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Abstract

Social media platforms, such as Twitter, can be used to extract information

related to traffic events. Previous works focused mainly on classifying tweets

into predefined categories (i.e., traffic or non-traffic) without many details of

traffic events. However, extracting traffic-related fine-grained information from

tweets is essential to build an intelligent transportation system. In this work,

we address for the first time the problem of detecting traffic events using Twit-

ter as two subtasks: (i) identifying whether a tweet is traffic-related or not as

a text classification subtask, and (ii) extracting more fine-grained information

(i.e., “what”, “when”, “where”, and the “consequence” of the traffic event) as

a slot filling subtask. We also publish two Dutch Traffic Twitter datasets from

Belgium and the Brussels capital region. We propose using deep learning based

methods that process the two subtasks separately or jointly. Experimental re-

sults indicate that the proposed architectures achieve high performance scores

(i.e., more than 95% F1 score) on the constructed datasets for both subtasks,

even in a transfer learning scenario. In addition, incorporating tweet-level infor-

mation in each of the tokens comprising the tweet (for the BERT-based model)

can lead to a performance improvement for the joint setting. Our datasets and

code are available on GitHub1.
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1. Introduction

In smart cities, digital technologies (e.g., Shafiq et al. (2020); Xu et al. (2022))

are exploited to improve the citizens’ quality of life; this includes building ef-

ficient transport networks (Xu & Hu, 2022). Indeed, in several cities around

the world, people experience traffic conditions, such as traffic jams or accidents

that can negatively impact their life (Michael & Blason, 2014; Tom, 2020). By

building an intelligent system that can provide useful online traffic information,

traffic problems can be mitigated. For example, based on real-time traffic in-

formation, travelers can find the best route to their destination, commuters can

avoid traffic jams, and traffic management systems can easily monitor traffic

flows and inform police once there is an incident, so that traffic can be quickly

restored. Thus, it is critical to build a smart system that can detect traffic

events in a city.

The traditional way to detect traffic incidents is to use sensors and cameras

installed in the city. However, developing such devices everywhere in the city is

costly and technically challenging. Nowadays, popular platforms, e.g., Google

Maps, can provide real-time traffic congestion information, such as when and

where traffic congestion is happening, using GPS data. However, these platforms

cannot provide detailed information regarding what happened and what are the

consequences of unusual traffic events, which can be of interest to the public

and the traffic management center of a city. Moreover, scheduled events that

can affect traffic, such as a strike, are normally not included in these platforms.

Crowd-sourcing tools that use social network users can potentially address these

limitations. Waze, for example, is a successful crowd-sourcing navigation app

whose users can report traffic incidents such as accidents, road closures, and

police traps. However, it has two limitations as pointed out by Dabiri & Heaslip

(2019); D’Andrea et al. (2015): (1) Waze users have to log in to the application

and create reports that fall into one of the predefined traffic incident categories.

The events that do not belong to any of the categories will not be reported.
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(2) Waze is designed for private cars. There is no shared information regarding

public transportation. Social media such as Twitter can potentially address the

shortcomings of the aforementioned platforms.

Social media allow users to easily access and provide information regarding

anything at any time. Twitter, one of the most popular social media plat-

forms, has around 300 million monthly active users. The reason that Twitter

is so popular is that its users can share their thoughts through short texts,

which are called tweets. With such a large number of users, Twitter generates a

large amount of data, in particular, 500 million tweets every day (Sayce, 2020).

Since a large amount of content is produced, a lot of recent research has fo-

cused on identifying important patterns in people’s daily life. Twitter has been

used for various kinds of natural language processing tasks, such as sentiment

analysis (Tang et al., 2014; Wang et al., 2020; Naseem et al., 2021) and event

detection (Müller et al., 2020; Ali et al., 2021; Sicilia et al., 2021; Saidi et al.,

2022). This research includes extracting events from social media posts (e.g.,

disasters, emergencies (Castillo, 2016)) and extracting sub-events from other

events (e.g., a football match (Bekoulis et al., 2019)).

Twitter can serve as a valuable complementary traffic information source

that can be used for traffic event detection. Various types of Twitter users can

tweet about traffic events they witnessed or experienced; this includes passengers

(other than the drivers) of cars or public transportation means and pedestrians.

These different kinds of users and accounts of official channels are tweeting

during the day about traffic jams, accidents, and so on. Thus, it is useful to

exploit the traffic-related information that comes from Twitter streams in order

to build smart traffic event detection systems. According to the work of Dabiri

& Heaslip (2019), traffic events can be divided into two categories: recurring and

non-recurring events. Recurring events are those that can be easily predicted by

looking into historical data, such as daily rush hours. Non-recurring events refer

to unpredictable events such as traffic accidents (car crashes), weather-caused

issues, and natural disasters.

The limitation of using Twitter as an information stream for traffic event
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detection is that often people that are directly involved in the traffic event,

especially drivers, are unable to use Twitter to report such an event. However,

since Twitter has a large user base, other people who witness the traffic event

can also post about it to inform others. Naturally, when nobody tweets about

the traffic event, no information will be shared about it on Twitter. This is of

course a limitation that other platforms face as well (e.g., Waze). Nevertheless,

due to the large number of users on Twitter in cities, one can expect that a large

amount of traffic events will be reported. Therefore, exploiting the information

coming from the Twitter stream can provide complementary information for

building a smart traffic event detection system.

In this work, we focus on detecting traffic-related events in Belgium and the

Brussels capital region from the Twitter stream. Specifically, the goal of our

traffic event detection system is to use Twitter to identify traffic events and

determine information like the time (“when”), the location (“where”), the type

(“what”), and the “consequence” of the reported traffic event. To do so, we

collect and annotate two traffic-related Dutch Twitter datasets from Belgium

and the Brussels capital region. Our datasets contain tweet-level information

about whether a tweet is traffic-related or not. In case a tweet is traffic-related,

more fine-grained information is included, that is, “when”, “where”, “what”,

and the “consequence” of the traffic event. We can approach this problem as

a series of two subtasks, namely (i) text classification and (ii) slot filling. The

two subtasks can be considered either as two independent subtasks or can be

addressed jointly. The goal of subtask (i) is to assign a set of predefined cat-

egories (i.e., traffic-related and non-traffic-related) to a textual document (i.e.,

a tweet in our case). For subtask (ii), the goal is to identify text spans inside

the traffic-related tweets that answer the predefined questions defined above.

Researchers have identified the benefit of training related subtasks together in a

joint setting since the interactions between the subtasks are taken into account

(see for instance prior work on multitask learning (Caruana, 1997), entity recog-

nition and relation extraction (Miwa & Bansal, 2016; Bekoulis et al., 2018b),

and tree-structured prediction (Bekoulis et al., 2018a)). Although the traffic de-
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tection system presented in our research focuses on the Brussels capital region

(and in Belgium) and is in Dutch, the principles of the system can be easily ex-

tended to other cities. Our trained traffic detection system can also be used as a

pre-annotation tool to help annotators to annotate a large-scale traffic Twitter

dataset without using a lot of time and effort.

To summarize, the key contributions of our work are as follows:

• We define a new traffic event detection problem. Since there is no bench-

marking dataset in this new research direction, we publish two Dutch

Traffic Twitter datasets (one with tweets from the Brussels capital region

and one with tweets from Belgium) annotated with class- and span-level

information for each tweet (as described above). That way, we promote

the research of traffic event detection from Twitter streams.

• We propose to solve the problem of detecting traffic-related events from

Twitter streams through a series of two subtasks, namely, text classifi-

cation and slot filling. The text classification task aims to assign a class

to a tweet. The slot filling task extracts useful fine-grained information

about traffic events from traffic-related tweets. We experiment with sev-

eral deep learning based architectures (e.g., BERT-based models), and we

solve each subtask either independently or in a joint setting. Furthermore,

we propose the end-to-end Joint Enhanced BERT-based model that can

incorporate the entire information of the tweet into each of its composing

tokens to address the two subtasks jointly. This model is able to out-

perform all other models in the joint setting. Compared to training two

independent models for the two subtasks, the joint model is easier to de-

ploy in real-world applications since it only needs to be trained once and

can detect the overall tweet category and fine-grained information at once.

• We carry out extensive experiments, and our experimental study indicates

the effectiveness of our BERT-based methods over other studied baseline

models (e.g., LSTM-based models) for detecting traffic-related events on

Twitter.
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The rest of this work is organized as follows. Section 2 reviews the related

work on traffic event detection from Twitter streams. Section 3 introduces the

newly defined task of identifying fine-grained traffic information from traffic-

related tweets and describes the annotation process. Section 4 describes the

various proposed architectures for solving the task defined in Section 3. Sec-

tion 5 describes the experimental setup for the proposed methods, introduces

the experimental evaluation for the tasks, and showcases the performance of the

proposed models. Section 6 concludes our work and discusses future research.

2. Related Work

A lot of research in the NLP community has been focused on detecting events

from social media (e.g., Naseem et al. (2019); Bekoulis et al. (2019); Dabiri &

Heaslip (2019); Müller et al. (2020)). There are two types of event detection,

namely, specified and unspecified, as indicated in the work of Saeed et al. (2019).

In specified event detection, the event types are determined upfront, and there

is a wide range of event types, such as earthquake (Sakaki et al., 2010, 2012),

traffic (Ali et al., 2021; Dabiri & Heaslip, 2019), epidemic (Zong et al., 2020;

Müller et al., 2020), sports news (Adedoyin-Olowe et al., 2016), etc. In unspec-

ified event detection, there is no prior information about the event types. The

techniques used for event detection can be classified into two categories: unsu-

pervised and supervised approaches. Unsupervised approaches usually involve

various clustering algorithms (e.g., cluster tweets that contain the top-k burst-

ing keywords from Twitter streams (Li et al., 2012)). Supervised approaches are

mainly used for specified event type detection, and the task is mostly framed

as a text classification (Dabiri & Heaslip, 2019; Alomari et al., 2019) or as a

slot filling problem (Zong et al., 2020). In this paper, we propose new models

for solving the newly defined task of identifying fine-grained information from

traffic-related tweets. We formulate the task of identifying whether a tweet is

traffic-related or not into a text classification problem and the task of identify-

ing fine-grained information as a slot filling problem. In the literature, the text

6



classification and slot filling tasks are often handled in a joint setting, and the

joint task is named as joint intent detection and slot filling (Weld et al., 2021).

The intent is the intention of the speaker in an utterance, and the prediction of

the intent is mostly treated as a text classification task (Larson et al., 2019). In

the following subsections, we present related work on the task of traffic-related

event detection using text classification methods (Section 2.1), recent work on

the slot filling task (Section 2.2), and relevant work on the task of joint intent

detection and slot filling (Section 2.3).

2.1. Traffic Event Detection

The traffic event detection from social media problem is mainly approached as

a text classification task in the literature. Machine learning based methods

have been exploited to tackle the problem, both the traditional (e.g., Support

Vector Machine (SVM) (D’Andrea et al., 2015; Salas et al., 2017), Näıve Bayes

(NB) (Gu et al., 2016), Decision Tree (DT) (Wongcharoen & Senivongse, 2016))

and the deep learning ones (e.g., Convolutional Neural Networks (CNNs) (Dabiri

& Heaslip, 2019; Chen et al., 2019b), Recurrent Neural Networks (RNNs) (Ali

et al., 2021; Dabiri & Heaslip, 2019; Chen et al., 2019b)). Apart from using

social media to detect traffic-related events, works (Wang et al., 2022b; Huang

et al., 2022) also focus on using other information sources like trajectory data

from GPS to detect traffic flows or predict travel time by using deep learning

based models.

Traditional Machine Learning: D’Andrea et al. (2015) proposed a real-

time traffic event monitoring system that can fetch tweets from Italian Twitter

streams and classify them into the appropriate classes: traffic and non-traffic.

They used the Inverse Document Frequency (IDF) technique to represent tweets

as features and built an SVM classifier for classification. Instead of using the

IDF technique, Salas et al. (2017) utilized n-grams as features for an SVM classi-

fier to detect traffic incidents. Gu et al. (2016) presented a real-time architecture

to detect traffic incidents in Twitter streams. In particular, they established a

dictionary of keywords and used the combinations of the keywords to infer traffic
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incidents. Based on that dictionary, a tweet is represented as a high dimensional

binary vector. Those binary vectors are then fed into an NB classifier to identify

whether the corresponding tweets are traffic incidents or not. Wongcharoen &

Senivongse (2016) proposed a model to detect the congestion severity levels from

Twitter streams. In that work, they considered four attributes (i.e., day of the

week, hours of the day, minutes of the hour, and tweets density) to construct a

C4.5 DT for congestion severity level prediction. Wang et al. (2017) introduced

a Latent Dirichlet Allocation (LDA) model called tweet-LDA to extract traffic

alerts and warning topics from Twitter in real-time.

Deep Learning: Zhang et al. (2018) developed a traffic accident detection sys-

tem that uses traffic-related tokens (e.g., accident, car, and crash) as features

to train a Deep Belief Network (DBN). The selection of tokens is based on a co-

efficient that measures the association between the labels (accident or not) and

the tokens. Chen et al. (2019b) built a binary classification system to detect

traffic-related information from Weibo (a Chinese social media platform). They

applied continuous bag-of-words (CBOW) to learn word embeddings to repre-

sent words in microblogs. Then, they used the learned word embeddings as in-

put to CNNs, Long Short-Term Memory (LSTM) networks, and their combined

LSTM-CNN architecture to detect traffic-related microblogs. Dabiri & Heaslip

(2019) proposed to address the traffic event detection problem on Twitter as a

text classification problem using deep learning architectures. In particular, in

their work, they first collected and labeled a traffic-related Twitter dataset from

the USA, which contains three classes: non-traffic (events that are not related to

traffic), traffic incident (non-recurring events such as car crashes, traffic signal

problem, and disabled vehicles), and traffic information & condition (recurring

events such as traffic congestion, daily rush hours, and traffic delays). After

that, they used pre-trained word embedding models (word2vec (Mikolov et al.,

2013) and FastText (Bojanowski et al., 2017)) to get tweet representations.

CNNs and RNNs were deployed on top of the word embeddings layer to extract

traffic-related tweets. Ali et al. (2021) presented an architecture to detect traffic

accidents and analyze traffic conditions directly from social networking data.
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They first collected traffic information from Twitter and Facebook by using a

query-based search engine. Then, Ontologies and Latent Dirichlet Allocation

(OLDA) were used to automatically label each sentence with either the traffic

or the non-traffic class labels. Finally, they used FastText with bidirectional

LSTMs (BiLSTMs) to detect domain-specific event types (e.g., traffic accidents

and traffic jams) and predict user sentiments (i.e., positive, neutral, or nega-

tive) towards those traffic events. Chang et al. (2022) proposed using a CNN

+ LSTM model first to detect traffic-related Weibos with location information

and then using a keyword matching method to identify accident-related Weibos.

Previous work on traffic event detection using social media mainly focuses

on classifying tweets into two classes, traffic-related and non-related (D’Andrea

et al., 2015; Salas et al., 2017; Gu et al., 2016; Zhang et al., 2018; Chen et al.,

2019b; Dabiri & Heaslip, 2019; Ali et al., 2021; Chang et al., 2022). However,

extracting precise information regarding a particular traffic event from tweets

is also very crucial. In this paper, we aim to identify not only the traffic-related

tweets but also the fine-grained information which can provide valuable and ac-

curate information in practical applications. Thus, we address the traffic event

detection problem by (i) determining whether a tweet is traffic-related or not,

and (ii) detecting fine-grained information from tweets. The fine-grained infor-

mation (e.g., “where” or “when” an event has happened) could help us decide

the nature of the event (e.g., whether it is traffic-related or not). Moreover, in

the case that the event is traffic-related, it could also help us to decide whether

we should identify text spans about the fine-grained information for the slot

filling task. We conduct extensive experiments, and we study the two subtasks

(i.e., text classification and slot filling) either separately or in a joint setting

to identify whether there is a benefit by explicitly sharing the layers of the

neural network between the subtasks. The way that we formulate the traffic

event detection problem has not been studied before in the traffic event detec-

tion domain, and we hope that this could boost future research on traffic event

detection using social media.
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2.2. Slot Filling

In Natural Language Understanding (NLU), slot filling is a task whose goal

is to identify spans of text (i.e., the start and the end position) that belong

to predefined classes directly from raw text. The slot filling task is mainly

used in the context of dialog systems where the aim is to retrieve the required

information (i.e., slots) out of the textual description of the dialog.

Slot filling is usually formulated as a sequence labeling task, and neural

network based models have mainly been proposed for solving it. In particu-

lar, Vu (2016) proposed a bidirectional sequential CNN model that predicts the

label for each slot by taking into account the context (i.e., previous and future)

words with respect to the current word and the current word itself. Kurata

et al. (2016) developed the encoder-labeler LSTM that first uses the encoder

LSTM to encode the entire input sequence into a fixed length vector. This

vector is then passed as the initial state to the labeler LSTM to perform the

sequence labeling task. This model is able to predict slot labels while taking

into account the whole information of the input sequence. Zhu & Yu (2017)

introduced the BiLSTM-LSTM, an encoder-decoder model that encodes the in-

put sequence using a BiLSTM and decodes the encoded information using a

unidirectional LSTM. They also designed a so-called focus mechanism that is

able to address the alignment limitation of attention mechanisms (i.e., cannot

operate with a limited amount of data) for sequence labeling. Zhao & Feng

(2018) presented a sequence-to-sequence (Seq2Seq) model along with a pointer

network to improve the slot filling performance. To predict slot values, the

model learns to either copy a word (which may be out-of-vocabulary (OOV))

through a pointer network, or generate a word within the vocabulary through

an attentional Seq2Seq model. Korpusik et al. (2019) compared a set of neu-

ral networks (CNN, RNN, BiLSTM, and Bidirectional Encoder Representations

from Transformers (BERT)) on slot filling tasks. Their results indicate that the

BERT-based models outperform the other studied architectures. Recently, Zong

et al. (2020) published the COVID-19 Twitter Event Corpus, which has 7,500

annotated tweets and includes five event types (TESTED POSITIVE, TESTED
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NEGATIVE, CAN NOT TEST, DEATH, and CURE&PREVENTION). For

each event type, a set of slot types is predefined for slot filling tasks (e.g., for

the TESTED POSITIVE event, the goal is to identify slot types like “who” (i.e.,

who was tested positive), “age” (i.e., the age of the person tested positive), and

“gender” (i.e., the gender of the person tested positive)). They proposed a

BERT-based model that treats each slot filling task in each event type as a bi-

nary classification problem. Compared to their model, in Yang et al. (2020), we

proposed a multilabel BERT-based model that jointly trains all the slot types

for a single event and achieves improved slot filling performance. In this paper,

we modify existing slot filling techniques, and we apply them in the context of

traffic event detection from Twitter streams.

2.3. Joint Intent Detection and Slot Filling

The tasks of intent detection and slot filling have also been studied in a joint

setting. Given an utterance, intent detection aims to identify the intention of

the user (e.g., book a restaurant), and the slot filling task focuses on extracting

text spans that are relevant to that intention (e.g., place of the restaurant,

timeslot). By training the two tasks in a joint setting, the model is able to

learn the inherent relationships between the two tasks of intention detection

and slot filling. This approach can further improve the overall performance of

the joint task and the performance of each independent subtask (Caruana, 1997;

Weld et al., 2021). The two types of methods that are mainly exploited when

solving the two tasks simultaneously are the RNN-based and the attention-based

approaches.

RNN-based: Zhou et al. (2016) proposed a hierarchical LSTM model which

has two LSTM layers. The final hidden state of the bottom LSTM layer is

used for intent detection, while that of the top LSTM layer with a softmax

classifier is used to label the tokens of the input sequence. Hakkani-Tür et al.

(2016) developed a single BiLSTM model that concatenates the hidden states

of the forward and the backward layers of an input token and passes these

concatenated features to a softmax classifier to predict the slot label for that
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token. A special tag is added at the end of the input sequence to capture the

context of the whole sequence and detect the class of the intent. Zhang & Wang

(2016) proposed a bidirectional gated recurrent unit (GRU) architecture that

operates in a similar way to the work of Hakkani-Tür et al. (2016) for labeling

the slots. However, the intent detection is done in a different way since Zhang

& Wang (2016) used a max-pooling layer for all the hidden states, and then

they applied a softmax function on top of the max-pooling layer. Firdaus et al.

(2018) introduced an ensemble model that feeds the outputs of a BiLSTM and

a BiGRU separately into two multi-layer perceptrons (MLP). The outputs of

the MLPs are concatenated, and a softmax classifier is used for predicting the

intent and the slots simultaneously.

Attention-based: Attention mechanisms have also been exploited for jointly

learning the relationships between the two studied subtasks. In particular, Liu

& Lane (2016) proposed an attention-based bidirectional RNN (BRNN) model

that takes the weighted sum of the concatenation of the forward and the back-

ward hidden states as an input to predict the intent and the slots. Li et al. (2018)

proposed the use of a BiLSTM model with a self-attention mechanism (Vaswani

et al., 2017) and a gate mechanism to solve the joint task. One self-attention

mechanism is used at the words and the characters level of the input sequence

to obtain a semantic representation of the input. Then, these representations

are fed into a BiLSTM, and the final hidden state is then used for intent de-

tection. Another self-attention layer is applied between the intermediate states

of the BiLSTM, and the intermediate states are combined with the predicted

intent for labeling the slots. Goo et al. (2018) introduced an attention-based

slot-gated BiLSTM model. In that model, the embeddings of the input sentence

are fed into a BiLSTM, and then a weighted sum of the BiLSTM intermediate

states (i.e., the slot context vector) is used for predicting the slots. The final

state of the BiLSTM (i.e., the intent context vector) is used for predicting the

intent. A slot gate is added to combine the slot context vector with the intent

context vector, and the combined vector is then fed into a softmax to predict

the current slot label. Chen et al. (2019a) proposed a joint BERT model for
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solving the joint task of intent detection and slot filling. The model predicts

the intent based on the final hidden state of the [CLS] token, and the final

hidden state of each token is used for predicting the slot labels. The two tasks

are trained jointly by using a joint loss (i.e., one for each subtask). Our joint

model is conceptually related to that of Chen et al. (2019a). Unlike the work

of Chen et al. (2019a), which does not exploit the use of the intent information,

we incorporate intent information into each token to improve the performance

of the slot filling subtask. This also improves the overall performance of the

joint task (i.e., intent detection and slot filling).

3. Problem Formulation and Datasets

In this section, we define the traffic event detection problem from Twitter

streams and explain that this problem can be addressed by the two subtasks

of text classification and slot filling. We then present the way that the two

datasets (i.e., the one for Belgium and the other for the Brussels capital region)

have been constructed (i.e., data collection and annotation process).

3.1. Subtasks

By formulating the problem into a series of two subtasks (text classification and

slot filling), we give an answer to two questions: (i) whether the given tweet is

traffic-related (or not), and (ii) whether more precise/fine-grained information

can be identified regarding a traffic-related event (from the corresponding tweet).

The two subtasks for a particular tweet are illustrated in Figure 1.

Text Classification: The goal of this subtask is to distinguish traffic-related

tweets from non-traffic-related tweets. Since there are two classes, this subtask,

in its essence, is a binary classification task. That is, given a tweet t, the

classification model f(t) → {0, 1} predicts whether a tweet is traffic-related or

not, where 1 means traffic-related, and 0 means non-traffic-related.

Slot Filling: This subtask aims at extracting fine-grained events from traffic-

related tweets. We are interested in four types of fine-grained events, specifically:
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B-what I-what O B-where I-where O B-cons I-cons I-cons O

Car accident at Belliard Tunnel , right lane blocked .Tweet:

Slots:

Class: Traffic-related

Figure 1: An example tweet where the two subtasks of text classification and

slot filling are illustrated. The output for the text classification problem is the

class label of the tweet (i.e., traffic-related). The output for the slot filling

problem is for each token the slot filling label (e.g., “what”, “where”) encoded

using the BIO encoding scheme.

we are interested in identifying “when” (i.e., the exact time that the traffic-

related event has happened (as described in the corresponding tweet)), “where”

(i.e., the location that the traffic-related event has happened, “what” (i.e., the

type of the incident that has happened, e.g., accident, traffic jam) and the

“consequence” of the aforementioned event (e.g., lane blocked). We frame the

slot filling problem into a sequence labeling task. Given the input sequence of

tokens X = (x1, x2, · · ·, xn), the goal is to map the input sequence X into a

tagged (labeled) sequence Y = (y1, y2, · · ·, yn) of the same length, where n is the

number of tokens within the sequence. We employ the BIO (beginning-inside-

outside) scheme for tagging the sequences, and more details about that can be

found in Figure 1. The BIO scheme is a tagging format for labeling tokens

according to the positions of the tokens within a chunk. The O tag indicates

that the corresponding token is outside of the chunk. The B- prefix before the

tag indicates that the corresponding token is at the beginning of the chunk. The

I- prefix before the tag indicates that the corresponding token is inside a chunk.

Thus, there is the constraint that the tag with the I- prefix should always come

after the tag with the B- prefix or the I- prefix (of the same type, e.g., where).

3.2. Datasets

We have constructed two annotated Dutch datasets from the Twitter stream.

The first one is from Belgium, the “Belgian Traffic Twitter Dataset” (BE
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BE dataset BRU dataset

Class # of tweets

traffic-related 5,386 3,213

non-traffic-related 5,237 3,313

Total 10,623 6,526

Slot # of slots

where 5,305 3,144

what 5,121 2,963

when 5,111 3,030

consequence 3,939 2,551

Table 1: Statistics of the BE dataset (i.e., the Belgian Traffic Twitter Dataset)

and the BRU dataset (i.e., the Brussels Traffic Twitter Dataset).

dataset), and the other is from the Brussels capital region, the “Brussels Traffic

Twitter Dataset” (BRU dataset). In fact, the BRU dataset is part of the BE

dataset, and we extract the BRU dataset out of the BE dataset to study the

traffic events in a particular part of the country, the Brussels capital region.

The tweets within the two datasets range from 2015 to 2019. The two datasets

also contain the annotations that consist of two parts: the class of each tweet

(whether a tweet is traffic-related or not) and the slots of the fine-grained in-

formation (i.e., ‘‘when”, “where”, “what”, and “consequence”). In Figure 2, an

example of an annotated tweet is illustrated.

Data Collection: Dutch and French are the two most common languages used

in Belgium. Since Brussels is an international city, English is also commonly

used. Thus, we decided to track tweets in Dutch, French, and English from

Belgium. The first step in collecting a large Twitter dataset from Belgium is

to use the Twitter API to harvest tweets from Belgium in the specified time

period (i.e., from 2015 to 2019). Similar to the work of Dabiri & Heaslip (2019),

where they establish a list of traffic-related keywords to filter out traffic-related

tweets, we establish our own traffic-related keywords in Dutch, French, and En-

glish. Detailed information can be found on our GitHub codebase2. We then use

2https://github.com/Glovesme/TrafficEventDetectionBE
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what where cons

Car accident at Belliard Tunnel , right lane blocked .Tweet:

Slots:

Class: Traffic-related

Figure 2: An example of an annotated tweet from our dataset. This is not a

fictitious tweet but rather a tweet that we translate from Dutch to English. An

annotated tweet contains three parts: the tweet text, the class of the tweet, and

different tweet slots.

these keywords on the harvested tweets, and we obtain potential traffic-related

tweets in the aforementioned three languages. To investigate the possible dis-

tribution of these potential traffic-related tweets regarding the three languages,

we translate all the non-English tweets into English (using the translators API

for Python) and then build a CNN classifier based on the US traffic dataset

from Dabiri & Heaslip (2019). After manually investigating the results from the

CNN classifier, we identify that the majority of the real traffic-related tweets

out of all the potential traffic-related tweets come from Dutch speakers. Thus,

this is why we focus on building a high-quality Dutch annotated Twitter dataset

for Belgium.

Data Annotation: There are two tasks in the annotation process. The first

task is identifying whether a given tweet is traffic-related. The traffic-related

tweets can report non-recurring events or recurring events. The recurring events

are the events that are predictable, such as traffic congestion, traffic delay, and

daily rush hours. The non-recurring events include unpredictable events such

as car accidents, traffic signal problems, and disabled vehicles. The second task

is to find relevant information (e.g., “when”, “where”) from tweets identified

as traffic-related. In order to easily annotate our dataset, we used the TagTog

platform3, which is an annotation platform that can improve the annotation

experience. Apart from using the annotation platform, we also hired a native

3https://www.tagtog.net/

16

https://www.tagtog.net/


Dutch speaker to help us with the annotation. At the end of the annotation

process, we also manually checked the annotation results. The BE dataset

contains 10,623 tweets, and the BRU dataset (a part of the BE dataset from

the Brussels capital region) contains 6,526 annotated tweets as also reported

in Table 1. The problem that we are going to address in this paper is not a

straightforward problem to solve (e.g., with a predefined set of keywords). This

is because when we pre-filter a large fraction of the tweets with a predefined

keyword set, these tweets belong to the traffic-related class. However, when

we annotate them, these tweets belong to the non-traffic-related class. Our

datasets can help annotators create a large-scale traffic Twitter dataset for the

two subtasks. Once a deep model is trained on our datasets, annotators can

then use it to filter out useful information about tweets (i.e., the tweet class and

the slots) to save time and effort for the annotation process.

4. Proposed Architectures

In this section, we describe the proposed approaches for solving the two subtasks

(i.e., text classification and slot filling) either independently or in a joint setting.

In Section 4.1, we introduce the three main components (i.e., CNN, LSTM, and

BERT) that are mainly exploited by the independent (i.e., the two subtasks

are considered separately in Section 4.2) and the joint (i.e., the two subtasks

are considered in a joint setting in Section 4.3) models for solving the traffic

event detection problem. The joint models are used based on the observation

that there are connections between a traffic-related tweet and the fine-grained

information (e.g., “when”, “where”, “what”, and “consequence”). Apart from

that, we also propose enhanced joint models that can incorporate the whole

tweet information into each token in the tweet to boost the overall performance.

4.1. Core Components

4.1.1. Neural-based Methods

Convolutional Neural Networks (CNNs): CNNs have been mainly ex-

ploited in computer vision tasks (e.g., image classification (Krizhevsky et al.,
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2012; Girshick, 2015; He et al., 2020), semantic segmentation (Wang et al.,

2018), image super-resolution (Zhang et al., 2020), etc.). However, CNNs have

also been extensively used in NLP for tasks, such as text classification (Kim,

2014), sequence labeling (Xu et al., 2018), etc., due to their ability to extract

n-gram features. This kind of model consists of a number of convolutional filters

(of various sizes) that are applied on top of the embedding layer. In this work,

CNNs are mainly used as a core component for the text classification subtask.

Long Short-Term Memory (LSTMs): LSTMs, a variant of Recurrent Neu-

ral Networks (RNNs) (Hochreiter & Schmidhuber, 1997), can handle data of

sequential nature (i.e., text) and showcase state-of-the-art performance in a

number of NLP tasks (e.g., text classification (Zhou et al., 2015), sequence la-

beling (Lu et al., 2019), fact checking (Rashkin et al., 2017; Bekoulis et al.,

2020)). RNNs suffer from the vanishing gradient problem, which harms conver-

gence when dealing with long input sequences. LSTMs use modifications, such

as the cell state (i.e., the memory of LSTM), to overcome the vanishing gradient

problem. The standard LSTM processes the input sequence from left to right,

and for each input token, LSTMs produce a hidden state as output that takes

the previous input tokens into account. LSTMs can also be applied from right to

left; thus, bidirectional LSTMs (BiLSTMs) can obtain bidirectional information

for each input token.

4.1.2. BERT

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,

2019) is a Transformer-based language representation model (Vaswani et al.,

2017), where multiple Transformer encoders are stacked one on top of the other

and are pre-trained on large corpora. For each input sequence, a special clas-

sification token [CLS] is added at the beginning, and a special token [SEP] is

added at the end of each sentence. The outputs of the BERT model are high-

level deep bidirectional contextual representations of the input tokens.

BERT-based Pre-trained Models for the Dutch Language
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Since both constructed datasets are in Dutch, we use four BERT-based models

that are pre-trained on Dutch data. The four pre-trained Dutch models are the

following: BERTje (de Vries et al., 2019), RobBERT (Delobelle et al., 2020),

mBERT (Devlin et al., 2019), and XLM-RoBERTa (Conneau et al., 2020).

BERTje is a Dutch BERT model that is pre-trained on a large and diverse

Dutch dataset of 2.4 billion tokens from Dutch Books, TwNC (Ordelman et al.,

2007), SoNaR-500 (Oostdijk et al., 2013), Web news and Wikipedia.

RobBERT is a Dutch language model based on the Robustly Optimized BERT

method (RoBERTa (Liu et al., 2019)) and is pre-trained on the Dutch part of

the OSCAR corpus with 6.6 billion words.

mBERT is a multilingual BERT model, which also includes the Dutch lan-

guage. The Dutch part of the model is only pre-trained on Dutch Wikipedia

text.

XLM-RoBERTa is a multilingual model trained in 100 different languages,

which includes Dutch, and is based on RoBERTa.

4.2. Independent Models

In this subsection, we describe the models that address the two subtasks inde-

pendently.

4.2.1. Text Classification

CNN: The CNN model (Figure 3) consists of four parts: the word embeddings

layer, a convolutional layer, a max pooling layer, and a fully connected layer.

Specifically, at the word embeddings layer, the input tokens are mapped to word

embeddings (i.e., word vectors). Then the convolutional layer extracts n-gram

features from the input, and those features are further processed by a max

pooling layer. Finally, the processed features are passed to the fully connected

layer to make class predictions for the input sequence.

LSTM: The LSTM model shown in Figure 4 consists of three parts: the word

embeddings layer, a BiLSTM layer, and a softmax layer. The input sequence is

converted into pre-trained word embeddings. Then, the word embeddings are

19



processed by the BiLSTM layer, and the final hidden states of the forward and

the backward LSTMs are concatenated. The concatenated hidden states are

then passed to a softmax layer to predict the class of the input sequence.

CNN + LSTM (Chang et al., 2022): This model combines Convolutional

Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. It

consists of four parts: the word embeddings layer, a CNN layer, an LSTM layer,

and a softmax layer. The CNN extracts features from the word embeddings of

the input text. Then these features are passed to the LSTM part of the model

to get the input text representation, which is finally fed into the softmax layer

to obtain the probability distribution over the classes.

BERT-based Model: The hidden state of the [CLS] tag encodes the in-

formation of the whole input sequence (Devlin et al., 2019). Thus, we use

the [CLS] representation to represent the whole sentence for the text classifica-

tion task. The architecture of the BERT-based model is shown in Figure 5. To

predict the class of the input sequence, a softmax layer is applied on top of the

hidden state of the [CLS] token:

yc = softmax(W ch[cls] + bc), (1)

where yc is the prediction of the input sequence, W c is the weight matrix, h[cls]

is the hidden state of the special [CLS] token, and bc is the bias vector.

4.2.2. Slot Filling

We treat the slot filling task as a sequence labeling problem. For each token

within a tweet, we assign the slot label with the highest probability.

LSTM: This model has a similar structure to the LSTM model presented for

the text classification task in Section 4.2.1. However, in the slot filling case, the

concatenated BiLSTM hidden states for each input token are used to predict

the tag for each token, as shown in Figure 6.

LSTM + CRF: Instead of using a softmax layer on top of the LSTM model

that independently predicts the tag for each input token, a conditional random

field (CRF) layer (Lample et al., 2016) is employed to capture the relationships
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between neighboring tokens. The architecture is shown in Figure 6.

BERT-based Model: Figure 7 shows the structure of the BERT-based model

for slot filling. The hidden states of the input tokens are used for labeling the

tokens. A softmax classifier is added over the hidden state of each corresponding

input token to predict the corresponding tag. The BERT-based models use the

WordPiece tokenizer (Wu et al., 2016) and can partition one word into several

sub-tokens according to the vocabulary of the tokenizer. However, the model

itself should output one prediction per word/token, and each token might be

split into several sub-tokens. To handle this issue, we only make predictions for

the first sub-token of each token, in the case that a token has been split into

multiple sub-tokens (by the WordPiece tokenizer), or for the token itself, in the

case that the whole token has been retained. The equation for the slot filling

task is:

ysi = softmax(W shi + bs), i ∈ 1...N, (2)

where ysi is the tag prediction of the token xi, W
s is the weight matrix, hi is

the hidden state of the first sub-token of xi, and bs is the bias vector.

4.3. Joint Models

In this subsection, we describe the joint models for the two subtasks:

Slot-Gated (Goo et al., 2018): Built on top of an attention-based BiLSTM

architecture, the Slot-Gated model has a slot-gated mechanism, which is de-

signed to learn the relationship between the intent and the slot context vectors

to improve the performance of the slot filling task.

SF-ID Network (E et al., 2019): Based also on BiLSTMs, the SF-ID network

can directly establish connections between the intent detection and the slot

filling subtasks. In addition, an iteration mechanism is designed to enhance the

interrelated connections between the intent and the slots.

Capsule-NLU (Zhang et al., 2019): This model uses a dynamic routing-by-

agreement schema to tackle the intent detection and the slot filling subtasks.

As a result, the model is able to preserve the hierarchical relationship between

the two subtasks.
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Joint BERT (Chen et al., 2019a): The model, depicted in Figure 8, uses the

hidden state of the [CLS] token to perform the intent detection subtask, and

the slot filling subtask on the hidden states of the other non-special tokens (i.e.,

the tokens of the sentence). The two tasks are jointly trained by adopting a

joint loss function.

Joint Enhanced BERT-based Model: While the previous models have al-

ready been proposed in the literature, in what follows, we describe our proposed

end-to-end model, the Joint Enhanced BERT-based model, for the joint task.

Compared to the independent models for the two subtasks, this end-to-end

model is able to address the two subtasks simultaneously and can be deployed

very easily by training only once instead of twice. Figure 9 shows the structure

of our proposed model. This model takes into account the two following facts:

(i) the class of a tweet (i.e., traffic-related or not) is relevant to the slot filling

problem (i.e., identify more fine-grained information, e.g., “when”, “where”),

and vice versa, and (ii) the hidden state of the [CLS] contains the informa-

tion of the entire input sequence. Compared to the joint BERT model (Chen

et al., 2019a), which only trains the two tasks together using a joint loss without

modeling the relationships between them, we incorporate the information of the

entire input sequence of the tweet text into each token to improve the perfor-

mance of the model. For each non-special token, we concatenate its hidden state

with the hidden state of the [CLS] tag. The concatenation is used to predict

the label for the token, similar to the way that we were using the hidden state

of the token in the standard Joint BERT model (described above):

h
′

i = [hi, h[cls]], (3)

ys
′

i = softmax(W s′h
′

i + bs
′
), i ∈ 1...N, (4)

where h
′

i is the concatenation of the hidden states of the ith token and the [CLS] to-

ken, ys
′

i is the tag prediction of the token xi, W
s′ is the weight matrix, h

′

i is the

hidden state of the first sub-token of xi, and bs
′
is the bias vector. The goal of
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this joint enhanced model is to maximize the conditional probability:

p(yc, ys
′
|X) = p(yc|X)

N∏
i=1

p(ys
′

i |X), (5)

where yc is the prediction of the input sequence, ys
′

i is the tag prediction of the

token xi, and X is the input sequence. We use Equation 1 to predict the class

of a tweet.

The
weather

in
Brussels

is
great

today
!

Word embeddings Convolutional layer Max pooling layer Fully connected layer

Figure 3: Schema of a CNN model for text classification. The model has four

parts: input word embeddings, a convolutional layer, a max pooling layer, and

a fully connected layer.

LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

Softmax

Word
embeddings

Bi-LSTM
layer

Concatnation

Softmax layer

Forward
LSTM

Backward
LSTM

x1 x2 x3 x4 x5 x6

Figure 4: Schema of an LSTM model for text classification. This model consists

of three parts: word embeddings, a BiLSTM layer, and a softmax layer.
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BERT-based model

[CLS] AccidentThere left lane blocked

C TiT1 Tn-2 Tn-1 Tn

[SEP]

T[SEP]
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classifier
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related
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Softmax 
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Input 
Sequence
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Figure 5: BERT-based model for text classification. The model consists of three

parts, the input sequence (yellow rectangles), the BERT-based model (the blue

rectangle), and the softmax layer (the red rectangle). The green rectangles

represent the hidden states of the corresponding input tokens. The class of the

input sequence is predicted by applying a softmax layer on top of the hidden

state of the [CLS] token. The predicted class is shown in the purple rectangle.

LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

Word
embeddings

Bi-LSTM
layer

Context 
representation

Softmax layer
or CRF layer o B-where I-where o B-when I-when

Forward
LSTM

Backward
LSTM

Tags

x1 x2 x3 x4 x5

h2

x6

h1 h3 h4 h5 h6

Figure 6: LSTM model for slot filling. This model has three parts: a word

embedding layer, a BiLSTM layer, and a softmax or CRF layer. The input

sequence is transformed into word embeddings, the embeddings are then passed

to a BilSTM layer, the BiLSTM layer concatenates the hidden states of the

forward and the backward LSTMs for each token, and the concatenated features

are used in a softmax or CRF layer to predict the tag for each input token.
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BERT-based model
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T[SEP]
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Figure 7: BERT-based model for slot filling. The model consists of the input

sequence (yellow rectangles), the BERT-based model (the blue rectangle), and

a softmax layer (red rectangles). Each green rectangle contains the hidden state

of the corresponding input token. Each grey rectangle is the predicted tag for

the corresponding token.
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T[SEP]
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Figure 8: Joint BERT. The model combines the architectures of the indepen-

dent BERT-based models for text classification and slot filling. The orange

rectangle is the predicted class for the input sequence, and each grey rectangle

is the predicted tag for the corresponding input token. For this model, the text

classification and slot filling tasks are jointly trained.
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BERT-based model
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T[SEP]
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Figure 9: Joint Enhanced BERT-based model for joint text classification and

slot filling. This model is similar to the joint BERT architecture but the

[CLS] hidden state is concatenated to each of the hidden states of the to-

kens of the sentence. The red arrows connect the contextual information of

the sentence with each non-special token. Note that the text classification and

slot filling tasks are jointly trained.
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5. Experiments and Results

In this section, we describe (i) the evaluation metrics for all the experimented

methods, (ii) the baseline models, (iii) the experimental settings, and (iv) the

experimental environment for the various models. Finally, we evaluate the per-

formance of the proposed architectures for solving the traffic event detection

problem, and we discuss the results.

5.1. Evaluation Metrics

We adopt three evaluation metrics for evaluating the different models on the

constructed datasets. We use the F1 score for the two subtasks of text clas-

sification and slot filling, denoted as F1c and F1s, respectively. For the joint

text classification and slot filling, the sentence-level semantic frame accuracy

(SenAcc) score is calculated, indicating the proportion of sentences (out of all

sentences) that have been correctly classified. In order for a sentence to be cor-

rect, both the class and the slots of the sentence should be identified correctly.

5.2. Baselines

We select the non-BERT-based models as the baseline models for the two inde-

pendent subtasks and the joint task.

5.2.1. Text Classification

For the text classification task, CNN, LSTM, and CNN + LSTM are chosen

as the baseline models. TheCNN and LSTMmodels are exploited in the state-

of-the-art traffic event detection work of Dabiri & Heaslip (2019) to identify

traffic-related tweets. The CNN + LSTM model is used in the state-of-the-

art method of Chang et al. (2022) to detect traffic-related Weibos. The details

of these models are described in 4.2.1.

5.2.2. Slot Filling

In terms of the slot filling task for extracting fine-grained traffic-related informa-

tion (i.e., “when”, “where”, “what”, and the “consequence” of the traffic event)
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from tweets, LSTM and LSTM + CRF, described in 4.2.2, are selected as

the baseline models.

5.2.3. Joint Text Classification and Slot Filling

As for the joint text classification and slot filling task, we use LSTM-based

models (Slot-Gated (Goo et al., 2018), SF-ID Network (E et al., 2019),

Capsule-NLU (Zhang et al., 2019)), and Joint BERT (Chen et al., 2019a)

as the baseline models. The details of them are included in 4.3.

5.3. Experimental Settings

We randomly split the two datasets (i.e., BRU and BE); specifically, we keep

60% for training, 20% for validation, and 20% for the test sets for each of the

datasets. Since the URLs do not provide useful information for traffic events,

we remove all the URLs from the tweets, similar to the work of Dabiri & Heaslip

(2019).

For the non-BERT-based models such as CNN, LSTM for text classification,

CNN + LSTM, LSTM for slot filling, and LSTM + CRF, we use the 160-

dimensional Dutch word embeddings called Roularta (Tulkens et al., 2016) to

convert tweet text into word embeddings, and we set the batch size of these

models to 64 or 128. For the CNN model, the filters in the convolutional layer

have a size of n × 160, where n = [3, 4, 5]. The number of out channels of the

convolutional layer is 100. We apply dropout with a rate of 0.5 on the outputs

of the max pooling layer. All the LSTM models for text classification and

slot filling have one BiLSTM layer. In the LSTM model for text classification,

the input and hidden dimensions of the BiLSTM layer are set to 100 and 256,

respectively. Dropout is applied on the output of the BiLSTM layer with a rate

of 0.5. For the CNN + LSTM model, the CNN part has the same convolutional

layer setting as the CNN model, and the input and hidden dimensions of the

BiLSTM layer in the LSTM part are set to 100 and 128, respectively. The

dropout rate is 0.5 for the output of the BiLSTM layer of the LSTM part. For

these three models (i.e., CNN, LSTM, and CNN + LSTM for text classification),
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the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001 is applied

to update the model parameters. For the LSTM and the LSTM + CRF models

for slot filling, the input and hidden dimensions of the BiLSTM layer are 160 and

100, respectively. The stochastic gradient descent algorithm with a learning rate

of 0.015 is utilized for updating the model parameters. The dropout rate is set

to 0.5 for the output of the BiLSTM layer. For the Slot-Gated, SF-ID Network,

and Capsule-NLU models, we apply the Roularta embeddings (Tulkens et al.,

2016), and use their default settings as described in their papers (Goo et al.,

2018; E et al., 2019; Zhang et al., 2019).

For the BERT-based models, the batch size is set to 32 or 64. The dropout

rate is 0.1. The number of epochs is selected from the values 10, 15, 20, 25,

30, and 40. The BERT-based models use the pretrained Dutch BERT-based

models (i.e., BERTje (de Vries et al., 2019), RobBERT (Delobelle et al., 2020),

mBERT (Devlin et al., 2019), and XLM-RoBERTa (Conneau et al., 2020)).

Adam (Kingma & Ba, 2015) is employed to optimize the models’ parameters

with an initial learning rate of 1e-4 and 5e-5 for the joint and the independent

models, respectively.

5.4. Experimental Environment

Regarding the software environment, we implemented our work using PyTorch

1.7.1, Transformers 4.2.2, and Python 3.8.5 on Ubuntu 20.04. The server used

to perform all the experiments has the following specifications: AMD Ryzen 9

3950X 16-core processor, 64GB of RAM, and GeForce RTX 3090. The training

times for different BERT-based models are reported in Table 2.

5.5. Results

5.5.1. Independent Models

Table 3 reports the performance of the different models for the tasks of text

classification and slot filling on the BRU and the BE datasets, where the two

tasks are considered independently. We also report transfer learning experi-

ments (see the BRU→BE column in Table 3 and the transfer learning part of
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TC SF Joint Task

Model BUR BE BRU BE BRU BE

BERTje 297 484 300 493 297 492

RobBERT 325 527 328 537 323 534

mBERT 313 515 317 520 313 524

XLM-RoBERTa 413 667 412 675 407 654

Table 2: The training time in seconds for different BERT-based models for the

two independent subtasks and the joint task. TC refers to the text classification

task, SF refers to the slot filling task, and the Joint Task refers to the joint text

classification and slot filling task. The reported training time for the joint task

is for the Enhanced Joint BERT-based models. The training times for the

Enhanced models and the non-Enhanced models are almost the same.

this section for more details). For the text classification task, based on the re-

sults, we observe that the BERTje model performs best in terms of F1c score

on both datasets. In particular, BERTje scores 98.56% and 97.31% on the BRU

and the BE datasets, respectively. The BERT-based models perform better or

on par with the non-BERT-based models on both datasets. The reason could be

that BERT-based models can better encode the contextual information of the

whole input sequence. On the BRU dataset, all the models achieve an accuracy

score of around 98%, and for the BE dataset, the score is around 96%. On the

slot filling task, the LSTM + CRF model outperforms all the other models on

both datasets, and the score is 98.18% on the BRU dataset and 97.22% on the

BE dataset. On the BRU dataset, the rest of the models achieve an F1 score of

around 97%. On the BE dataset, the BERTje has a similar F1 score (97.18%)

to the LSTM + CRF model. The rest of the models achieve an F1 score of

around 96%. On both datasets, the BERT-based models can perform on par

with the non-BERT-based models. We notice that the LSTM + CRF models

have better performance compared to the models that rely only on LSTMs on

both datasets. This is due to the fact that the CRF layer can take into account
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F1c F1s

Model BRU BE BRU→BE BRU BE BRU→BE
N
eu

ra
l-

b
as
ed

CNN 97.96 96.73 95.97 - - -

LSTM 97.95 96.53 96.56 97.97 96.44 93.03

CNN + LSTM 98.19 96.28 96.09 - - -

LSTM + CRF - - - 98.18 97.22 95.24

B
E
R
T
-

b
as
ed

BERTje 98.56 97.31 94.53 97.79 97.18 92.24

RobBERT 98.14 96.66 95.81 96.40 96.10 77.46

mBERT 98.35 97.08 94.82 97.98 96.87 90.03

XLM-RoBERTa 98.20 96.22 95.44 96.76 96.52 80.31

Table 3: The results of the different models for the text classification and the

slot filling tasks on the two datasets, as well as the generalization ability of the

best performing BRU models for text classification and slot filling on the BE

dataset (except the BRU part, see the BRU→BE column) in terms of F1 score.

F1c and F1s indicate the F1 score for the text classification and the slot filling

tasks, respectively. The two tasks are considered independently.

the relationships of the outputs between sequential tokens (i.e., a B-where tag

cannot be followed by an I-when tag). The fact that the different independent

models can achieve high F1 scores means that the traffic event detection prob-

lem from Twitter can be solved as the two independent subtasks we formulate.

Transfer Learning: Table 3 shows the results of the best performing BRU

models on the BE dataset (except for the BRU part of the dataset, see the

BRU→BE column) for the tasks of text classification and slot filling in terms of

F1 score. For the text classification task, the results indicate that the non-BERT

based models generalize better on this task, with 96.56% for the LSTM model,

96.09% for the CNN + LSTM model, and 95.97% for the CNN model in terms

of classification F1c score. However, the BERT-based models still generalize

well with around 95% classification F1c score. For the slot filling task, the

LSTM + CRF has the best generalization ability. The reason could be that

the CRF layer can learn the relationships between the neighboring tokens. The
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Model
BRU BE BRU→BE

F1c F1s SenAcc F1c F1s SenAcc F1c F1s SenAcc
L
S
T
M
-

b
as
ed

Slot-Gated 95.09 97.10 92.76 96.23 96.13 92.85 94.17 76.20 66.29

SF-ID Network 97.23 97.03 94.10 96.07 96.67 93.84 84.78 83.29 69.03

Capsule-NLU 97.75 97.72 95.79 96.71 96.76 94.21 95.92 91.45 87.60

J
o
in
t

B
E
R
T

BERTje 98.34 97.31 95.79 96.71 96.81 93.93 94.18 92.11 86.23

RobBERT 97.90 96.46 94.10 96.31 96.21 92.90 94.62 74.15 70.88

mBERT 97.89 97.42 95.71 96.95 96.63 94.26 94.58 92.58 87.01

XLM-RoBERTa 97.97 96.53 94.10 96.51 96.24 93.13 92.99 76.09 53.14

E
n
h
a
n
ce
d

B
E
R
T

BERTje 98.49 97.52 95.87 97.13 97.10 94.63 95.27 93.78 88.67

RobBERT 98.12 96.65 94.72 96.53 96.40 93.41 94.96 80.00 74.84

mBERT 97.92 98.29 96.40 96.82 96.78 94.59 96.56 94.13 89.94

XLM-RoBERTa 98.20 96.65 94.56 96.26 96.18 92.76 95.76 74.21 72.57

Table 4: The results of different models for joint text classification and slot filling

on the two datasets, as well as the generalization ability of the best performing

trained BRU joint models on the BE dataset (except for the BRU part, see

the BRU→BE column) in terms of F1 score and sentence-level semantic frame

accuracy (SenAcc). F1c and F1s indicate the F1 score for the text classification

and the slot filling tasks, respectively.

RobBERT model achieves the worst generalization performance. This is mainly

because the RoBERTa model needs more data to be fine-tuned.

5.5.2. Joint Models

Table 4 shows the performance of the joint models (Slot-Gated, SF-ID Network,

Capsule-NLU, Joint BERT-based, Enhanced Joint BERT-based) on the BRU

and the BE datasets in terms of F1 score and semantic accuracy (SenAcc). In the

joint setting, the higher the semantic frame accuracy score, the better the joint

model performance. On the BRU dataset, the Enhanced Joint mBERT achieves

the best semantic accuracy score (i.e., 96.40%) as well as the best F1s score

(i.e., 98.29%). The Enhanced Joint BERTje model has the best F1c score (i.e.,

98.49%). However, on the BE dataset, the Enhanced Joint BERTje is the best

performing model, and it achieves scores of 97.13% in terms of F1c score, 97.10%

in terms of F1s score, and 94.63% in terms of SenAcc. Among the three non-

BERT-based models, the Capsule-NLU model achieves the best results on both
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datasets, and it performs on par with the BERT-based models. That is due

to the ability of the model to capture hierarchical semantic relationships be-

tween the two subtasks. In other words, there are strong relationships between

a traffic-related tweet and the fine-grained information (e.g., “when”, “where”,

“what”, and “consequence”). As we observe in the results, the Enhanced Joint

BERT-based models have better performance than the Joint BERT-based mod-

els. This indicates that the proposed Enhanced models are more effective for

the joint task, mainly because the model can incorporate the entire sentence

information into each token to boost the model performance. The BERT-based

models use a self-attention mechanism to capture the information of each token

by considering all other tokens in a tweet. They can represent each token by its

context, while the LSTM-based models use fixed pretrained word embeddings

(e.g., word2vec (Mikolov et al., 2013)) to represent each token. When solving

the two subtasks, the Joint BERT-based models can represent the entire tweet

and each token within the tweet by considering all the tokens in the tweet. We

believe this is the reason why the Joint BERT-based models and the Enhanced

variants can achieve better results than the LSTM-based models. Thus, we con-

clude that the Enhanced Joint BERT-based models, especially the BERTje and

mBERT variants, can be used as strong baselines for the joint text classification

and slot filling tasks for the traffic event detection problem in Belgium and in

the Brussels capital region. Furthermore, the results of the different joint models

prove the effectiveness of formulating traffic event detection as a joint task of

the two subtasks.

Transfer Learning: Table 4 shows the generalization ability of the best per-

forming BRU models for the joint task of text classification and slot filling.

The Enhanced Joint BERT-based models obtain the best generalization per-

formance not only compared to the Joint BERT-based models but also to the

other models proposed for solving the task. This implies that the Enhanced

Joint BERT-based model improves the model generalization ability by taking

the whole information about the sentence for each token into account. Due to

its architecture, the Capsule-NLU model can preserve the hierarchical relation-
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ships between the two subtasks. That way, it is able to outperform all the other

LSTM-based models and perform on par with the Joint BERT-based models.

5.6. Performance of the Independent and the Joint Models

The results in Tables 3 and 4 indicate that the joint models perform on par with

the independent models on the two subtasks. The benefit of joint training is not

evident in that particular problem as it was in the case of other NLP problems

(e.g., Miwa & Bansal (2016); Hashimoto et al. (2017)). We hypothesize that

this is because the performance of all the models (joint and independent) for

the two subtasks is already high in terms of F1 score and SenAcc. Thus, there

is very little room for improvement in the joint models for the traffic event

detection problem. However, since the joint model can address the two subtasks

simultaneously, one advantage of training a joint model (for that particular

problem) is that these models can be deployed easier since we have to train only

one model instead of two models, i.e., one for each subtask. As shown in Table 2,

compared to the time needed for the two independent BERT-based models for

the two subtasks, the joint BERT-based models need only half of the time to

train on the corresponding datasets.

The performance of the various models is high, and this could be potentially

explained by the large number of traffic-related tweets that are coming from

various organizations. Although the tweets (from the organizations) are not

structured, they follow specific patterns (e.g., the “where” slots are usually

followed by the “when” slots). This is also the case for the tweets presented

in the work of Dabiri & Heaslip (2019), where the authors focused their study

in the US, and the text classification performance in their work was also high.

It is worthwhile mentioning, though, that this is not a disadvantage since it is

crucial to have high F1 scores in a problem where the data could be used in

real-time applications (e.g., send alert notifications to users).
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6. Conclusion and Future Work

In this work, we define the new problem of detecting traffic-related events on

Twitter that consists of two subtasks: (i) identify whether a tweet contains

traffic-related events as a text classification task, and (ii) identify fine-grained

traffic-related information (e.g., “when”, “where”) as a slot filling task. We also

publish the two constructed Dutch traffic Twitter datasets to promote further

research on detecting traffic-related events from social media.

We extensively experiment with several architectures for addressing the two

subtasks either separately or in a joint setting. In this paper, we investigate

several baseline methods, and we propose a certain modification in the BERT-

based model (see our Enhanced Joint BERT-based model in Section 4.3), where

we take into account the entire sentence information for each token to fur-

ther improve the performance of the model. Experimental results indicate

that the proposed Enhanced Joint BERT-based model is able to outperform

all the other studied architectures for solving the task at hand jointly in terms

of the semantic accuracy score in three scenarios, i.e., datasets from Belgium

(BE), and the Brussels capital region (BRU), and the transfer learning experi-

ment BRU→BE. The proposed model can achieve the best semantic accuracy

scores, that is, 96.40% (with mBERT), 94.63% (with BERTje), and 89.94%

(with mBERT), for the three scenarios.

The current traffic event detection models are mainly built for Dutch tweets.

As there are three official languages in Belgium, in future work, we aim to work

on multilingual models which can handle various languages. That way, we

expect that these models can also be exploited to detect traffic-related events

in other countries. Moreover, since Twitter is a noisy source of information,

building a language model that is based on a large Twitter corpus, similar to the

work of Müller et al. (2020), can potentially help us to improve the performance

of our models. Another future work direction could be combining our traffic

event detection system with downstream tasks, such as traffic knowledge graph

and traffic forecasting (Jin et al., 2022; Xu & Liu, 2021; Wang et al., 2021; Jiang
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& Luo, 2022; Wang et al., 2022a).
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