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Abstract: Inverse synthetic aperture radar (ISAR) provides a solution to increasing the radar6

angular resolution by observing a moving target over time. The high-resolution ISAR image7

should undergo a segmentation step to get the target’s point cloud data which is then used for8

classification purposes. Existing segmentation algorithms seek an optimal threshold in an iterative9

manner which adds to the complexity of ISAR, resulting in a processing time increase. In this10

paper, we take advantage of the distribution of the ISAR image intensity, which is based on the11

Rayleigh distribution, and obtain an explicit relationship for the optimal segmentation threshold.12

The proposed segmentation algorithm alleviates the requirement for iterative optimization and its13

efficiency is shown using both simulated and experimental ISAR images.14

© 2023 Optica Publishing Group15

1. Introduction16

Inverse synthetic aperture radar (ISAR) is a well-established algorithm introduced by Walker [1]17

in 1980 for high-resolution radar imaging of a moving target using a stationary radar. It was18

quickly employed in plenty of applications, especially in military and aviation, for automatic19

target classification (ATC) and recognition (ATR) [2].20

The range resolution of radars has improved with the large bandwidth provided by radar21

technologies such as frequency-modulated continuous wave (FMCW). On the other hand, the22

multi-input-multi-output (MIMO) technology has improved the angular resolution and alleviated23

the requirement for large-phased array antennas. Thanks to these advances in radars, the24

small-size MIMO mm-wave radars well fit in civilian applications such as autonomous vehicles25

and smart homes [3] where a great potential for ISAR is foreseen for object detection and26

identification [4–6].27

While ISAR attempts to capture an image of targets by processing radar signals over time,28

the image is contaminated by different types of noises including speckle noise and sidelobes29

as well as smearing due to range and Doppler migration [7]. Therefore, before being fed to30

any classification/identification algorithm, ISAR images need to undergo a segmentation step in31

order for the target’s point cloud to be extracted from the background noise. There exist several32

algorithms to filter out the speckle noise from the radar images [8, 9]; however, the segmentation33

approaches for ISAR images are limited to clustering the pixels (by, say, 𝑘-means) [10] and34

thresholding [11].35

In this paper, we propose an efficient segmentation algorithm for ISAR images that not only36

filters out the speckle noise but also maintains the target’s point cloud. Our work was motivated37

by the importance of noise reduction while keeping as many point clouds of the target as possible.38

The proposed segmentation algorithm belongs to the thresholding class of algorithms. However, it39

calculates the threshold based on the variance of the pixels, instead of estimating it by optimizing40

an objective function in an iterative manner, which is the case in Otsu and 𝑘-means. To this end,41

we first prove that the background noise follows a Rayleigh-based distribution. Then, any pixel42

outside of this distribution is considered to be coming from the target.43

Accordingly, our proposed segmentation algorithm follows a similar approach of semi-44

supervised learning (SSL) [12]. SSL is proposed for anomaly detection in cases where only the45



data of the normal class is available and no (or only a small amount of) data of anomaly exists.46

Hence, supervised learning will not be possible. Instead, SSL estimates the boundary of the47

normal data out of which any data is detected as anomaly.48

It is worth mentioning that the Rayleigh distribution has already been used in the segmentation49

literature for different types of images. The distribution is adopted in [13] for modeling the50

distribution of both the object and the background. Then, a threshold is calculated by minimizing51

the probability of miss-classification. In the end, a region-growing process is applied to further52

smooth the segmentation result. A similar approach is followed in [14] for the segmentation of53

echocardiographic images. In this paper, we explicitly show that the background noise follows a54

Rayleigh-based distribution and obtain a closed-form expression for the threshold.55

The contributions of this paper can be summarized as follows:56

• We prove that the background noise of ISAR images follows a Rayleigh-based distribution.57

• Based on the Rayleigh-based distribution, we obtain an explicit relationship for calculating58

the optimal segmentation threshold. Since the threshold is located on the tail of the59

background distribution, it effectively filters out the speckle noise. Therefore, no extra60

speckle-filtering algorithm, such as the one proposed by Voci and Mascioli in [15], is61

needed.62

• We present the complexity of our proposed segmentation algorithm and show that it is63

computationally much lighter than the common approaches.64

• We conducted a practical ISAR imaging from a walking person using a MIMO radar. It65

is shown that a more informative point cloud of the target is obtained by the proposed66

segmentation algorithm compared to the Otsu and 𝑘-means algorithms.67

• The effectiveness of the proposed algorithm is shown in both experimental and simulated68

scenarios.69

The organization of this manuscript is as follows. In Sec. 2, the fundamentals of ISAR imaging70

as well as the Otsu algorithm is presented. Sec. 3 explains the proposed segmentation algorithm71

with its performance evaluated in Sec. 4. Finally, the paper is concluded in Sec. 5.72

Notations73

The notations used throughout the paper are listed in Table 1.74

2. Background75

2.1. ISAR76

Radars basically transmit a sequence of waveforms during each coherent processing interval77

(CPI). Each waveform is referred to as a pulse or chirp. The received echo from the targets78

is demodulated by mixing with the original transmitted signal and gives the beat signal after79

filtering out the high frequencies.. The beat signal is collected in a matrix with each column80

representing the echo of the corresponding chirp (i.e., the echo of the first (second) chirp goes to81

the first (second) column, and so on). Accordingly, the matrix’s row and column dimensions are82

referred to as the fast time and slow time, respectively. In MIMO radars, one matrix is collected83

per antenna. Therefore, a radar cube is generated at the end of each CPI. It is proved that an84

image of the observing target can be obtained by processing the radar data over time [16].85

In radar imaging with ISAR [16], it is assumed that the radar is fixed and targets move. In86

ISAR, the movements of a target are categorized into radial and rotational motions (Fig. 1). Then,87

the basic idea is to compensate for the target’s radial motion (𝑅(0) in Fig. 1) and reconstruct its88

image while it slightly rotates.89



Table 1. The notations used in the paper.

Notation description

𝛼(., .) 2D ISAR image

𝑐 Light speed

𝑓 Frequency

𝐹𝑋 (𝑥) Distribution of 𝑋 at 𝑥

𝑟 Range

𝑠 Scaling parameter

𝜎 Standard deviation

𝑠𝐵 (., .) Radar’s beat signal

𝜏 Segmentation threshold

𝑡 𝑓 Fast time

𝑡𝑠 Slow time

𝜔 Rotation rate

Fig. 1. The coordinate system in ISAR imaging.

It is proved that the image reconstruction can basically be accomplished by a 2D inverse90

Fourier transform (2D-IFT) of the compensated beat signal [17]:91

𝛼 ([, a) = 2D-IFT
[
𝑠𝐵 (𝑡 𝑓 , 𝑡𝑠)𝑒 𝑗 4𝜋

𝑐
𝑓𝑐𝑅0 (𝑡𝑠 )

]
. (1)

In the above equation, 𝑠𝐵 (𝑡 𝑓 , 𝑡𝑠) is the beat signal in terms of fast time 𝑡 𝑓 and slow time 𝑡𝑠 , 𝑓𝑐 is92

the carrier frequency, and 𝑅0 (𝑡𝑠) denotes the range of the coordinate origin which is assumed to93

change in slow time, i.e., its changes during fast time can be neglected. The target’s image is also94

denoted by 𝛼 ([, a) stating that the image is reconstructed in the domain of the round-trip time95

[ ≜ 2𝑦
𝑐

and the Doppler frequency a ≜ 2 𝑓𝑐
𝑐
𝜔𝑥 wherein 𝑦 and 𝑥 are the range and cross-range, 𝜔96

is the target’s rotation rate, and 𝑐 is the light speed.97

Note that 𝛼 ([, a) is complex-valued as the result of the IFT operator. The reconstructed image98

is the projection of the target’s scatterers on a 2D plane which is in the radar line of sight (RLOS)99

direction (𝑦 axis in Fig. 2) and perpendicular to the effective rotation axis of the target.100

Overall, ISAR includes two basic steps, as illustrated in Fig. 2. In the first step — referred101

to as autofocus—, the radial motion of the target is compensated. Then, the target’s image is102

reconstructed by a 2D-IFT.103

Any improvement in these steps will enhance the imaging quality. If the fast Fourier transform104

(FFT) is adopted, the major complexity of ISAR will be due to autofocus. The most common105



Fig. 2. Basic pipeline of ISAR imaging.

basic approaches to autofocus are the image-contrast-based autofocus (ICBA) [18,19], image-106

Entropy-based autofocus [20], and the phase gradient algorithm (PGA) [21]. While the latter is107

non-parametric, the other two methods are parametric and provide more flexibility to manage the108

complexity. Although FFT provides a fast solution to image reconstruction, a more fitting method,109

especially when ICBA is used for autofocus, is the polynomial Fourier transform (PFT) [22, 23].110

However, PFT is far more complex than FFT.111

Apart from the two basic ISAR steps, further enhancement is achieved by time-windowing [24].112

Time-windowing specifies the optimum set of the collected chirps that should be used for image113

reconstruction.114

2.2. Otsu algorithm115

Assume that the pixels of a gray-scale image are represented in 𝐿 levels. Then, the Otsu algorithm116

seeks a threshold 𝑘, 0 < 𝑘 < 𝐿 for dividing the pixels into two classes by optimizing the117

inter-class variance of the image. More specifically, the optimal threshold 𝑘∗ is given by [11]:118

𝑘∗ = arg max
𝑘

[`𝑇𝑤(𝑘) − `𝑘]2

𝑤(𝑘) [1 − 𝑤(𝑘)] , (2)

where 𝑤(𝑘) ≜ ∑𝑘
𝑖=1 𝑝𝑖 , `𝑘 ≜

∑𝑘
𝑖=1 𝑖𝑝𝑖 , and `𝑇 ≜

∑𝐿
𝑖=1 𝑖𝑝𝑖 with 𝑝𝑖 denoting the ratio of the pixels119

at level 𝑖.120

Being successful in the segmentation of gray-scale images, the Otsu algorithm became121

common, sometimes with slight modifications, in other applications [25, 26] including radar122

imaging [27,28]. However, the variety in the pixels of a target is much higher in a radar image123

compared to a gray-scale image. This high variance results in miscalculating the inter-class124

variance in the Otsu algorithm, as will be shown in Sec. 4.125

3. RaySe: Rayleigh-based segmentation126

The idea here is to estimate the distribution of noise (background) in an ISAR image. Then, the127

segmentation threshold can be considered as the start of the higher tail of the distribution (Fig. 3).128

A radar receives only thermal noise in the absence of any target. It is well-known that thermal129

noise has a flat power spectral density (PSD) which means that its (inverse) Fourier transform130

(FT) values are uniformly distributed among all frequency ranges. In other words, the pixels of131

an ISAR image (which is the 2D-IFT of the radar beat signals), in the absence of any target, are132

independent and identically distributed (i.i.d.) following a uniform distribution. On the other133

hand, a uniform distribution can be appropriately approximated by a Gaussian distribution. This134

approximation is especially more accurate in MIMO radars where each pixel, after beamforming,135

becomes the sum of several uniformly-distributed random variables (RVs) [17]. Therefore, the136

distribution of pixel (𝑟, 𝑓 ) of an ISAR image is approximately given by:137

𝛼 (𝑟, 𝑓 ) ∼ CN
(
0, 𝜎2

)
, (3)

where CN
(
0, 𝜎2) denotes a complex normal distribution with mean 0 and variance 𝜎2. Defining138

the real and imaginary parts of the pixel as𝛼𝑟 ≜ Re [𝛼 (𝑟, 𝑓 )] and𝛼𝑖 ≜ Im [𝛼 (𝑟, 𝑓 )], respectively,139

gives:140

𝛼𝑟 , 𝛼𝑖 ∼ N
(
0, 𝜎2

)
, (4)



with N
(
0, 𝜎2) being a normal distribution with mean 0 and variance 𝜎2.141

For segmentation, it is common to use the power of an image in dB. The power of the pixel is142

given by 𝑤 ≜ 10 log (𝐼 (𝛼𝑟 , 𝛼𝑖)) with 𝐼 (𝛼𝑟 , 𝛼𝑖) ≜
√︃
𝛼2
𝑟 + 𝛼2

𝑖
following a Rayleigh distribution143

with scale parameter 𝜎 [29]. It is straightforward to prove that the cumulative density function144

(CDF) of 𝑤 is given by:145

𝐹𝑊 (𝑤) = 𝑃(𝑊 < 𝑤) = 𝐹𝐼

(
10

𝑤
10

)
, (5)

where 𝐹𝐼 (.) denotes the CDF of the Rayleigh distribution.146

Fig. 3. The distribution of an ISAR image power.

If a target appears in the radar FoV, its values will lie in the higher tail of the background147

distribution, as seen in Fig. 3. For segmentation, it suffices to set the threshold as the starting148

point of the tail. Accordingly, the Rayleigh-based segmentation (RaySe) algorithm is presented149

in Fig. 4 wherein 𝑠 is a scaling parameter of the threshold with a default value of 1. It can be150

used to adjust the threshold 𝜏 depending on the signal-to-noise ratio (SNR) of the ISAR images.151

In fact, there is a compromise between getting more pixels as the target’s point cloud and filtering152

the noise (and sidelobes). The former can be achieved by 𝑠 < 1 at the cost of having more falsely153

detected image pixels. The latter is appropriate for higher SNRs. There, the target scatterers154

give sufficiently high image values; so, they can effectively be separated from noise with a larger155

segmentation threshold by setting 𝑠 > 1.156

Fig. 4. The Rayleigh-based segmentation (RaySe) pipeline. 𝑠 is a scaling parameter
with a default of value 1.



Fig. 5. (a) The setup used for data recording includes a radar and a normal webcam.
(b) The radar’s antenna layout and its virtual array (copied from [31]).

Complexity of RaySe157

The RaySe algorithm is based on the computation of the variance of the image power. Accordingly,158

its complexity is O (𝑁𝐼 ) where 𝑁𝐼 denotes the number of the image’s pixels. Therefore, Rayse159

is less complex than the common Otsu algorithm with the complexity of O (𝐿𝑁𝐼 ) wherein 𝐿160

indicates the number of the levels of the image power. Note that 𝐿 is normally large since there161

is a huge difference between the strongest and weakest pixels of an ISAR image. The RaySe162

complexity is also lower than 𝑘-means whose complexity is O
(
𝑁2
𝐼

)
[30].163

4. Evaluation results164

We evaluate the performance of RaySe in both experimental and simulated scenarios and compare165

it against the Otsu and 𝑘-means algorithms as the most common segmentation methods. The166

𝑘-means algorithm was run with 𝑘 = 3 in 300 iterations. Then, the cluster with the highest167

centroid is considered the point cloud of the target. Although only two clusters (namely, the168

target and the background) are needed, using 𝑘 = 3 gives a better segmentation result since the169

ISAR image values are categorized by 𝑘-means into "smaller than the lower tail", "background170

noise", and "larger than the higher tail" (Fig. 3).171

4.1. Experimental evaluation172

The IWR6843ISK radar of Texas Instruments was used for ISAR imaging from a moving person.173

This radar has three transmitters and four receivers. It was installed together with a webcam (HD174

Pro of LogiTech) on a tripod at a height of around 3𝑚 from the ground and a tilt of around 13𝑜175

toward the ground. The setup and the radar antenna layout are shown in Fig. 5.176

The radar worked with the setting of Table 2 that provides the following specifications:177

• Range resolution 𝜌𝑟 = 4.61𝑐𝑚;178

• Maximum unambiguous range 𝑅𝑚𝑎𝑥 = 11.79𝑚;179

• Velocity resolution 𝜌𝑣 = 0.027𝑚/𝑠;180

• Maximum unambiguous velocity 𝑉𝑚𝑎𝑥 = 11.04𝑚/𝑠.181

As seen in Fig. 5-b, the virtual antenna array consists of two rows indicating poor elevation182

resolution. Hence, we reconstruct one ISAR image per row and then sum up the two images after183

phase compensation. To this end, beamforming is carried out with the center of each row as a184

reference.185



Fig. 6. Comparison of RaySe against Otsu and 𝑘-means in practical ISAR imaging
from a person.



Table 2. The setting of the radar used for experimental evaluation.

Radar parameter Value

Start frequency (GHz) 60.1221

Bandwidth (GHz) 3.257

Pulse repetition time (`s) 36.66

Coherent processing time (ms) 90

Number of chirps per frame 255

Number of samples per chirp 256

Sampling frequency (MHz) 9.6

Fig. 6 shows the segmentation results of ISAR imaging from a walking person. In Fig. 6, the186

power of the ISAR images in dB is illustrated while the segmentation results are thresholded. For187

RaySe, we used scale parameter 𝑠 = 1.05 to better filter the noise.188

As seen in Fig. 6, 𝑘-means has failed to properly do the segmentation. The reason is that189

𝑘-means is intrinsically appropriate for symmetric data (Because 𝑘-means classifies the points190

based on estimating the centroids of each cluster) [32] which is not the case with the ISAR191

images (and any other sorts of data based on radar signal). Furthermore, our results suggest that192

𝑘-means should be used together with a smoothing filter, similar to what is proposed in [15], in193

order to have the speckle noise of the ISAR image removed.194

Otsu successfully filters the speckle noise but also plenty of the informative point cloud of the195

ISAR image. As explained in Sec. 2.2, the Otsu algorithm maximizes the inter-class variance. In196

ISAR images, as seen in Fig. 6, there are often several pixels with extremely high values that197

make the Otsu algorithm give a higher segmentation threshold.198

In our framework, ISAR imaging is used for a better reconstruction of the pedestrian shape.199

Hence, we expect the segmentation to produce a better shape of the target. We visually inspected200

the segmentation results obtained using the Otsu algorithm and the proposed RaySe approach.201

As can be seen in Fig.6 several parts of the foreground are misclassified by the Otsu algorithm202

(the leg in sample #1, and the head and legs in sample #4). This is also confirmed in Fig. 6, in203

which the segmentation obtained using RaySe produces a more informative point could of the204

human body.205

The histograms of the ISAR images of the examined samples are shown in Fig. 7 with the206

thresholds of the segmentation algorithms listed in Table 3. As shown, RaySe gives the most207

appropriate threshold that filters out the speckle noise while keeping the informative point clouds.208

Table 3. The segmentation thresholds for the samples of Fig. 6.

Sample no. #1 #2 #3 #4

𝑘-means 43.87 40.13 42.93 43.32

Otsu 53.30 53.98 54.96 59.21

RaySe 48.82 47.28 48.37 48.19



Fig. 7. The histogram of the ISAR images of the samples shown in Fig 6.

4.2. Simulation evaluation209

For evaluation of the RaySe performance on simulated data, the dataset provided by [33] was210

used. This dataset provides ISAR images of moving automotive targets in different scenarios.211

Using three samples from this dataset, the segmentation results are shown in Fig. 8. As seen,212

𝑘-means has given better results than before since the simulated data includes less speckle noise213

and weaker sidelobes. However, fewer scatterers of the target are given by Otsu. Compared to214

Otsu and 𝑘-means, RaySe has provided a more informative point cloud of the target.215

Fig. 8. Comparison of RaySe against Otsu and 𝑘-means in simulated ISAR imaging
from a car.

5. Conclusions and future directions216

In this paper, we proposed the Rayleigh-based segmentation (RaySe) algorithm as an efficient217

and computationally light method of extracting the target’s image out of the background in ISAR218

images. Inspired by the concept of semi-supervised learning, the RaySe algorithm was developed219



by obtaining the distribution of the background noise. Then, any pixel with a value exceeding220

the higher tail of the distribution is considered as belonging to the target. The significance of221

the proposed algorithm is that it effectively filters out the speckle noise and meanwhile keeps222

the informative point clouds of the target which are essential for classification and any other223

machine-learning-based algorithms. The effectiveness of RaySe compared to the commonly224

used approaches, namely Otsu and 𝑘-means, was shown through experimental and simulated225

scenarios.226

The proposed segmentation algorithm incorporates a parameter for more calibration of the227

segmentation threshold. Including a self-calibration method where this parameter is adjusted228

by optimizing an appropriate objective function (such as the image contrast or entropy) can be229

considered as a future algorithm development. Furthermore, the proposed RaySe algorithm230

targets the binary classification of ISAR images. Extending RaySe to address multi-class231

segmentation is an interesting topic for future work that may well fit in synthetic aperture radar232

(SAR) images where an environment including different objects needs to be segmented.233
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