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Abstract—360° cameras can easily capture events and let
viewers across the world re-live them in Virtual Reality (VR).
However, the viewer can only rotate their head and there is
no correct sense of depth, breaking the immersion. This work
describes a framework that reconstructs the captured scene
in 3D from a 360° image/video. To do this, it requires depth
information, either from depth estimation or depth sensors. The
reconstruction is rendered in VR in real-time. Areas of the scene
that were not captured, are inpainted in a fast and non-intrusive
way. A demo is made available online and will be used for user
experiments to assess the perceived quality of experience.

Index Terms—VR, 360° video, 6DoF, depth-image-based-
rendering

I. INTRODUCTION

The multimedia industry is pushing towards more and
more immersive experiences. Virtual Reality (VR) headsets or
holographic displays present the viewer with a more realistic
sense of depth compared to regular flat screens. VR especially
has the potential to fully immerse the user in the virtual
world [1] [2].

For all these applications, hand-crafting photorealistic sce-
narios in 3D modeling software is a laborious task. Moreover,
VR requires considerable processing capacity to render two
high-resolution images (one per eye) at least 90 times per
second to avoid motion-sickness.

For these reasons, the VR industry is shifting towards
showing 360° videos instead [3]. These can easily be acquired
and displayed in VR. However, 360° videos do not provide
motion parallax, as illustrated in Fig. 1. When the viewer
moves, the virtual scene follows, which significantly lowers
the quality of experience.

In this work, we process 360° videos to deliver VR ex-
periences with realistic depth perception. In this way, we try
to achieve the photorealism and flexibility of 360° cameras
combined with the motion parallax of hand-crafted 3D scenes.

We present two contributions. Firstly, we implemented a
framework to automatically convert 360° images/videos plus
depth information into a 3D scene reconstruction that can be
viewed in real-time in VR. Secondly, we made a tool to render
the reconstruction in real-time, with support for multiple VR
platforms. The tool has several features that are useful in many
multimedia applications, such as the ability to incorporate 2D
or 3D overlays or objects, to add avatars, and to track where
the viewer is looking.

We encourage the reader to try out our demo of the tool1.
The demo shows an example environment in VR, created by

This work was funded in part by the Research Foundation – Flanders (FWO)
under Grant 1SD8221N, in part by IDLab (Ghent University – imec), Flanders
Innovation and Entrepreneurship (VLAIO), and the European Union.

1Demo available at https://github.com/IDLabMedia/360DIV

Fig. 1. Left: (Half of) a 360° image is shown to a viewer wearing a
VR headset. In essence, the image is projected on a sphere which remains
stationary with respect to the viewer’s head. There is no motion parallax.
Right: Depth information about the original scene is added. The geometry does
not move together with the viewer, resulting in the correct depth perception.

the proposed framework from a 360° video and static depth
map. The demo can also display the original monoscopic
360° video, as well as the stereoscopic variant. By switching
between these three options, the viewer can compare the level
of realism. We intend to use the proposed framework and
tool for user experiments to query about the realism of the
experience.

II. RELATED WORK

To deliver VR applications from 360° videos with motion
parallax, the geometry of the captured scene needs to be
known. In this work, the distance of each pixel in the 360°
video to the camera is stored in a depth map. Most commonly,
the depth is estimated from multiple images using Structure
from Motion (SfM) [4] and Multi-View Stereo (MVS) [5].
After some refinement steps, the depth maps are often of
decent quality but this approach requires a lot of processing
power [6].

Deep learning has also proven to be a beneficial approach
for depth estimation [7] [8]. The accuracy of the depth is often
poor, though, leading to these methods only being used in
tandem with rendering techniques that can handle the badly
reconstructed geometry.

To reduce the processing load, depth sensors like in the
Matterport, Microsoft Kinect or smartphone cameras can be
used [9]. For example, the Matterport3D dataset [10] and
the dataset by Armeni et al. [11] contain a good collection
of 360° images with depth maps which can be used as
input to the proposed framework. The depth sensors are not
infallible, though, and struggle with reflective or far away
surfaces. Additionally, the Matterport camera only works in
static environments.

III. PROPOSED TECHNOLOGY

A. Textured triangle mesh

The proposed framework takes two equirectangular 360°
videos as input, one for the color and one for the depth
map. The depth is leveraged to calculate the original position



Fig. 2. (a) The triangle mesh before the deletion of the elongated triangles. (b) The elongated triangles were deleted, leaving behind the dark grey pixels. (c)
and (d) are the same views as (b) and (a) respectively, but now with inpainting.

of each pixel in 3D space. In essence, the original scene is
reconstructed as a large 3D point cloud of w∗h colored points,
where w × h is the resolution of the input video.

A colored point cloud can be viewed in VR from all angles.
However, if the viewer moves closer to the geometry, they
will notice the gaps in between the scattered points, breaking
the immersion. Therefore, it is opted to use textured triangle
meshes instead. The 3D points are replaced by triangles that
are connected to their neighbors. The level of mesh detail is
customizable, but it is best to start with two triangles per pixel.

For performance reasons, the number of triangles in the
mesh is decimated [12]. Afterwards, the texture coordinates
that define how the 360° video is stretched over the 3D
mesh are re-calculated. For many environments, we found that
reducing the number of triangles to about one million does not
lower the quality in a noticeable way.
B. Inpainting

At this point, all triangles are still connected, as shown
in Fig. 2a. This results in elongated triangles connecting
foreground to background objects. This stretched-out geometry
is not present in the original scene and needs to be removed to
maintain a sense of immersion for the viewer. The algorithm
deletes triangles based on their circumference and requires
manual tweaking for the best result.

A spectator viewing the resulting mesh will notice the holes
that the deleted triangles leave behind, for example in Fig 2b.
Typically, inpainting is used to color the holes in a plausible
way. Deep-learning-based inpainting methods deliver the most
convincing results, but the implementations are too slow to
be incorporated into VR applications [13]. Other techniques
simply interpolate colors from the pixels at the edges of the
holes.

We propose a novel implementation of such straightforward
inpainting methods that is computationally very fast. The
implementation re-uses the previously deleted triangles as a
separate mesh, that is rendered behind all other geometry.
The texture is changed so that only colors of the background
are used. Lastly, the texture is blurred to reduce the spatial
frequency and catch less of the viewer’s attention. The result
is temporally stable and does not distract the viewer, as long
as the viewer’s head stays close to the original 360° camera.
The result is demonstrated in Fig. 2c and 2d.

IV. CONCLUSION

360° cameras allow scenes to easily be captured and re-
played in VR. However, a viewer that is moving around will
quickly notice the absence of motion parallax, which breaks

the immersion. We present a framework and tool to build
realistic VR experiences where the viewer can move around
freely, although restricted in volume for optimal performance.
The framework takes a 360° image/video and a depth map as
input to create a 3D reconstruction of the scene. We encourage
the reader to try out the VR demo of the tool. We achieve
promising results in terms of photorealism and quality of
experience. In the future, the tool will be used to perform
user experiments to assess the perceived level of realism.
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