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Hier-3D: A Methodology for Physical Hierarchy
Exploration of 3D ICs

Abstract—Hierarchical very-large-scale integration (VLSI) flows
are an understudied yet critical approach to achieving design
closure at giga-scale complexity and gigahertz frequency targets.
This paper proposes a novel hierarchical physical design flow
enabling the building of high-density and commercial-quality
two-tier face-to-face-bonded hierarchical 3D ICs. Complemented
with an automated floorplanning solution, the flow allows for
system-level physical and architectural exploration of 3D designs.
As a result, we significantly reduce the associated manufacturing
cost compared to existing 3D implementation flows and, for the
first time, achieve cost competitiveness against the 2D reference in
large modern designs. Experimental results on complex industrial
and open manycore processors demonstrate in two advanced
nodes that the proposed flow provides major power, performance,
and area/cost (PPAC) improvements of 1.2 -2.2× compared with
2D, where all metrics are improved simultaneously, including up
to 20% power savings.

Index Terms—Hier-3D; Physical Design Methodology; Wafer-
level Bonding; Face-to-Face (F2F) Bonded 3D ICs

I. INTRODUCTION

To deliver the perceived benefits of 3D ICs outside the
purview of research and academia [1], a hierarchical 3D
design flow must subdivide complex, manycore, large-memory
giga-scale designs into sub-blocks, which are independently
synthesized and physically placed-and-routed (P&R) as separate
design units. Then, the resultant mapped sub-blocks are
recombined into subsequent runs of higher-level blocks—a
process repeated as the hierarchy is traversed up to the top
level.

This hierarchical approach offers the following benefits: (1)
Large designs can be implemented with acceptable runtime
and memory usage, where typically significant reuse is made
of (nearly) identical sub-blocks. It is infeasible with today’s
machines and tools to implement industrial-size SoC designs
flat, (2) Concurrent implementation of design tasks can be
split across multiple development teams, and (3) Third-party
intellectual property (IP) blocks can be elegantly integrated as
a natural part of the process flow. While a hierarchical flow
mitigates many issues of a flat approach, numerous tedious and
error-prone tasks are still required to close timing and optimize
PPA at the top-level netlist. These include budgeting for block-
level timing constraints and setting appropriate hierarchical
physical constraints.

EDA vendors’ tools partially manage these remaining issues
in their proposed hierarchical flows that can simplify the imple-
mentation of large 2D designs. However, none of these flows
are currently optimized for 3D hierarchical implementations.
Instead, academic work [2], [3] focuses on sequential die-by-die
approaches, where hierarchy levels are artificially created to use
standard block-level flows where blocks are placed on different
tiers and routed in 3D. Furthermore, in these hierarchical flows,

the blockage of macros makes placement and routing much
harder on higher hierarchy levels than in flat implementations.

Moreover, the physical hierarchy decisions, which include
the floorplanning of blocks in 3D, are usually left to expert
engineers and pre-constrained, like memory-on-logic. These
can significantly impact the power, performance, area, and cost
(PPAC) metrics, the latter recently becoming most important
due to increasing wafer costs. In addition, when designing a 3D
floorplan, having a structured approach that facilitates manual
design decisions can be advantageous. While a human designer
can provide valuable guidance on placing critical components
in a global 3D floorplan, creating a detailed floorplan for all
components can prove challenging. Therefore, there is a strong
need to automate this task for a more streamlined and efficient
design process.

In this work, we propose Hier-3D, a physical design
methodology for 3D bottom-up hierarchical implementations
to co-optimize power, performance, and area/cost combined
design metrics, as modern-day 3D flows do not satisfactorily
address the latter. The key contributions of this paper, an
extension of [4], are as follows:

• We propose a first-of-its-kind hierarchical physical design
flow for 3D designs, which significantly improves the
placement and routing utilization across the 3D stack by
reusing the unassigned silicon area of preceding hierarchy
levels.

• Our Hier-3D flow exploits the inherent logical hierarchy
to enable hierarchical multi-tier standard cell placement,
greatly expanding the design space of 3D ICs. We
demonstrate the flexibility of the proposed implementation
flow by exploring the architecture configuration space for
a selected design.

• We develop a high-level automated solution spanning RTL
clustering, 3D logic-on-logic floorplanning, and holistic
3D physical implementations. This effort enables the
automated architecture design exploration on a multi-
level 3D physical hierarchy while still enabling predefined
placements imposed by manual guidance from the human
designer.

• We demonstrate 1.2-2.2× PPAC improvements and 1.2-
1.5× runtime speedup on three highly diverse open-source
and industrial low-power benchmarks and, for the first
time, cost improvement compared to the 2D reference.
These results are incommensurate with 2D and standard
commercial and academic 3D flows.

II. PRELIMINARIES

This section presents motivations for the proposed approach,
including preliminaries about hierarchical physical implementa-
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tions and current state-of-the-art 3D block-level implementation
methodologies.

A. Hierarchical Methodologies

Designing modern SoCs requires a hierarchical methodology
that spans multiple levels of physical hierarchy, due to the
size and complexity of the designs. Nowadays, using up to
five levels of physical hierarchy for designs with hundreds of
millions of gates is common. However, handling more than
two hierarchy levels significantly increases the implementation
complexity. Without proper automation, this can hurt the quality
of results (QoR). In particular, hierarchical EDA flows typically
must provide the following capabilities:

• Partitioning the design logically and physically into the
top-level design and the various partition blocks. In
industrial-size designs, the highest-level modules typi-
cally exhibit independent functionalities (e.g., CPU core,
graphics processor, memory controller, cache, interconnect
PHY/controller). However, these modules are often too
large to implement flat as a single block. Therefore,
creating physical partitions at lower hierarchy levels where
functionality-based partitioning is less evident may be
necessary. This requires efficient block decomposition and
floorplanning schemes.

• Automatic pin assignment for partitions, which guides the
inter-partitions global routes.

• Feedthrough insertion of nets and buffers into partitions
to allow routing nets to cross over partition areas without
creating significant detours, maintaining the signal’s
integrity and performance.

• Timing budgeting that apportions budgets to blocks. This
is a chicken or the egg problem, as proper budgets depend
on the timing inside the partitions.

• Assembling partitions for top-level sign-off closure.
Commercial EDA tools offer efficient databases (DBs), flows,

and commands for engineers to solve these practical issues.
However, the tools are currently restricted to 2D designs and
were not designed for high-level architectural exploration. They
still involve massive manual effort and exhibit significant
latency.

Moreover, 3D integration introduces a new layout axis
that provides opportunities for optimization but also increases
design complexity. It requires making multiple complex choices
for physical hierarchy and system architecture. Therefore, a
flexible 3D exploration flow that combines human decision-
making with automated assistance for less critical decisions is
necessary to address this complexity. This approach will enable
exploring a vast space of crucial decisions, such as complex
3D floorplanning with multi-tiered block partitioning.

B. 3D Floorplanning

Floorplanning is a crucial step in the VLSI physical design
flow. Large sub-blocks representing IPs, already implemented
partitions, clusters of unplaced standard cells, or memory
macros must be placed on a 2D or 3D canvas at each hierarchy
level. The decisions at that stage are essential as they heavily
dictate the achievable P&R quality at the top level of the chip.

Floorplanning is a revered task of historical importance
in VLSI design automation that led to the development of
many combinatorial and analytical algorithms. Even today,
floorplanning is at the forefront of research, e.g., from the
mixed-sized concurrent placement novelties from academia
and commercial EDA tools [5], [6] and reinforcement learning
(RL)-based macro placement [7].

However, research on 3D floorplanning is more limited. Due
to the limited capabilities of EDA tools and manufacturing
methods for 3D designs, current academic works and industrial
applications are confined to memory-on-logic implementations
with restricted architectural explorations and manual floorplan-
ning [8]. One successful example of constrained memory-on-
logic floorplanning is AMD’s Ryzen V-Cache 3D IC [9], where
L3 caches are stacked above the core units to increase the on-
chip last level cache capacity by 200% while maintaining the
footprint. On the other hand, automated floorplanning research
mainly concentrates on extending classical combinatorial 2D
algorithms to 3D. First, the underlying data structures that
efficiently encode the floorplanning space, e.g., normalized
Polish expressions, sequence pairs, corner block lists, and
O/B*-trees [2], [10], [11], are augmented to include the
third layout axis. Then, transformations on the data structures
are defined, including 3D changes to the floorplan, guided
by optimization methods such as simulated annealing. The
main sub-optimality reasons for these methods come from
the difficulty of defining appropriate cost metrics to judge
the quality of a 3D floorplan that correlates well with actual
physical implementations and optimizing many competing
metrics simultaneously. Moreover, these lack proper feedback
from actual physical implementations. We will fill these gaps
in our paper: the proposed flow for efficient 3D hierarchical
physical implementations is presented in Section III, and
the proposed floorplanning methodology with new 3D cost
components is shown in Section IV.

C. State of 3D flows

In the following, we present two existing state-of-the-art
approaches to implementing face-to-face (F2F) wafer-to-wafer
(W2W) bonded 3D ICs: a die-by-die-like Sequential-2D [12]
and a Macro-3D flow [13]. We believe other available 3D flows
unmatch the 3D awareness enabled by Macro-3D, making it
most advanced towards a future, native 3D flow. The Sequential-
2D is a realization of the well-known die-by-die integration
scheme, which already has extensive tool support in the EDA
industry. Both flows can be used for 3D hierarchical designs
in a traditional black box, bottom-up approach and will serve
as baselines for evaluating our proposed Hier-3D flow.

1) Sequential-2D Flow: The Sequential-2D flow follows
the EDA industry’s standard approach to implementing 3D
designs.
Key Idea. It enables 3D integration through the separate
implementations of a die stack’s top and bottom die with
a standard 2D flow. 3D physical awareness is established by
defining pins inside the core area at valid copper pad locations.
Strengths. This approach does not restrict the partitioning
scheme, as logic and memory cells can be placed in both
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dies. Moreover, it reuses the standard commercial 2D tools
capabilities, modeling the F2F bonding pads as IO pin shapes.
Limitations. Partitioning a design into a top and bottom die
inherently introduces an additional level into the implemen-
tation hierarchy. If it does not follow the natural partitioning
provided by the logical hierarchy, it requires a challenging
additional constraint modeling step that can introduce PPA
degradation. Moreover, sharing both dies’ back-end-of-line
(BEOL) resources would necessitate the insertion of feed-
throughs in the netlist of each die for each shared intra-die
net, an approach highly inflexible and, therefore, impractical
without additional automation efforts.
Hierarchical Design. The Sequential-2D flow can be applied
to a hierarchical design by introducing an additional hierarchy
level into each block and forming a top and bottom sub-blocks.
Implementations of subsequent hierarchy levels must respect
the separated child block implementations in both dies.

2) Macro-3D Flow: Macro-3D provides state-of-the-art PPA
optimization capabilities for 3D ICs in the memory-on-logic
partitioning scheme.
Key Idea. The commercial 2D P&R tool is made aware of the
complete die stack. The pins and routing obstructions of the
memory macros are projected to the corresponding top layer
to yield a holistic memory-on-logic flow. The copper pads are
modeled as regular vias, allowing their automated insertion
by a traditional global router and inherently incorporating the
impact of their parasitics on timing and power.
Strengths. Standard P&R engines can optimize the complete
design for timing closure because of the complete design view
across both dies. Further, the holistic stack view enables a
unified routing step of both dies, allowing metal layer sharing,
i.e., nets with a start- and endpoint in the same die can borrow
metal resources from the other die, resulting in a more uniform
metal layer utilization.
Limitations. The silicon area of the memory and the logic
die are usually very different. Therefore, as W2W-based 3D
integration requires matching die sizes, the Macro-3D flow
increases the resulting manufacturing cost relative to the 2D
die if the lost space cannot be reclaimed.
Hierarchical Design. Macro-3D can implement designs hier-
archically by abstracting sub-blocks as full-block obstructions.
However, by obstructing all metal layers between the front-end-
of-lines (FEOLs) of both dies, routing through the abstraction
is prohibited, and routing over it is impossible.

III. DESIGN METHODOLOGY

We propose our Hier-3D flow to mitigate the issues presented
above. Targeted explicitly for silicon area minimization, it
allows the building of high-density hierarchical commercial-
quality F2F-bonded 3D ICs in a bottom-up fashion. It combines
the previously presented advantages of the Sequential-2D and
Macro-3D flows and introduces new key features to address
their shortcomings, as summarized in Table I.

Further, we propose an automated floorplanning solution
which allows predefined guidance by a human designer to pro-
duce physical hierarchy assignments that can be implemented
using the Hier-3D methodology.
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Fig. 1: The key steps in our Hier-3D flow. The hierarchy depth defines
the number of outer cycles/iterations. Per iteration, synthesized block-
level designs are prepared with 3D floorplanning, 3D placed-and-
routed, and abstracted through our physical and timing constraints
propagation. Finally, the stack and abstractions can be inverted to
enable standard cell placement on the opposite die at the upper
hierarchy level.

The high integration density targeted by Hier-3D has vast
implications on the PPAC characteristics. Indeed, dense block
packing can increase the number of dies per wafer for cost,
eliminate long timing-critical wires and reduce interconnecting
energy by reducing distances. In addition, maintaining a holistic
view across the die stack avoids overconstraining the block
interfaces and enables efficient power optimization capabilities.

A. Flow Overview

Our overall 3D hierarchical flow is represented in Figure 1.
The flow starts with an RTL whose hierarchy is predefined or
created, e.g., from high-level floorplanning. Then, we synthesize
each block within a given hierarchy level using the timing
abstractions of the lower-level sub-blocks. Next, each block
undergoes a 3D floorplanning step that places pins in the
3D stack and preserves routing resources for easier access
and routing in the next step, respectively. Through whitespace
modeling, placement space can also be strategically reserved
for the upper levels. The netlist is subsequently modified
to instantiate the cells of the 3D process design kit (PDK)
corresponding to the tier assignments.

This PDK includes shrunk cover memory macros and is
updated at every level with the newly generated sub-blocks
abstractions. The current block is then implemented using the
timing and physical abstractions of the lower hierarchy levels.
Please note that a given block implementation can span one die
(=2D) or two dies (=3D), depending on the designer’s choice.
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TABLE I: Qualitative comparison among state-of-the-art physical design tools for 3D ICs and this work.

Sequential-2D Macro-3D [13] Hier-3D
key idea implement two 2D dies separately holistic memory-on-logic hierarchy scheme for 3D
3D stack two separate dies double metal stack double metal stack

main strengths reuse of 2D environment, macros
and standard cells in both tiers full utilization of metal resources full utilization of metal resources,

maximize silicon area utilization

main weakness dies are designed separately:
limited optimization

limited to memory-on-logic:
best suited for equal die area

inherently hierarchical:
best suited for large designs

restricted partitioning no yes no
holistic routing no yes yes

utilize unused space no no yes

Next, the resulting implemented block is abstracted with our
physical/timing constraints propagation method, including an
optional whitespace modeling. Finally, the stack and the view
of the abstracted block can be inverted for the next step to
place standard cells on the opposite die. This loop continues
until all hierarchy levels have been implemented.

The rest of this section focuses on the detailed presentation
of the critical steps of the Hier-3D flow.

B. 3D Pin Placement in Double Metal Stack

Our proposed methodology can exploit the tool’s capability
to freely assign a layer (z dimension) and all the block area
(x, y dimensions) when placing the pins. By appropriately
selecting the layers of the pins, the routing of the subsequent
hierarchy level can be guided to utilize a particular die, offering
additional options to plan the routing resource allocation.

Our in-house script automates the pin placement by creating
a staggered pin grid with routing keep-out-zones (KoZ). These
zones force the router to legalize in advance the F2F via
placement on the pin in the following step. The pin grid also
allows a denser signal routing for very wide IO busses, which
would otherwise allocate many routing and placement resources
for fan-out and fan-in only. The KoZ dimensions must be
superior to the F2F pitch and are empirically set to 5× the
F2F pitch in our experiments to allow a design rule check
(DRC)-clean routing solution in advanced nodes.

C. Holistic Routing Resource Budgeting

The routing resources may need to be budgeted individually
by planning and reserving resources at the block level to
ease the routing in the upper hierarchy level. For example,
if the first level utilizes all metal layers in the doubled
stack, very inefficient detours of critical nets through the
die stack might occur in the following hierarchy level. We
circumvent this by constraining the routing of the nets that
do not require both BEOLs’ traversal. In our experiments, our
budgeting balances the routing resources between sequentially
implemented sub-blocks by restricting nets to the die where
standard cells are being placed, through the intermediary of
the Cadence Innovus command set_route_attributes.
However, more complex schemes can also be implemented to
balance the routing resources more finely.
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Fig. 2: Hier-3D’s physical constraint propagation, stack inversion,
and multi-tier cell placement. Top macros are projected as site-sized
cells at the bottom to not obstruct standard cell placement, and IO
pins can be placed anywhere inside the stack to facilitate upper-level
connections (=left). The physical routing/placement information is
propagated to the next level to allow the P&R of the top die with the
inverted stack (=right).

D. Physical/Timing Constraint Propagation

To enable the utilization of unused placement and routing
resources by the P&R engines, we extend the Library Ex-
change Format (LEF) abstracts of implemented sub-blocks
to enumerate all objects and structures in the placement and
routing database instead of wholly occupying all resources in
the sub-block area. The physical abstractions are represented as
“detailed” LEFs with BLOCK class type. In particular, the top
memory macros projected as site-sized virtual cells during the
current block implementation are exported as obstructions on
the OVERLAP layer and as detailed routing obstructions (OBS
statements) for the next hierarchical level, as shown in Figure 2.
The FULLDRC attribute is added to the OBS statements in the
LEF so that the router considers them as real shapes with full
DRC checking rules and cross-coupling considerations. This
reduces signal integrity issues that can degrade the timing of the
sub-blocks. Because single standard cells cannot be propagated
individually due to the shape complexity, which would cause
high memory usage and file size, their shapes can be first
clustered into much larger 2D polygons and saved as rectilinear-
shaped overlaps similar to the memory macros. We present this
approach in the following subsection. This approach enables
a full context view of the current level and implemented sub-
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Fig. 3: Hier-3D’s whitespace modeling. (a) Tiling applied over the
placed shapes of cells (standard, macro, existing OBS on OVERLAP
layer). The coarseness of the user-defined tiling provides a trade-off
between runtime and area recovered. (b) Occupied tiles are merged
into a set of rectilinear polygons to define OVERLAP obstructions for
the detailed LEF.

blocks with reduced memory requirements. Besides, because
the router is now free to route through partitions, we improve
the routing availability without the large runtime downsides of
assembling sub-blocks as partitions. In addition, accurate timing
representations are modeled by timing arcs from post-route
extracted Liberty (LIB) files.

E. Whitespace Modeling

We must consider the placement of standard cells and
macroblocks to enable fully-capable physical information
propagation. This is useful to reserve placement space for
the upper levels (e.g., for feedthrough buffers insertion) or
when sub-blocks exhibit low cell density with large unused
placement regions that should be reclaimed to optimize silicon
area utilization. However, the number of standard cells prohibits
propagating their shapes individually, increasing LEF size and
dramatically slowing down the EDA tool.

Thus, we propose a whitespace modeling method for efficient
placement information propagation, depicted in Figure 3. First,
we reduce the complexity of handling the numerous geometrical
shapes of the standard cells by tiling the floorplan. In practice,
we use tiles of size 20× the site size. This parameter is, however,
tunable, defining the coarseness of the placement information
propagation. From the tiling applied over the floorplan (that is
the bottom die where standard cells were lastly placed), we
build a binary matrix O which encodes the occupation of tiles,

O(i, j) = 1 [∃ cell ∈ tile(i, j)] , (1)

where both standard and macro cells (memories and OBS on
OVERLAP layer from sub-blocks) are considered. Finally, we
rely on the efficient computational geometry primitives inside
the EDA tool principally available for DRC checking to query
objects and process shapes.

The rectangular shapes corresponding to the occupied tiles
are unioned to merge touching shapes, cropped to the floorplan
box FP , yielding a set of connected components with polygon
forms,

P = ∪9 ((∪□O) ∩□ FP ) , (2)

where □ and 9 denote operations yielding rectangles and recti-
linear and convex polygons, respectively. Reducing rectangles

into polygons dramatically decreases the number of shapes to
handle in the LEF for higher runtime scalability in the EDA
tool. Moreover, one can apply a filter F to expose only a
specific part of the placement (e.g., floorplan boundary only),

P̃ = F ∩9 P. (3)

During the implementation of the parent block using the
extracted LEF with whitespace modeling, small holes in
between polygons are filled with hard or soft placement
blockages depending on their size, and computed as

Holes = (FP \□ P̃ ) INSIDE□ FP. (4)

The whitespace modeling simplifies the buffer feedthrough
insertion, even in high-density designs where very little space
can be reclaimed organically. For example, a small area (e.g., a
square of five standard cell rows) can be reserved at the lower
level. This space will be available at the upper level to insert
buffers for over-the-block routes without planning pins and
introducing significant routing blockages for these routes only,
given the block boundary and routing are entirely opened by
the detailed LEF. However, note that routing blockages over
M1-M2 must still be added to leave pin access points for the
inserted buffers.

F. Sequential Multi-Tier Cell Placement

Figure 2 illustrates the standard cell placement on the second
hierarchy level in Hier-3D. Standard cells can utilize the
unused silicon area of the upper die, while in Macro-3D, an
additional silicon area around the block is required, increasing
the resulting floorplan.

To better exploit the capabilities/assumptions of the P&R
tool meant for standard 2D environments during clock tree
synthesis (CTS) and routing, we invert the 3D stack, including
the abstractions, while traversing the implementation hierarchy.
The inversion of a block/stack consists in swapping the top
and bottom layer names inside the LEF/technology LEF
(TECHLEF) files, as Mj bot ↔ Mj top. As a result, standard
cells are always placed on the “bottom” die from the tool’s
perspective. During CTS, tree segment definitions assume that
the top segment is defined to a higher metal layer than the
trunk. However, with a holistic 3D stack, the clock tree should
ideally branch into two trunk and leaf definitions for the two
FEOLs. This assumption remains valid with the inverted stack
during the standard cell placement step. The clock balancing
across tiers is simplified by the bottom-up hierarchical approach
and by placing all standard cells on one tier per step. In
addition, the opposite-tier macros—blocks or memories—have
a balancing requirement automatically integrated inside their
LIB through the max clock tree path attribute. Moreover,
during routing, the assumption of reducing electrical resistance
with higher metal layers holds for the FEOL of the standard
cells currently being placed, leading to a more standard metal
layer configuration and, therefore, more effective use of the
router’s heuristics.

By default, the blocks’ LEF obstructions do not prevent
the P&R engine from placing cells at illegal positions due to
the presence of routed wires from the lower-level hierarchy.
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Fig. 4: An illustration of the RTL clustering algorithm formally
described in Figure 5. Hard blocks form their own cluster in the
resulting flattened netlist, while standard cells are clustered into soft
blocks.

Therefore, we purposely replicate the LEF obstructions by
creating special wire shapes on metal layers where standard
cells have their pin shapes in our target TSMC technologies
(M1 for signal pins and M2 for power and ground rails). Finally,
we force the tool to check for pin DRC violations during cell
placement which then enforces a valid cell placement. We also
insert routing blockages on M1 and M2 over the obstructions
of the OVERLAP layer to model the presence of the internal pin
shapes of the cells in the sub-blocks, which are not propagated
as OBS in the detailed LEF.

IV. AUTOMATED FLOORPLANNING

This section presents an automated approach to obtaining 3D
floorplans. These floorplans are intended to guide designers and
should be revised for high-quality Hier-3D implementations.
Additionally, these floorplans can aid in exploring the system-
level physical hierarchy and architecture of large designs more
effectively in 3D.

In some cases, the original RTL hierarchy may not be
appropriate for deriving the physical implementation hierarchy.
This is because while leaf modules tend to have cells placed
closely in flat approaches, this is not the case when traversing
the implementation hierarchy upwards, as modules tend to be
connected to many others. This situation is prevalent in 3D
designs.

A. Block Generation with RTL Clustering

Typically, the logical hierarchy determined by the RTL
ultimately governs the physical hierarchy. However, adhering
to this approach in certain situations may prove impractical,
mainly when a logical hierarchy is not readily discernible.
Furthermore, floorplanning engines that rely on combinatorial
methods must operate on a simplified version of the netlist to
handle the exponential complexity of the representation space
in the number of blocks.

To overcome these limitations, we propose an automated
clustering of the netlist, illustrated in Figure 5. Our algorithm
clusters modules within the same hierarchy until the cluster’s
area exceeds a threshold. The user can easily specify exceptions
to this process and add predefined guidance on clustering for
some critical components. The netlist is then fully flattened
as depicted in Figure 4. This method heeds that logical

input: netlist N, area threshold t
output: clusters from cluster(N\macros(N), t) ∪ macros(N) ∪

remaining set of unclustered cells
cluster(O, t):
C = ∅
if area(O) ≥ t then

Q = sub-modules(O); sort Q by decreasing area
if area(Q) ≥ t then

for q in Q do
R = sum of area(i) for i after q in Q
C = C ∪ cluster(q, t)
if R < t then

break
end if

end for
else

C = O
end if

else
C = O

end if
return C

Fig. 5: Automated RTL clustering.

connectivity is a good predictor of physical position. As a matter
of fact, flat placers typically follow logical information by
placing cells from the same module together when optimizing
wirelength, timing, power, and congestion.

B. Floorplan Settings

The clustered netlist is translated into Bookshelf format
for the floorplanning engine and Verilog format for im-
plementation in the EDA tool. Soft blocks of standard
cells have an area based on a user-defined target density
(dtarget =

∑
c∈Cstd

a(c)/a(soft block)), with a variable aspect
ratio between 0.5 and 2. Their IO terms are assumed to be
placed in the center. On the other hand, hard macros have fixed
outlines and pins set at their exact locations. We increase the
size of hard macros (padding) by a configurable constant to
leave room for their legalization in the EDA tool. The unplaced
IO pins move along with the floorplan area. They are snapped
to the closest edge on the periphery based on the center of
gravity of the module pins it connects to.

We observe that the wirelength and congestion estimation
constitutes a runtime bottleneck during the combinatorial search.
However, many nets connect the same pair of blocks in a
bus-like structure. Therefore, we perform a net merging step,
speeding up the 3D floorplan exploration by ×5. Nets are
merged using a string hashing of the concatenated endpoint
names sorted with lexicographical order. Merged nets are
associated with a bit-width and weight from the original nets to
estimate accumulated wirelength. The positions of associated
merged pins on the hard blocks are computed as the barycenter
of the original pin locations.

C. Cost Components

Precisely judging the quality of a 3D floorplan without real
physical design feedback is difficult. Therefore, we propose
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Fig. 6: Hier-3D’s automated floorplanning methodology. A Fiduc-
cia–Mattheyses (FM) partitioning [14] produces a min-cut tier
assignment of the blocks. Then, an optimized 3D sequence pair
is generated for the two-level simulated annealing (SA).

simple yet precise high-level components for our cost, including
time-honored PPA representatives and novel features. This cost
will drive our combinatorial floorplan optimization. The latest
macro placement works [6], [7] showed the effectiveness of
relying on such high-level proxies.
Area Cost. The area is one of the essential PPA elements.
The area of the 3D floorplan is defined from the maximum of
the tiers’ sizes. However, there are cases where it is necessary
to fix the outline of the floorplan, especially when decisions
are made early in the design cycle in the physical hierarchical
planning and layout. To that effect, we propose an area cost
favoring outlines fitting inside the target outline (wT , hT ),

carea = a ·
(
1 +

max{0, w − wT }
wT

+
max{0, h− hT }

hT

)2

,

(5)
where the area cost is simply the area a = (w, h) of the 3D
floorplan when there is no target outline.
Macro-Specific Cost. We include a penalty to mimic human-
like floorplan rules for macro handling as in [15]. Because hard
macros are preferably placed on the periphery of the floorplan
to leave space for the standard cell placement and away from
the IO pins to ease pin accessibility, our macro cost is

cmacro =
∑

m: macros

min
s: sides

d(m, s) + OA(m, koz(pins)), (6)

where the first term attracts the macros to the sides of the
floorplan. The second term computes the macro’s overlapping
area OA with the IO pins’ keep-out zones in case IO pins are
preplaced, pushing macros away from the IO pins.
Wirelength Cost. We use the half-perimeter wirelength
(HPWL) as a proxy for routed wirelength. Because timing
is also a crucial metric during floorplanning, we weigh nets in
the wirelength cost with

w(e) =

(
1− slack(e)

T

)2

, (7)

where T is the clock period and the slack of each net e is
extracted with static timing analysis (STA) on the synthesized
netlist [16]. Finally, the wirelength cost is

cHPWL =
∑

e∈Emerged

w(e) · nbits(e) · HPWL(e). (8)

3D Congestion Cost. We estimate congestion by using the
simple and accurate estimation method called rectangular uni-
form wire density (RUDY) [17]. We extend the 2D formulation
specifically for 3D designs by considering the 3D routing and
F2F vias/bumps. The placement canvas is gridded, and for each
bin b the horizontal/vertical (H/V) routing congestion is

RUDYH/V (b) =
∑

e∈Emerged

RISA(e)· nbits(e)
capa.H/V (b)

·OA(e, b)

h/we
·Z(e),

(9)
where capa. is the number of metal resources, Z(e) = 1/2 if the
net e is 3D, otherwise, Z(e) = 1. The smaller Z weight for the
3D nets models the availability of more routing resources from
both tiers (1/2 assumes a 3D mirrored stack). RISA(e) serves
as net weighting based on pin count to improve correlation
with routed wirelength [18].

The H/V congestion maps are then smoothed using a fast
box filter to model that congestion can be alleviated by fanout
routing outside the nets’ bounding boxes. We use a summed-
area table (SAT) or 2D prefix-sum [19] to speed up the filtering.
Each element of an SAT contains the sum of all elements above
and to the left of the original maps,

SAT(i, j) =
∑

0≤r<i

∑
0≤c<j

RUDY(r, c), (10)

which can be computed efficiently in one-pass over the matrix.
The tables are then used to compute the filtered maps by
retrieving the sum of matrix values over any rectangular area
in constant time, as SAT(LowerRight) + SAT(UpperRight) −
SAT(LowerLeft) − SAT(UpperLeft).
F2F Via Density. The RUDY estimation does not model the
pitch and spacing considerations of the F2F connections for the
3D nets. However, it is critical to model these, given that many
DRCs occur when the required 3D interconnection density
rises in our experiments. This is a typical problem when using
traditional 2D global routers for 3D nets [20]. Therefore, we
propose a RUDY-inspired method to model the F2F via density,

DF2F(b) =
∑

e∈Emerged

1 [e cut] · OA(e, b)

area(b)
· nbits(e)

nvias(we, he)
, (11)

where (we, he) is the size of the bounding box of net e, and

nvias(we, he) =
we · he

px · py
.

Finally, our total congestion cost, including routing and F2F
via considerations, is empirically set as

ccong. = 2 · max
b: bins

{DF2F(b)}+max{RUDYH ,RUDYV }

+max{σ(RUDYH), σ(RUDYV )}, (12)

encapsulating the average and standard deviation of the routing
congestion, to balance via density and routing congestion.

D. 3D Sequence Pair

Similarly to [2], we use a 3D sequence pair (SP) to represent
a slicing floorplan solution. The 3D SP maintains one 2D SP per
tier. In each 2D SP, the SP consists of an ordered pair of module
name sequences that encodes geometric relationships between
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blocks. This representation covers many possible floorplans
while offering efficient and flexible perturbations to the solution.

We introduce a few moves that act on the 3D SP to modify
the floorplan. The main difference from a single 2D SP is that
blocks can move from one pair to another in 3D to explore
the 3D partitioning space. We allow the following moves: (1)
Change the aspect ratio of a soft block (standard cells cluster)
picked randomly. Hard macros’ shapes and orientations are
fixed. (2) Swap two blocks picked randomly in a 2D pair in
the positive sequence, negative sequence, or both, (3) Move a
block picked randomly from one tier to another, or swap two
blocks picked randomly between tiers. Note that predefined
partitioning guidance is enabled by rejecting 3D moves to keep
critical components in their initial 2D SP.

E. Floorplan Space Multi-Level Exploration

We use the simulated annealing (SA) algorithm [21] to
explore the floorplan space stochastically. It is regarded as
one of the most essential and successful metaheuristics for
combinatorial optimization. It adopts a hill-climbing technique
to reach global optima.

However, we observed that SA often cannot produce floor-
plans where the number of 3D interconnections is in the
expected range. While many interconnections are only an issue
when the F2F via density is high, the latter is also challenging
to optimize. Therefore, we perform a preliminary area-balanced
Fiduccia–Mattheyses (FM) min-cut partitioning [14] to propose
a good starting point for SA. The FM cost is modified to handle
timing, as in for the HPWL,

cFM =
∑

e∈Emerged

1 [e cut] · w(e) · nbits(e). (13)

Ulterior 3D moves changing the partitioning will be selected
with very low probability during SA and rejected in case of a
large F2F via count degradation.

Recognizing the importance of the starting seed, we run the
FM algorithm multiple times to improve the solution quality
further, starting from numerous random permutations of the
blocks and selecting the solution with the smallest cFM. For
example, for the designs of the MemPool 3D tile, we use 500
random starting seeds. Then, after inserting the blocks in their
respective 2D SPs, we optimize the starting SPs by generating
many random candidates (around 100K for the tile)—fixing
the partitioning—and greedily picking the best configuration
in terms of area and wirelength only.

Optimizing all goals simultaneously during SA is compli-
cated and inefficient, mainly because moves affect the cost in
a non-linear and chaotic way. On the other hand, SA works
better when the objective is “smooth.” Therefore, we devise a
multi-stage SA procedure where different goals are optimized
at each stage, along with a multi-level temperature schedule.

Our multi-level optimization scheme is depicted in Figure 6.
The first stage optimizes the area, wirelength, and macro
costs using a geometrical temperature schedule, Ti = Tα · i

0 ,
with T0 = 100 and α = 0.99. The best solution from that
step is used as the initial configuration for the next stage.
Then, the hard macros and outline are fixed; in practice, by

rejecting moves involving hard macros and by using the outline
penalty in Eq. 5. Again, different user-predefined guidances
are enabled here. The second stage of SA optimizes area,
wirelength, and congestion using an adaptive temperature
schedule, Ti = (∆cost < 0)?Ti−1 : αTi−1, where the final
temperature of the first stage is used as the initial temperature.

The costs of the two SA steps are scalarized to optimize
our multi-objectives as follows,

(i) cost = c̃area + β · c̃HPWL + γ · c̃macro,
(ii) cost = c̃area + µ · c̃HPWL + ρ · c̃cong.,

where the terms are normalized based on the starting floorplan,
and (β, γ, µ, ρ) are weights empirically set to (1, 1, 2, 2).

Running the flow in Figure 6 takes less than a minute on the
3D MemPool tile (50 blocks/2K merged nets) and a few minutes
on the 3D 4-Core Cortex-A53 (369 blocks/5K merged nets).
This scalability allows running this flow multiple times, tuning
its parameters using some optimization method (e.g., [22]–[24])
to achieve better cost metrics.

F. From Floorplan to Implementation

The floorplanning solutions must be transformed for Hier-
3D’s sequential multi-tier hierarchical implementation. First,
we leave the user to define the physical implementation sub-
blocks and implementation dependency tree. Then, according
to these decisions and in an automated fashion, the netlist is
logically partitioned, and timing constraints are generated for
the physical sub-blocks using the appropriate PDK assignments.

Moreover, we automate the placement of 3D bumps for
sub-blocks spanning multiple dies. First, a bump assignment
grid is created based on required F2F via pitch assumptions.
KoZ considerations are also considered when designing the
grid. Then, for every 3D net, we construct a point at the center
of gravity of the pins connected to that net (pin locations are
obtained from the floorplanning solution). A bipartite matching-
based algorithm [20] then assigns points to the bump grid,
minimizing the timing-weighted total displacement. This results
in the definition of the internal “IO” pins of the floorplanned
block. This approach resembles the Sequential-2D one.

Finally, we generate Tcl scripts for floorplanning inside
the commercial EDA tool, defining the floorplan core outline,
placing IO pins and hard macros, and generating soft placement
regions for the standard cell clusters.

V. INDUSTRY BENCHMARKS

A. Architecture Description

To evaluate our proposed flow, we implement MemPool [25]
as a representative example for tiled manycore architectures, the
ARM Cortex-A53 representing ultra-high efficiency commercial
multiprocessors, and the ARM Mali-G52 exemplifying mid-
range graphics and multimedia processors. All three bench-
marks are implemented using two advanced commercial process
technologies. Figure 7 details their very different hierarchical
architectures. The diversity and complexity exhibited by these
experiments illustrate the general applicability of our novel 3D
integration flow for large complex modern multi-core SoCs.

First, MemPool integrates 256 RISC-V cores with 1MiB of
shared scratchpad L1 data memory (SPMs). The group connects
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Fig. 7: Our three hierarchical benchmarks, MemPool [25], ARM
Cortex-A53, and Mali-G52, implemented in TSMC’s 28 and 16 nm
processes.

sixteen tiles through a full crossbar interconnect locally and
to tiles in the top-level cluster through a hierarchical crossbar.
Second, the Cortex-A53 single-core includes a 32KiB L1 d-
cache, an advanced SIMD extension, and an FPU. The four
cores share 1MiB of L2 cache with a snoop control unit (SCU).
Third, the Mali-G52 has one double-pixel shader core, with
two execution engines (EE) with 48 warps each and 128KiB
of L2 memory.

The three designs have 20M, 12M, and 10M gate equivalent
(GE) complexity, respectively, thus requiring a hierarchical
implementation flow to keep tool execution time reasonable.
The complexity per core of the Cortex-A53 is significantly
higher than that of MemPool’s tile and includes a multi-level
cache hierarchy, while MemPool features a software-managed
shared L1 SPM. In contrast, the Mali-G52 is dominated by
a high standard cell logic, while MemPool’s architecture is
interconnect-centric with a large amount of memory.

We normalize our data to avoid revealing proprietary
information for these commercial processors.

B. Default Hierarchy Management

We follow the flow shown in Figure 1 for hierarchy
handling. The hierarchy is defined for MemPool following
the original publication [25], while for the ARM designs, we
use the recommended hierarchical cuts from the reference
documentation, as depicted in Figure 7. Moreover, we apply
the provided timing constraints for each level for the synthesis
and P&Rs.

C. Default Macro Floorplanning

The benchmarks exhibit heavy memory/logic imbalance.
The single-core Cortex-A53 is dominated by standard cells,
while memory macros dominate its upper level. In contrast,

standard cells dominate all hierarchy levels of the Mali-G52
and MemPool.

The 2D floorplans of the MemPool sub-designs are obtained
from the original paper [25]. The 2D floorplans of the ARM
Cortex-A53 and Mali-G52 are industrial-strength based on the
official documentation. Instead, the Sequential-2D and Macro-
3D floorplans are identical and obtained by projecting the 2D
macro placement to the top tier and shrinking the floorplan to
reach iso-logic density with the 2D counterpart. Note that the
dimensions of the instantiated sub-blocks significantly constrain
these highly area-optimized floorplans.

In Hier-3D, we implement the leaf level on the bottom die
and invert the stack in each subsequent level. Note, however,
that our flow further allows the study of diverse and complex
floorplan constellations with different rules to decide which
blocks are 3D or 2D and when and for which sub-blocks
the stack inversion is applied. This enables exploring 3D
logic-on-logic partitioning scenarios without compromising
the theoretical partitioning design space.

VI. EXPERIMENTS

A. Experimental Settings

Our proposed approach can be applied to face-to-back
(F2B) or F2F die stacking. However, we focus on F2F W2W
bonding for our case studies, where two prefabricated wafers
are stacked and bonded together on their top metal layer. While
integration techniques such as die-to-wafer bonding exist to
process differently sized dies [26], W2W bonding offers a
vertical connection pitch of less than 1 µm [27] but requires
two dies with matching dimensions.

We use a commercial TSMC 28 nm, high-κ metal gate,
planar technology to first implement the MemPool design, and
TSMC 16 nm, FinFET Compact technology for the Cortex-A53
and Mali-G52 implementations. We also further implement the
MemPool design using the TSMC 16 nm process. Specifically,
the MemPool design will serve as a vehicle to demonstrate the
effectiveness of Hier-3D’s advanced capabilities of whitespace
modeling, architecture configuration exploration, and 3D/2D
automated floorplanning. In the 3D implementations, where we
assume that the 3D technology is independent of the CMOS
technology, the F2F via size, pitch, resistance, and capacitance
are 0.5 µm×0.5 µm, 1.0 µm, 0.5Ω, and 1 fF, respectively [27].
The 3D BEOL is defined in a custom 3D TECHLEF file where
metal layers are replicated and mirrored, separated by a F2F via
layer of 0.175 µm thickness. In addition, the custom TECHLEF
includes design rules for the double metal stack. Based on a
custom interconnect technology (ICT) file, we simulate the
metal layers’ resistance/capacitance (RC) and copper pads.

We use the in-house tools of Macro-3D [13] and implement
the Sequential-2D flow as the construction of two sequential
2D implementations [12]. For a fair comparison, the 3D
implementations include a (close to) balanced mirrored stack
of the 2D configuration. Furthermore, we implement the
designs with a max-performance target at the typical corner
in all our experiments. Finally, our Hier-3D implementation
flow is automatized with Tcl and Bash scripts inside the
Cadence Innovus environment. The RTL clustering and logical
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partitioning is automatized with Tcl inside Cadence Genus.
The 3D floorplanning engine, including the bump planning
and automated generation of Tcl scripts, is implemented using
Python and C++.

B. Default Implementation Results

To highlight the PPA benefits of Hier-3D from the P&R side
only, we first present the main implementation results using
the default physical hierarchy and manual floorplan settings
shown in Section V.

1) MemPool Design:
a) PPA Results: While the tile implementation PPA

metrics are very similar across all integration flows (manual
floorplans can be seen in Figure 8), the group level is critical in
the implementation of MemPool. The group is highly connected
in the center, where the engine places most of the local

TABLE II: 64-tile MemPool Cluster 2D vs. Sequential-2D vs. Macro-
3D vs. Hier-3D, using TSMC 28 nm process. 7.3M cells & 13.1M
nets & 1536 memory macros. Values are normalized w.r.t. 2D
implementation.

MemPool Cluster 2D Seq-2D Macro-3D Hier-3D

metals used 6 6 (bot) 6 (bot) 6 (bot)
6 (top) 6 (top) 6 (top)

silicon area 1 1.49 1.14 0.75
total WL 1 0.87 0.80 0.71

density (%) bot/top 56.2 50.8/22.6 62.4/29.6 84.4/53.4
buffer count 1 0.91 0.67 0.61
# F2F bumps - 130K 813K 482K
effective freq 1 1.00 1.05 1.42
total power 1 0.98 0.89 0.80

power × delay 1 0.98 0.85 0.57
die cost 1 1.57 1.19 0.79

power perf cost 1 0.65 0.99 2.22
runtime 1 1.09 0.91 0.68

TABLE III: Clock tree metrics of the 16-tile MemPool Group 2D
vs. Sequential-2D vs. Macro-3D vs. Hier-3D, using TSMC 28 nm
process. Values are normalized w.r.t. 2D implementation.

MemPool Group 2D Seq-2D Macro-3D Hier-3D
# clock buffers 1 1.13 0.88 0.60

max depth 1 0.90 0.72 0.46
avg. latency 1 0.95 0.87 0.71
max skew 1 1.33 0.87 0.51

interconnect logic. This creates heavy congestion, degrading
timing, and increasing routing DRCs if the tiles are not spaced
sufficiently. Thus, the floorplan size for Sequential-2D must
be increased to obtain a DRC-clean design due to the reduced
stack awareness compared to the Macro-3D implementation,
as depicted in Figure 9. With our flow, the block-to-block
spacing can instead be reduced to only 5 µm thanks to the
shared BEOL and the use of both FEOLs for standard cells,
providing substantial area and cost reductions. Moreover, this
reduces the net lengths, resulting in significant power reduction
and performance increase.

Table II highlights the huge PPA savings of Hier-3D and
the resulting Power Performance Cost (PPC) metric computed
using the methodology presented in [28] as PPC = Frequency
/ (Die Cost × Power). We see an impressive 2.2× PPC
improvement, where all individual metrics are noticeably
improved, which is quite unique. This result reflects the benefits
of our flow in terms of higher die stack utilization.

b) Clock Tree Comparison: Table III shows Hier-3D
exhibits much better clock tree characteristics. The reduced
floorplan considerably reduces the distances between the clock
source pin and flip-flop sinks, simplifying clock optimization
for the tool.

c) Wirelength Distribution: To study the performance
gain offered by Hier-3D, we extract the wirelength of the nets
in the group and plot the histogram in Figure 10. This shows
an extreme trend towards a general net wirelength reduction
in Hier-3D, indicative of the effectiveness of our flow.

d) PPA Evolution with Hierarchy: We summarize in
Figure 11 the effects of the hierarchy on the implementation
quality of the MemPool design in TSMC 28 nm. Our new flow
exhibits excellent results for all metrics, which improve with
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the complexity of the level: the PPA gap between Hier-3D and
the other flows keeps increasing as we go up in the hierarchy
tree, which makes Hier-3D more and more competitive for
designs with many more levels of hierarchy, which represent the
current industrial trend. Hier-3D embodies a suitable middle-
ground between the benefits of a fully black-boxed hierarchical
methodology (easy timing convergence, runtime scalability)
and a flat approach (better optimization capability).

e) Technology Node Impact: We similarly implement the
MemPool Cluster using TSMC 16 nm process to evaluate the
impact of the technology node on Hier-3D’s results, reported
in Table IV. Technology scaling further accentuates Hier-3D’s
PPC improvement, mainly from the higher reduction in silicon
area, which we attribute to the difference between memory
and logic scaling. Indeed, logic benefits more from innovative
CMOS scaling features than memory, scaling more aggressively
through fin depopulation. In contrast, the minimum size of a
memory bit cell is relatively constant for FinFET-based standard
cell architectures. The relative number of placement sites of
logic vs. memory

area(die) − area(memory)
area(site)

, (14)

increases by 1.2× from 28 nm to 16 nm for the MemPool
Cluster, offering additional silicon area gains. This trend

TABLE IV: 64-tile MemPool Cluster 2D vs. Macro-3D vs. Hier-
3D, using TSMC 16 nm process. Values are normalized w.r.t. 2D
implementation.

MemPool Cluster 2D Macro-3D Hier-3D

metals used 6 6 (bot) 6 (bot)
6 (top) 6 (top)

silicon area 1 1.10 0.62
total WL 1 0.82 0.77

buffer count 1 0.81 0.84
# F2F bumps - 1.06M 450K
effective freq 1 1.12 1.39
total power 1 0.93 0.86

power × delay 1 0.83 0.62
die cost 1 1.16 0.65

power perf cost 1 1.04 2.49
runtime 1 1.31 1.10
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Fig. 12: Placement (to scale) of the Cortex-A53 4-core designs using
TSMC 16 nm process: 2D vs. Macro-3D/Sequential-2D vs. Hier-3D.

will aggravate for 10 nm and below. The tile’s silicon area
requirement for the memory will become larger than the
standard cell area required to implement the logic, which will
cause a lower standard cell density in the logic die with more
whitespace to be recovered in the memory-on-logic partitioning
scheme.

2) Cortex-A53 Design Results: The PPA results of the single-
core implementations are similar across all key metrics. The
Macro-3D/Sequential-2D quad-core floorplan stacks two L2
data macros on top of each other, reducing the design footprint.
However, a significant amount of silicon area in the upper die
remains unused, as shown in Figure 12. The Hier-3D floorplan
instantiates the 2D single-core abstraction, leaving the four
single-core footprints unutilized in the upper die. Therefore,
the top-level memory macros and SCU standard cells can be
placed on top of the single cores, further reducing the silicon
area.

In the quad-core implementation, Hier-3D optimizes all the
limiting competing paths between the SCU standard cells to
the L2 data macros, the single-cores, and the IOs, thanks
to the denser floorplan and increased routability, yielding a
significant frequency increase. Table V shows that the Hier-3D
flow surpasses the Macro-3D flow in frequency and power, with
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TABLE V: 4-Core Cortex-A53 2D vs. Sequential-2D vs. Macro-3D
vs. Hier-3D, using TSMC 16 nm process. 2.4M cells & 2.5M nets &
165 memory macros. Values are normalized w.r.t. 2D implementation.
2D silicon area does not include cutouts.

Cortex-A53 2D Seq-2D Macro-3D Hier-3D

metals used 8 7 (bot) 7 (bot) 6 (bot)
6 (top) 6 (top) 7 (top)

silicon area 1 1.21 1.21 0.95
total WL 1 1.02 0.97 0.94

density (%) bot/top 77.5 73.7/62.6 72.1/62.5 81.0/90.7
buffer count 1 1.15 1.05 0.98
# F2F bumps - 22K 81K 74K
effective freq 1 0.93 0.95 1.33
total power 1 1.14 0.97 0.97

power × delay 1 1.22 1.02 0.73
die cost 1 1.13 1.13 0.91

power perf cost 1 0.78 0.87 1.51
runtime 1 1.12 0.89 0.82
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Fig. 13: Placement (to scale) of the Mali-G52 2-EE designs using
TSMC 16 nm process: 2D vs. Macro-3D/Sequential-2D vs. Hier-3D.

drastic improvement in the silicon area. Again, all composing
metrics are improved simultaneously, providing a total PPC
bump of 51% over the 2D reference.

3) Mali-G52 Design Results: We floorplan the Hier-3D GPU
using a 2D bin-packing method, assigning the upper and lower
edge macros of the 2D floorplan into two separate bins. The
packed macros are placed next to the 2D EE abstractions on
the bottom die, allowing the top-level standard cells to fully
utilize the upper die, as shown in Figure 13.

Table VI shows a 15% increase in frequency while reducing
the total silicon area compared to 2D and a substantial die cost
reduction compared with the two other 3D flows. Modifications
of the macro placement would yield further wire length
reduction and PPC improvements at the expense of the silicon
area gains.

4) Summary: Despite the excellent reference of the timing-
optimized industry-recommended 2D IC floorplans, our im-
plementations consistently achieve a smaller silicon area
while delivering substantial PPC improvements for the three
benchmarks, even though the three designs are pretty different.
Typically, designs display a constant power-delay product,
where a frequency gain increases power. However, compared
to the competing flows, Hier-3D remarkably overcomes this

TABLE VI: 2-Execution Engine Mali-G52 2D vs. Sequential-2D vs.
Macro-3D vs. Hier-3D, using TSMC 16 nm process. 4.4 M cells &
4.8M nets & 141 memory macros. Values are normalized w.r.t. 2D
implementation.

Mali-G52 2D Seq-2D Macro-3D Hier-3D

metals used 8 7 (bot) 7 (bot) 6 (bot)
6 (top) 6 (top) 7 (top)

silicon area 1 1.45 1.45 0.99
total WL 1 0.88 0.86 0.98

density (%) bot/top 77.7 74.5/31.3 74.3/31.3 78.1/70.2
buffer count 1 0.93 0.93 0.97
# F2F bumps - 56K 325K 149K
effective freq 1 0.98 0.95 1.15
total power 1 1.14 0.96 0.98

power × delay 1 1.16 1.01 0.85
die cost 1 1.35 1.35 0.95

power perf cost 1 0.64 0.73 1.24
runtime 1 0.99 1.08 0.81

2D cluster buffers 
in whitespace

group

2D group

tile

buffers 
in whitespace

Fig. 14: Whitespace modeling: opening the group boundary for the
cluster implementation using TSMC 28 nm process (= left), and
reserving a small square in the middle of the tile for the group
implementation using TSMC 16 nm process (= right).

power versus performance trade-off, improving both metrics
simultaneously.

The experiments run on a Linux server with a 24-core
Intel Xeon E5-2640 @ 2.5GHz with 15MiB L3 cache. The
substantial runtime improvements of Hier-3D observed on all
benchmarks—the Mali-G52 P&R runtime is about three to four
days—make it scalable to sizeable modern multi-core SoCs.

C. Advanced Hier-3D Capabilities

Here, we present the advanced capabilities of Hier-3D using
the MemPool design as our test case.

1) Whitespace Modeling: To verify the advantages of our
proposed whitespace modeling, we focus on two 2D examples.
Note that this methodology can be applied similarly to 3D
implementations, but the analysis in 2D helps to understand
the general advantages of whitespace. The LEF modifications
virtually come at no cost, and the additional placement area
opened by the whitespace modeling offers incremental PPA
improvements, as presented in Table VII.

• First, we use whitespace modeling to open up placement
space on the group boundary for the cluster level, as
seen in Figure 14. This allows cells to be placed by the
tool in the whitespace, increasing the tool’s optimization
capabilities for placing these cells and buffers in the
highly congested middle of the floorplan, resulting in
a smaller buffer area and wirelength reduction without a
DRC increase.
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TABLE VII: Whitespace modeling on 2D MemPool Cluster and
Group designs. PPA metrics are for inter-groups and inter-tiles only,
respectively.

Cluster (28 nm) Group (16 nm)MemPool 2D +whitespace 2D +whitespace
WL 1 0.97 1 0.99

buffer count 1 0.96 1 0.78
buffer area 1 0.94 1 0.77

effective freq 1 1.02 1 1.09
power 1 0.96 1 0.95

runtime 1 1 1 1

TABLE VIII: 16-tile MemPool Group Hier-3D architecture explo-
ration, using TSMC 28 nm process. 1.3M cells & 3.3M nets &
384 memory macros. Values are normalized w.r.t. base Hier-3D
implementation.

Hier-3D Hier-3D Hier-3DMemPool Group base repartitioned 2KiB SPMs

metals used 6 (bot) 6 (bot) 6 (bot)
6 (top) 6 (top) 6 (top)

silicon area 1 0.95 1
total WL 1 1.03 1.06

density (%) bot/top 87.1/55.4 84.3/70.6 87.6/71.8
buffer count 1 1.05 1.09
# F2F bumps 106K 161K 149K
effective freq 1 0.96 0.92
total power 1 1.04 1.09

power × delay 1 1.08 1.18
die cost 1 0.95 1

power perf cost 1 0.97 0.84
runtime 1 1.03 1.05

• Second, we purposedly reserve placement resources in
the middle of the tile to allow the tool to directly insert
feedthrough buffers in these locations at the group level,
as seen in Figure 14. This allows long routes overlapping
the tiles to be buffered without detouring outside the tile
blockages, reducing delays. This also provides significant
buffer area reduction as, without whitespace, rerouting
wires to completely avoid the large tile blockages often
results in considerable wire detours, requiring expensive
buffering to manage delay degradation.

2) Architecture Exploration:
a) Hierarchy Restructuring: One of the main benefits of

Hier-3D is that it offers a natural way to explore hierarchy and
its effect on the 3D physical implementation. To that effect, we
restructured the MemPool netlist to move the tile’s instruction
cache logic and 1KiB to the group level—we used Cadence
Genus to restructure the netlist and generate new SDCs, and
manually placed the IO pins. This allows a smaller tile footprint
and better utilization of both tiers, as the tile partitioning
no longer creates a silicon area requirement imbalance. The
layouts of the group implementation are shown in Figure 15,
and the PPA results are tabulated in Table VIII. These show
a reduced footprint area with an increased placement density
while maintaining comparable performance.

b) Memory Size Increase: To study the generality of
the strengths of Hier-3D with more difficult implementation
constraints, we look at the effects of increasing the capacity of
MemPool tile’s shared L1 data memory macros from 1KiB

SPMs

only

repart.

tile

i-cache

macros 

placed 

at group

level 

 

placement

propagation

from tile to

group  

tile

16 SPMs

= 32 KiB / tile

2 KiB SPM

Fig. 15: MemPool physical and logical architecture exploration, using
TSMC 28 nm process. Enlarging the SPMs from 1KiB to 2KiB (=
left). Repartitioning of the tile instruction cache from the tile level to
the group level (= right).

net congestion

mitigation

# F2F vias / net

#
 s

h
a

re
d

 n
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ts

Fig. 16: Comparison of the number of vias used per shared 2D
net in the Hier-3D 16-tile MemPool Group implementations, using
TSMC 28 nm process. The group with 2KiB shared memory macros
(512KiB total) benefits from a non-negligible number of nets
alternating between two tiers, yielding a relief of congestion in the
top tier.

to 2KiB. This increases the utilization of the top tier and
reduces the imbalance at the tile level. However, this does
not require changing the tile footprint and allows to keep the
footprint in our Hier-3D group constant. Similar experiments
with Macro-3D were carried out in [8] with promising results
but lacking the flexibility of Hier-3D logic-on-logic capabilities.
The corresponding placement and routing layouts are shown
in Figure 15. Table VIII shows this change induces limited
degradation in the PPA of the group, despite the much denser
floorplan. The noticeable effect is the abrupt increase in the
number of F2F bumps. The tool can mitigate congestion
using metal layer sharing, i.e., using routing resources of the
bottom tier. This is corroborated by Figure 16, which reports
the number of F2F bumps used per shared net, i.e., a net
that connects two top cells but is routed in the bottom tier.
This positive effect leads to more efficient routes in heavily
congested areas and is enabled by our detailed LEF abstraction.
Overall, the Hier-3D PPA of the group with 2KiB memory
macros is comparatively much superior to the one reported
in [8].

3) Automated Floorplanning: Table IX summarizes the
floorplanning results. While the proposed solutions do not



14

TABLE IX: Verification of our automated floorplanning on the
MemPool single-tile, using TSMC 16 nm process.

2D Hier-3DMemPool Tile manual automated manual automated

metals used 6 6 6 (bot) 6 (bot)
6 (top) 6 (top)

silicon area 1 1.06 1 1
total WL 1 1.09 1 1.4

density (%) bot/top 81.0 73.0 88.0/48.1 68.1/79.0
buffer count 1 1.01 1 0.73
# F2F bumps - - 3K 39K
effective freq 1 1.05 1 1
total power 1 1 1 1.12

power × delay 1 0.95 1 1.12
floorplanning hours + < 1 min hours + < 1 min

effort expertise push-button expertise push-button

Manual Automated

Fig. 17: Placement (to scale) of the MemPool single-tile designs using
TSMC 16 nm process: 2D manual vs. 2D automated floorplan.

consistently beat the manual solutions, our proposed auto-
floorplanning solutions have minimal manual intervention and
faster turnaround time than the human method. Still, our
goal is to quickly generate satisfactory floorplans serving as
starting points that can be refined later. In this regard, the
automated solutions can enable faster system-level simulations
for architectural experiments, which can tolerate less accurate
PPA feedback.

a) 2D: Our automated floorplanning methodology de-
signed for 3D designs is applied to 2D designs by skipping
the partitioning and ignoring the components of the cost
of 3D during SA. As shown in Table IX, the automated
floorplan solution performs better than the manual one. Still,
some area penalty is depicted in Figure 17. This could
theoretically be recovered by manually refining the macro
locations or increasing the target density of soft clusters during
floorplanning, but potentially degrading other essential metrics.

b) 3D: Based on the assignments from the 3D automated
floorplanning, we used Hier-3D to implement the leaf level
as the bottom die and the memory macros of the top die.
Then we proceeded to implement the top die’s standard cells.
Table IX shows that the 3D implementation is not as good as
the manual version, especially regarding the wirelength and the
number of F2F bumps. The latter can be improved by being
more stringent when accepting 3D moves that worsen the cut
during floorplanning. Ultimately, better floorplan solutions can
be obtained from ensembles of optimization runs of candidate
floorplans obtained with SA, a typical approach used in current
industrial flows.

Automated

bottom

top

Manual

top

bottom

Fig. 18: Placement (to scale) of the MemPool single-tile designs using
TSMC 16 nm process: 3D manual vs. 3D automated floorplan.

VII. CONCLUSIONS

We propose a full-chip RTL-to-GDSII physical design
solution that offers a commercial-quality F2F-bonded 3D
IC physical layout for large hierarchical designs. Our flow
includes new critical ideas, such as the routing and placement
constraint propagation in the double metal stack view and
stack inversion, enabling multi-tier cell placement. This design
flow steppingstone vastly expands the design space exploration
options and can help explore physical hierarchy more efficiently
on a multi-level for 3D ICs. Our proposed automated 3D
floorplanning methodology assists in executing this exploration
and reduces its turnaround time. Our extensive experiments on
large complex hierarchical designs of an open manycore pro-
cessor and industrial ARM application and graphics processors
show our flow offers 15 to 43% power × delay reduction and
more than 1.2× combined power, performance, and area/cost
improvements compared with the 2D counterparts.
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