

= El Rhammad et al. [227] 2019 Static Progressive streaming ol digital holograms with a low latency using viewport scalability

’é El Rhammad et al. [228] 2019 Static Progressive streaming of digital holograms that combines quality and viewpoint scala-

) bility

% Amirpour et al. [229] 2020  static A DASH-compliant view-aware adaptive streaming system for holography streaming

T

TABLE XII
SURVEYS RELEVANT TO 6DOF IMAGERY-BASED VIDEO STREAMING.

Authors Year Component Description

Conti et al. [259] 2020 Coding A comprehensive survey ol light field coding solutions, focusing on angularly dense light fields. It includes
special attention to a thorough description of the different light field coding methods and to the main
concepts related to this relevant area. Additionally, comprehensive insights into open research challenges
and future research directions for light field coding are presented.

Zhou et al. [260] 2021 Imaging This survey reviews light field imaging [rom the following aspects: depth estimation, content editing,
image quality, scene reconstruction and view synthesis, and industrial products.

Wu et al. [261] 2017 Imaging A comprehensive overview and discussion of light field imaging over the past 20 years is presented.
This overview focuses on all aspects ol light field imaging, including basic light field representation and
theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for
light field display, and computer vision applications of light field data.

Sahin et al. [262] 2020  Synthesis A comprehensive survey of methods for synthesis of computer-generated holograms is presented. They
are classified into two broad categories: wavelront-based methods and ray-based methods. Their modern
implementations in terms of the quality of reconstruction and computational efficiency are examined.

Haleem e al. [263] 2022 Application  An exploration of holography and its significant benefits through various development processes, leatures,
and applications, where the focus is on “holography for Industry 4.0°.

Blinder ef al. [201] 2019 Imaging An overview of the end-to-end chain from digital content acquisition to display, involving the efficient

generation, representation, coding, and quality assessment of digital holograms is presented.

29
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Fig. 31. Flowchart for technology and protocol selection for 6DoF video content delivery. Content representations are indicated in blue, coding approaches

in red, streaming protocols in green, and ABR algorithms in purple.

VII. A BRIEF GUIDE TO IMMERSIVE VIDEO
DEPLOYMENTS

6)
This section presents a guide to immersive multimedia
deployments, from which media researchers and practitioners
can quickly understand what, where, and how they need to
decide and do to deploy an end-to-end immersive multimedia
system. Figure 31 presents a flow chart illustrating step-by-step
decisions to provide a remote immersive experience, focusing

on technology and protocol selection.

7

1) If multiple peers participate in the end-to-end communi-
cation, their respective captures (be it a human object or
another type of content) must be merged on the server or
client side. A static background and a descriptor (e.g., a
modified MPD [43]) are to be used to merge the content.
If multiple peers interact, a high-throughput and low-
latency network infrastructure is required. Regarding deliv-
ery, UDP-based solutions such as WebRTC or unreliable
QUIC are recommended to avoid packet retransmissions in
lossy networks. Moreover, Single-quality coding will aid
in getting the content ready as soon as possible.

If peers do not interact, or only a single peer is present,
but the delay is still essential to spectators (e.g., when
commenting on live events), low-latency TCP-based ap-
proaches, such as DASH with CMAF, could be used.

If delay is crucial, lightweight capturing and processing
are required to achieve limited delays. Thus, using volumet-
ric video with at most two depth cameras is recommended.
Culling and sampling of points can limit the amount of
data to process. Moreover, real-time compression requires
dedicated hardware and parameter optimizations.

If the delay is insignificant (i.e., in VoD scenarios), TCP-
based HAS can be used. Multiple quality representa-
tions must be provided. Parameter quantization for content

8)

2)

9)

4
) 10)

5)

compression can be considered to create these different
representations (e.g., V-PCC [22]).

Spatial segmentation (e.g., voxels for point clouds) can
result in better usage of the available bandwidth. This
approach requires multi-object ABR algorithms [43, 153],
which are of higher complexity than traditional ABR
algorithms and require accurate viewport prediction.

So far, only a few works on 6DoF viewport prediction
exist. These works consider relatively straightforward ap-
proaches, treating each of the 6DoFs independently [159,
155]. While these approaches can improve the client’s
quality decision-making, they should be used with caution.
When latency is of no concern and the visual quality
is of the utmost importance, two approaches for content
capturing can be adopted. If resources are limited, sparse
volumetric video representations with multiple cameras
can be considered. This comes with limitations related to
the visual quality (e.g., blur and other artifacts). Otherwise,
6DoF imagery-based solutions can be adopted, requiring
advanced camera rigs for dynamic video and significant
processing times [28]).

Despite the advances in device capabilities, rendering
complex scenes with several objects is still unfeasible
on end devices due to complexity constraints and energy
consumption. Cloud and edge processing can enable such
services, offloading computational tasks to the network.
Finally, the user’s perception and QoE can be assessed
in terms of objective metrics (such as video quality
metrics like VMAF or SSIM) and subjective studies
(i.e., questionnaires). Morcover, cybersickness and related
discomfort are critical phenomena that can severely impair
a person’s immersive media experience, potentially causing
abrupt termination of a viewing session or even preventing
the adoption of immersive media.
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Fig. 32. Future immersive media architecture.

VIII. OUTLOOK AND OPEN CHALLENGES

As discussed in Section VII, limitations in terms of through-
put, latency, and packet loss currently impede the adoption
of over-the-top video streaming solutions at scale. However,
new opportunities arise with the deployment of 5G networks
and the advent of 6G. In Figure 32, we propose an updated
version of the initial architecture presented in Section III. This
architecture 1s based on NFV, where virtual network functions
(VNFs) are all composed of dedicated tasks (e.g., caching,
viewport prediction, or decoding) handled in the network
delivery chain. This requires advancements to programmable
networking and poses challenges for the different components
involved. Below, we identify five major challenges for immer-
sive video streaming, providing an outlook on future research.

A. Low-Latency Content Delivery

System settings are often rigidly and statically defined at
design time. However, the user’s perception of 6DoF video
heavily depends on the ever-changing context. A fixed setting
cannot handle different contexts and requirements: configura-
tion settings should be dynamically tuned to the considered
application, network characteristics, and user’s prerequisites.
Initial works on 6DoF video streaming have considered this as-
pect by making content available at multiple quality represen-
tations, similar to traditional video. However, more advanced
approaches are needed to cope with the stringent interactivity
and latency requirements of 6DoF video applications.

One way forward involves incorporating measurements
from both the client-side application and the server. For
instance, when measurements indicate a limited bandwidth to
the client, encoding and transcoding parameters could be tuned
on the fly, providing higher compression of the video content
or even discarding irrelevant content as part of a culling
process. As more users join the video session, the amount
of generated quality representations could also be increased to
improve the granularity of ABR decisions. Providing feedback
from multiple clients, encoder settings can be tuned to clusters

of users, adapting encoder profiles and caching strategies to
meet aggregated needs.

More than these changes alone will be required to deliver
immersive video at low latency, e.g., in the context of live
video or video conferencing. Although low-latency video
streaming protocols such as LL-DASH and WebRTC are now
commonly used for traditional 2D video, limitations in terms
of processing power, network throughput, and latency impede
their adoption to immersive video. As a result, only a few
studies have attempted to provide real-time content capture,
streaming, and rendering at high video quality. Recently, the
Internet Engineering Task Force (IETF) initiated the media
over QUIC (MOQ) working group aiming to develop a
simple low-latency media delivery solution addressing use
cases ranging from live video streaming over gaming to
media conferencing at scale [264]. However, at the time of
writing this paper only early drafts of MOQ are available
without considering immersive media use cases [265]. With
the ongoing deployment of 5G infrastructures and the advent
of 6G, more ground-breaking systems and studies on these
topics are expected.

B. Improved In-Network Solutions

Current transport mechanisms require computations to be
executed at the server or client side, resulting in many end-to-
end exchanges. Consecutively, any short-term changes in net-
work characteristics or user interactions cannot be responded
to in a timely manner, causing inadequate content or quality
selection. Therefore, future research should incorporate com-
plementary in-network optimizations to meet the requirements
of even more stringent remote 6DoF experiences.

First, dynamically adjusting network configurations is pos-
sible through SDN, which separates the data layer from the
control layer. Routing packets softwarematically allows for in-
telligent decision-making in the network, including bandwidth
shaping, packet prioritization, rerouting, and caching. In the
context of immersive video streaming, SDN can be adopted to
meel stringent requirements in terms of bandwidth and latency.
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Segment routing can play an important role here: this form of
networking allows to prepend a header to packets that contain
a list of instructions (e.g., on forwarding packets to a specific
destination), called a segment [266] (not to be confused with
a DASH segment). Together, segments can create dynamic
and unconstrained network paths, making segment routing
highly responsive to network changes. This is beneficial for
immersive media since guarantees on the network latency,
throughput, and jitter can be given. Thus far, research has
yet to consider the concept as an enabler of immersive video
delivery.

Second, some works already consider the availability of
edge and cloud resources to improve the decoding and ren-
dering of immersive video content [159, 166]. Using these
resources, however, requires smart orchestration of network
and computing resources on the network path, efficiently
allocating network resources to VNFs along the delivery
path (see Figure 32). Current research considers optimization
techniques such as integer linear programming (ILP) for
optimal placement, where objectives aim to minimize the
total cost or end-to-end delay [267]. The problem complexity
grows exponentially with the number of services and network
resources, hampering scalability. Furthermore, a static problem
is typically considered, where the service requirements do
not change over time — an unrealistic assumption in the case
of 6DoF video delivery. Given these limitations, there is a
strong need for advanced ML algorithms for dynamic and
intelligent VNF placement. Such algorithms should be able to
allocate and modify resources to different VNFs based on their
computational or/and traffic load so that the system can adapt
to the end users’ needs. Given the large number of network
and encoding parameters, we envision the application of DL
techniques, such as multilayer neural networks trained with
reinforcement learning (RL), to surge in the next few years.

Finally, the actual processing of immersive media content,
including — but not limited to — transcoding, transrating,
transmuxing, efc., is becoming a vital option thanks to more
computational resources being deployed on the edge, resulting
in a cloud computing continuum that needs to be orchestrated
and utilized efficiently.

C. Scalable and Portable Capturing Devices

As discussed in this tutorial, professional studios can capture
volumetric videos with professional equipment using camera
arrays, some of them relying on 3D sensors or multiview
cameras. This typically requires that cameras are properly
calibrated, lighting is properly set, and potentially adapting
to changes (e.g., objects moving), which might not be fully
automated. The vast amount of data captured with these
camera arrays to ensure high-quality volumetric videos poses
a challenge for real-time processing, e.g., for live events. In
particular, when such systems generate point clouds or meshes,
temporal consistency of their topology is desired, i.e., the
number of points and faces does not change continuously
over time. In addition, some applications require meshes to
be rigged so they can be transformed, such as when animated,
which requires a complex fitting process [268]. Fast algorithms
are required for this purpose and are currently being studied.

Additionally, applications such as volumetric video stream-
ing require more affordable, portable, and fully automated so-
lutions with consumer-grade capturing systems. It is expected
that in the near future, research will be carried out in this field
so that it is not always required to rely on professional studios.

D. Increased Compression Performance

Higher coding efficiency is crucial to enable services for
immersive video. Currently, video codecs are widely used to
compress immersive media, for instance, for omnidirectional
videos or even for 6DoF with V-PCC. With the increas-
ing performance of video codecs, immersive media can be
compressed with a higher compression ratio. However, tools
specifically considering immersive media when developing
new video codecs could further improve their performance
in immersive media compression. The new video coding
standard, ie., versatile video coding (VVC) [269], supports
higher versatility, including immersive media applications.
While VVC supports the compression of omnidirectional
videos, the versatility can be extended to support other types
of immersive media. At the same time, existing codecs are
suboptimal for some immersive media types, such as holo-
graphic media types, due to their substantial difference from
natural images. Therefore, new tfransforms are required to
adopt video codecs to different content types. Furthermore,
video-based coding standards may only sometimes be the best
fit for specific applications. For instance, sparse point clouds
benefit from geometry-based coding, namely geometry-based
PCC (G-PCC) [22], rather than a video-based coding solution.
However, currently, the G-PCC standard only supports intra
prediction, while temporal prediction tools are being inves-
tigated and will undoubtedly be added in the near future.
In addition, meshes are widely used to represent immersive
content instead of point clouds. Although technologies and
some standards exist to compress such a format, time-varying
attribute maps and connectivity information have yet to be
considered or full covered. MPEG has issued a call for pro-
posals for a new mesh compression standard to directly handle
dynamic meshes with time-varying connectivity information
and time-varying attribute maps.

Due to the bulky nature of the immersive media on the one
hand, and the need for personalized and adaptive streaming
of the immersive media on the other, more support for scala-
bility and random access compression of immersive media is
required.

Nowadays, DL-based image/video compression methods
can achieve comparable or even better performance than tradi-
tional coding solutions [270]. In immersive video coding, DL
can be used for (i) end-to-end compression or (ii) improving
existing coding solutions.

An overview of design criteria and outlook on emerging
media compression standards is given in [271]. In particular,
optimization of existing coding tools and end-to-end deep
neural network-based coding [272] are currently subject to re-
search and standardization (e.g., within MPEG). Furthermore,
it suggests a better understanding of the human visual system
(HVS) and the usage of perceptual coding tools. Finally,
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the MPEG immersive video coding standard [273] seems to
become an alternative to other approaches introduced in this
paper, yet to be integrated and validated in end-to-end systems.

E. Evaluation of the User’s Perception

A general problem in the domain of perceptual quality
assessment is that while methods relying on explicit user
feedback (i.e., questionnaires, prompts, efc.) are well estab-
lished, they are also known to suffer from individual biases
(e.g., personal preferences, scale usage) and from the intrusive
nature of questions and prompts in terms of disrupting a per-
son’s experience. The latter is particularly critical in evaluating
immersive media experiences since breaks in presence and
immersion tend to significantly alter one’s experience and sub-
jective evaluation [274]. For this reason, alternative assessment
methods that do not require conscious introspection must be
investigated and integrated into immersive media experience
evaluation. Such less intrusive alternatives include behavioral
(based on observing and tracking user behaviors) as well as
psycho-physiological (based on electroencephalogram (EEG),
electrocardiogram (ECG), eye-tracking, efc.) assessment. Due
to their complementary strengths and weaknesses, combining
these three methodological strands has the potential to generate
novel multi-method approaches that capture the experience and
perception of immersive media at higher levels of accuracy and
validity [33].

Another assessment challenge relates to the highly interac-
tive nature of immersive video. In this medium, viewers are
expected to freely move around within the scene or at least be
able to change gaze direction. This genuine freedom to choose
one’s individual path through the media experience challenges
subjective evaluation design because it requires trading off
external validity and realism (as typically enabled by inter-
active test protocols) against reliability and reproducibility
(as cnabled by passive evaluation protocols, e.g., using pre-
rendered viewport trajectories). To resolve this trade-off, new
subjective assessment methods are required that utilize novel
approaches for analyzing and clustering user attention and
behavior (see [275, 276]).

Finally, with the increasing quality and fidelity of immersive
media delivery, the research community needs to converge
regarding the design of a critical subjective assessment bench-
mark: analog to the Turing test known from the artificial
intelligence (AI) domain, the purpose of this benchmark would
be to determine a system’s ability to provide an immersive
experience that is indistinguishable from reality. We envisage
that this ultimate benchmark draws from research on reality
perception, judgment, and presence and integrates existing pro-
posals in related domains such as computer graphics [277] and
VR [278] in order to determine whether and when immersive
media technology has fully delivered on its promises.
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ACRONYMS

2D two-dimensional. 1, 5, 6, 9, 14, 15, 18, 22, 24, 25, 27, 28,
31

3D three-dimensional. 1-4, 9, 17-19, 22-26, 28, 29, 32

3DoF three degrees of freedom. 1, 3, 5, 8, 11, 20, 23, 28

4D four-dimensional. 26, 28, 29

6DoF six degrees of freedom. 1, 3-6, 8, 16, 19-21, 23, 27-32

ABR adaptive bitrate. 11, 12, 20, 24, 30, 31
ACR absolute category rating. 22, 23
ACR-HR ACR with hidden reference. 23
Al artificial intelligence. 33

AR augmented reality. 23, 27

AVC advanced video coding. 14

BD Bjontegaard delta. 13

CCD charged-coupled device. 25

CDN content delivery network. 7, 11, 13, 14

CGH computer-generated hologram. 26, 27

CGI computer-generated imagery. 2

CMAF common media application format. 7, 14, 30
CMP cubemap projection. 10

CPU central processing unit. 4, 13, 21

CTE chunked transfer encoding. 7

DASH dynamic adaptive streaming over HTTP. 7, 11, 12, 14,
16, 19-21, 24, 27-30, 32

DCR degradation category rating. 22, 23

DCT discrete cosine transform. 26

DL deep learning. 17, 24, 32

DNN deep neural network. 18

DSIS double-stimulus impairment scale. 23

DWT discrete wavelet transform. 26

ECG electrocardiogram. 33
EEG clectroencephalogram. 33
ERP equirectangular projection. 9, 10

FoV field of view. 4
FPS frames per second. 3
FR full reference. 28

G-PCC geometry-based PCC. 32

GAN generative adversarial network. 26
GFT graph Fourier transform. 26

GOP group of pictures. 20

GPU graphics processing unit. 21, 25, 27

HAS HTTP adaptive streaming. 6, 7, 11, 13, 19, 24, 30
HEVC high-efficiency video coding. 10, 14, 16, 21, 26
HLS HTTP live streaming. 7, 14
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HMD head-mounted display. 1, 2, 8, 14-16, 22, 23, 27
HOL head-of-line. 8

HTTP hypertext transfer protocol. 6, 7, 14, 16

HVS human visual system. 32

ICP iterative closest point. 17

IETF Internet Engineering Task Force. 31
ILP integer linear programming. 32

IMU inertial measurement unit. 2

IoT Internet of things. 8

IQA image quality assessment. 28

JPEG joint pictures expert group. 26, 27
KLT Karhunen-Lo¢ve Transform. 26

LiDAR light detection and ranging. 17, 19, 24
LL-DASH low-latency DASH. 7, 14, 21, 31
LL-HLS low-latency HLS. 7

LRM linear regression model. 12

MCU multi-point control unit. 21

MEC multi-access edge computing. 14

ML machine learning. 16, 17, 20, 28, 32

MLP multilayer perceptron. 20

MOQ media over QUIC. 31

MOS mean opinion score. 8, 23

MPD media presentation description. 7, 13, 30

MPEG media pictures expert group. 7, 11, 18, 21, 24, 32, 33
MSS Microsoft smooth streaming. 7

MuLE multidimensional light field encoder. 26

NAT network address translation. 6
NFV network function virtualization. 8, 31
NR no reference. 28

OGH optically generated hologram. 26

PCC point cloud compression. 18, 20, 24

PCL point cloud library. 17

PLCC Pearson linear correlation coefficient. 23
PSNR peak signal-to-noise ratio. 15, 18, 24, 26

QoE quality of experience. 4, 8, 9, 14-16, 22, 23, 30
QP quantization parameter. 15
QPI quantitative phase imaging. 26

RAM random-access memory. 13

RAP random-access point. 5, 13

RL reinforcement learning. 32

RNN recurrent neural network. 14

ROI region of interest. 6

RTMP real-time messaging protocol. 7, 13
RTP real-time transport protocol. 8

RTT round-trip time. 8, 16

S-PSNR sphere-based PSNR. 15

SAMVIQ subjective assessment methodology for video qual-
ity. 23

SDN software-defined networking. 8, 31

SFC service function chain. 8

SIDR shifted instantaneous decode refresh. 13
SLM spatial light modulator. 25

SR super resolution. 18, 19

SSIM structural similarity index measure. 20
SSQ simulator sickness questionnaire. 9, 15, 16

TCP transmission control protocol. 6-8, 21, 24, 30
TLS transport layer security. 8

UDP user datagram protocol. 8, 14, 30
URAP unequal RAP. 13
URL uniform resource locator. 7

V-PCC video-based PCC. 18, 20, 21, 24, 30, 32

VNF virtual network function. 31, 32

VoD video on demand. 1, 6, 8, 9, 11, 13, 16, 22, 24, 30
VR virtual reality. 2, 8, 9, 11, 14, 16, 17, 20, 22, 27, 33
VRET VR exposure therapy. 2

VVC versatile video coding. 32

WebRTC web real-time communication. 8, 24, 30, 31
WLRM weighted LRM. 12
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