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Abstract—Robotic unfolding of cloth is challenging due to the
wide range of textile materials and their ability to deform in
unpredictable ways. Previous work has focused almost exclusively
on visual feedback to solve this task. We present UnfoldIR
(‘“unfolder”), a dual-arm robotic system relying on infrared (IR)
tactile sensing and cloth manipulation heuristics to achieve in-air
unfolding of randomly crumpled rectangular textiles by means
of edge tracing. The system achieves >85% coverage on multiple
textiles of different sizes and textures. After unfolding, at least
three corners are visible in 83.3 up to 94.7% of cases. Given
these strong “tactile-only” results, we argue that the fusion of
both tactile and visual sensing can bring cloth unfolding to a
new level of performance.

Index Terms—Force and Tactile Sensing, Sensor-based Control,
Dual Arm Manipulation

I. INTRODUCTION

ANIPULATION of deformable objects breaks fun-

damental assumptions in classical robotics, such as
rigidity, low-dimensional state space, and known dynamics
models [1]. This necessitates breakthroughs in robot dexterity,
sensing, planning and control, all open-ended problems in the
state-of-the-art. Cloth manipulation has emerged as a major
test bench for new approaches to these issues [2], being noto-
riously difficult due to the great variability in textile materials
and their immeasurable capability to deform. Because of this
complexity, many manipulation pipelines expect the cloth to be
unfolded beforehand, so that at least the initial configuration is
known. Unfolding itself has been attempted previously using
almost exclusively computer vision [3]-[8].

Early work [3] relied on simple perceptual cues such as
the height and silhouette of the cloth when held, performing
iterative grasping, dragging and lifting actions to unfold it.
More recently, FlingBot [4] was able to visually detect two
grasp points on the cloth and perform a fling action, thus
achieving ~80% garment coverage within three iterations. In
SpeedFolding [5], this is expanded upon by adding action
primitives, such as dragging, to achieve smoother unfolding.
In contrast, Doumanoglou [6] aims for in-air unfolding by
directly identifying pre-defined grasp points on hanging gar-
ments. In-air unfolding has the benefit of not constraining
the surface upon which the crumpled cloth is found in terms
of friction, shape or size. Gabas [7] looks for more general
features such as cloth edges and corners, hoping to omit cloth
identification steps. Li [8] pushes beyond camera-only sensing
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Fig. 1: Unfolding pipeline. Black arrows indicate normal
flow. If recovery is initiated, the yellow arrows are followed
until normal flow is resumed. (a) Grasping highest point of
crumpled cloth. (b) Grasping lowest point (i.e. first corner) of
hanging cloth. (¢) Setting up edge tracing. (d) Tracing edge
until adjacent corner is found or cloth slips away.

and uses a single infrared (IR) range sensor to locally optimise
a visually selected grasping point.

Generally, tactile sensing finds limited use in robotic cloth
unfolding. This despite its potential to solve issues like detect-
ing contact loss [1], which FlingBot suffered from. Robotic
tactile sensing has, however, been employed for e.g. texture
recognition [9], singulating layers of cloth [10] and cable
manipulation [11]. Fusion of both visual and tactile sensor
modalities is regarded as a promising avenue for further
research [1], [12].

When humans unfold cloth, they rely on their sense of
touch. Typically, a person will visually find a first corner and
grasp it, and from there, they blindly trace along the edge
of the cloth with their second hand, to the next corner [13].



Inspired by human-like edge tracing, we have developed
UnfoldIR (“unfolder”, Fig. 1), a dual-arm robotic unfolding
procedure shifting focus almost entirely to IR tactile sensing,
rather than visual techniques. By introducing more extensive
tactile sensing to robotic unfolding, we pave the way towards
the integration of both robust tactile and visual modalities for
efficient and effective cloth manipulation.

II. UNFOLDING PROCEDURE

Fig. 1 outlines our unfolding procedure. To initialise unfold-
ing, humans have no issue visually finding a first corner on
a crumpled cloth. Doing so using computer vision, however,
requires advanced techniques and extensive data collection.
Instead, we rely on a heuristic described in [7]: when a piece of
cloth is grasped randomly and lifted, the lowest point is likely
to be a corner. This heuristic works best when minimising
the grasped volume of the cloth, such that only one layer
or one fold is held. Hence, step (a) in Fig. 1 is to lightly
grasp the highest point of the crumpled cloth. The highest
point is detected by scanning the depth view of a colour
and depth (RGB-D) camera and selecting the highest point
within a predefined depth range. The robotic arm grasping
this point is augmented with tactile sensors, allowing it to
sense the contours of the object it is grasping. In step (a),
these tactile sensors are used to detect if the crumpled cloth
was successfully grasped at all. The cloth is then lifted, and in
step (b), the same RGB-D camera is used to detect the lowest-
hanging point, which is assumed to be a corner and grasped
by the second arm. The lowest-hanging point is again detected
by scanning the depth image, now selecting the lowest point
within a predefined depth range. The first gripper releases its
grasp, dropping the cloth over one side of the second gripper.
This drop has a high probability of exposing an edge close to
the second gripper, which is still holding the cloth. In Fig. 1c,
the first gripper moves closely below the second, grasping this
exposed edge. Subsequently, in step (d), the second arm moves
upwards, making sure the edge remains midway between the
sensorised fingers of the first gripper.

The drop procedure in step (c) possibly leads to the first arm
grasping a fold instead of an edge. However, during tracing,
a fold is likely to push itself out from between the fingertips
due to the stiffness of the cloth. This can be detected by the
sensor fingers. At this point, a recovery procedure is initiated:
the first arm regrasps the cloth close to the second gripper, the
second gripper releases and the normal unfolding flow restarts
at step (b). Edge tracing is successful if a second corner of
the cloth passes between the first gripper, as detected by the
sensors. The unfolding procedure finalises with a single fling
movement to lay down the unfolded cloth.

The edge tracing step involves three proportional con-
trollers, illustrated in Fig. 2. Their gains, K,,, K, and K,
are manually tuned. The first controller handles the grasp
width w of the first gripper. The edge grasp should be soft
enough so that the cloth can slide upwards, while maintaining
physical contact between cloth and gripper to prevent the
cloth from swinging. However, the grasp width cannot be
preprogrammed, as the thickness and texture of the textile are
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Fig. 2: Edge tracing controller diagram. The bottom left inset
clarifies the meaning of hy and h;. Red coloring indicates
tactile perception, as in Fig. 1.

unknown. To account for this, the force torque (F/T) sensor
of the first robotic arm is used: if its torque reading 7; during
edge tracing at time instant ¢ notably (>2%) differs from its
torque reading 7 at rest, there is too much friction between
the fingers and the cloth, meaning the first gripper should
open by a step ws (see Fig. 2). The grasp width updates at
a frequency of 20 Hz. At time instant ¢ 4 1, the grasp width
w;+1 is determined from the previous grasp width w; by:

Wiy1 = Wy + ws (1)

The second controller also employs the F/T sensor: it produces
a value o between 0 and 1, which scales the movement step
of the second robot arm. If the difference between 79 and 7; is
large, the second arm is strongly pulling the cloth, indicating
the cloth could be stuck. In this scenario, o decreases towards
0, so that the second arm moves more and more slowly
and does not damage the sensor fingers. The third controller
keeps the position h; of the cloth contour, measured along
the longitudinal dimension of the sensor fingers, at about
midway between the fingers (position hg). The bottom left
inset in Fig. 2 further illustrates h; and hg. The controller
first applies a position step ps, in the horizontal y-direction.
If this step is smaller than a predefined maximal step size s,
a position step ps. in the vertical z-direction is applied such
that s2 = pgy +p?, . Furthermore, a constant step spiys is added
to ps., so that the movement of the second arm always has an
upwards component, which makes for smoother edge tracing.
The resulting y and z steps are multiplied by «, obtaining Fj,
and Ps,, respectively. The xyz-position P of the second robot
arm updates at a frequency of 5S0Hz. At time instant ¢ + 1,
the position ]3i+1 is derived from the previous position P as
follows:

Py = P+ il Py, + iP5, )

with 4, and . unit vectors in the y and z directions.
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(a) System overview. (b) Left gripper.  (c) Right gripper.

Fig. 3: Dual-arm robotic setup.

III. HARDWARE
A. System overview

Our robotic unfolding setup, shown in Fig. 3, consists of
two UR3e collaborative robotic arms, each equipped with a
Robotiq 2F-85 gripper. Both grippers have been augmented
with custom fingertips. On the left arm, the fingertips use
infrared circuitry to sense whether anything is placed between
them and what its two-dimensional profile looks like. Their
design is outlined in section III-B. The fingertips on the right
arm are rigid 3D-printed structures. The size and shape of the
larger, “club”, fingertip is such that a cloth hanging over it will
spread out and be more likely to have an edge easily accessible
for tracing. The cloth is laid on a working surface 40 cm below
the base of either robotic arm. On the right side, a ZED 2i
RGB-D camera is mounted 10 cm above the working surface
to track the highest or lowest point of the cloth as needed. A
second ZED 2i camera is placed in a top-down view. It is only
used for randomisation of crumpled cloths (section IV), not
during unfolding.

B. Tactile sensing for edge tracing

1) Electrical sensor design: The tactile fingers are two
complementary designs, each containing a printed circuit
board (PCB): one finger emits IR light, the other receives
it. Fig. 4 shows their simplified schematics, along with the
components needed for their integration on the left UR3e
arm. The first finger contains a grid of 32 IR light-emitting
diodes (LEDs), connected in four parallel branches of each
eight LEDs. This grid is supplied by a low-dropout voltage
regulator, converting the 24 V tool output from the UR3e arm
to 10.8 V, which makes for a current consumption of 52 mA
after a warmup time of five minutes. The second finger is
built around 32 IR photodiodes. Here, four demultiplexers
(DEMUX) are included, each addressing eight photodiodes.
The DEMUX are all simultaneously controlled by three digital
pins of an external Arduino Nano 33 BLE, such that they
each route one of four analog pins to one of eight of their
respective photodiodes. This finger consumes about 1mA
of current from the 3.3V output of the Arduino, which in
turn receives its power from the 24V UR3e tool output
converted to 5V by a switching regulator. These electrical
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Fig. 4: Electrical diagram of the tactile fingers integrated on
a UR3e.

TABLE I: Technical specifications of the tactile fingers.

Characteristic Value
Total current consumption 60 mA
Receiver finger 1mA

Emitter finger 52mA
‘Warmup time 5 min

58.0 X 54.0 x 21 mm>
42.8 x 43.1 mm?2
~38.0 x 30.0mm?2

Physical size (width X height x depth)
PCB dimensions
Sensorised area

Thickness excluding gripper coupling 4.0 mm
Sensor density 3.21cm—2
Data resolution 8 bit
Readout frequency 55 Hz

specifications are summarised in Table 1. The total current
consumption reported includes the voltage regulators and the
Arduino during operation.

2) Structural sensor design & manufacturing: Structurally,
both tactile fingers are largely similar. Fig. 5 shows their
constituent parts. The IR LEDs and photodiodes are each
placed in an identical hexagonal grid on their respective PCBs,
such that a single LED is located straight across from a single
photodiode when both fingers are brought close together. For
each finger, the PCB is slotted into a polyethylene terephtha-
late glycol (PETG) backing, 3D printed using a Prusa MK3 i3.
This combined structure is then placed PCB side down into
a mould filled with liquid Silicone Addition Colorless 5 by
Silicones and More. After curing at room temperature for 24
hours, the finger is removed from the mould and a 1 mm layer
of translucent silicone now protects the PCB components.
However, the surface of this silicone layer generates too much
friction with common textiles. To solve this, a sheet of 100 um
thick Bemis 3914 thermoplastic polyurethane (TPU) is shaped
around the combined PETG, PCB and silicone structure by
pulling the TPU taut and heating it locally using a CIF 852
hot air gun set to 90 °C. This manufacturing step is the basis
for selecting PETG for the backing instead of polylactic acid
(PLA): PETG warps less during heat treatment. Additionally,
before shaping, a hole pattern is printed in black on the
inside of the TPU layer using an HP LaserJet P2015. Each



(a) (b) (©)
Fig. 5: Sensor structure for both the emitting as well as the
receiving finger. (a) 3D printed PETG backing. (b) PCB, either
with 32 IR LEDs or 32 IR photodiodes. (¢) 1.5 mm thick layer
of translucent silicone. (d) Sheet of 100 um Bemis 3914 TPU
patterned with black ink.

hole is positioned directly above an IR emitter or receiver,
thus focusing their respective radiation patterns. The entire
fingertip is 4 mm thick, making the finger suitable for sliding
underneath cloth for grasping, as opposed to e.g. the GelSight
sensors used in [11]. Table I provides additional structural
specifications.

3) Sensor readout: Getting a single readout from the tactile
fingers entails sequentially setting the common selection inputs
for the demultiplexers to one of eight codes and reading the
voltage on the four analog pins that are as such routed along
the IR receiver grid. This data is communicated in an 8-bit
format at about 55 Hz to a remote workstation by the Arduino
using Bluetooth Low Energy (BLE), as indicated in Fig. 4.
When the fingers are close together, the photodiodes receive
high IR intensity and pull down the analog pins to ground.
Grasped objects between the fingers block a large part of
the IR light from the LEDs, which leads to the photodiodes
conducting less and results in higher voltages read by the
analog pins.

4) Data processing: The grid of 8-bit values received from
the tactile fingers must be distilled into a set of parameters
in order to use the sensor for closed-loop control. Each value
corresponds to a hexagonal cell, of which the position in the
grid is defined by its centre coordinates. During unfolding,
the grid will either be fully bright, fully dark, or show a
combination thereof in two distinct zones. An example of the
latter is shown in Fig. 6. The following processing steps are
applied to the sensor data:

e The threshold A\ deciding which values are “bright”,
respectively “dark”, is calculated by ordering all grid
values from lowest to highest and finding the largest step
between adjacent values in this ordered list. Any values
found before this step are “dark”, the others “bright”. A
is then set to the average of the bright cluster mean and
the dark cluster mean value. Should the bright and dark
cluster mean be negligibly close together, it is determined
that either the grid is fully bright or fully dark. In this
case, further processing steps are skipped.

o The centre point of the dark cluster shows whether or
not the cloth is slipping from between the fingers. It is
calculated as the weighted mean of the centre coordinates

Dark cluster
centre

Linear fit

o Edge marker Corner fit

(b) Sensor readout. The colour scale indi-
cates arbitrary units from minimum (0) to
maximum (255) measurable IR light inten-
sity.

(a) Corner grasped
by tactile fingers.

Fig. 6: Sensor readout when grasping a textile corner.

of all cells belonging to the dark cluster, where the
weights are the 8-bit complements of the associated
values.

o The shape of the border between the dark and the bright
cluster indicates whether or not a corner is grasped. To
find it, the value of each cell is compared to those of
the neighbouring cells. If A is crossed between cells, the
values of the cells are linearly interpolated along the line
segment connecting the cell centre points and an edge
marker is placed where an interpolated value of A is
found.

o A linear function as well as a piecewise linear, “corner”,
function are fitted to the edge markers, parameterising the
border shape.

IV. EXPERIMENTAL DESIGN
A. Testing cloths

UnfoldIR is tested on five rectangular cloths of different
sizes, textures and thicknesses. These are shown in Fig. 7
along with their dimensions and tags by which they will be
referred to. Additionally, their relative stiffness and surface
roughness is indicated: the more dots, the stiffer the cloth,
and the more triangles, the rougher the cloth. These parameters
have been qualitatively determined. Roughness is defined as
felt by human touch, stiffness by resistance of the cloth to
folding. The latter is thus dependent on both cloth material
and size. Note the large difference in stiffness between the
Beige sample and the others.

Printed text labels have been removed as they can be
detected as the lowest-hanging point and confuse the system.
They can also be detected as a corner, but most labels are in
fact sewn near a cloth corner so this is less of an issue.

B. Random initialisation

It is often neglected in robotics to formalise how random
cloth states are achieved. We adhere to the following ran-
domisation methodology. A rectangle the size of the sample is
drawn on a top-down video feed of the work area. The angle
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Fig. 7: Test samples with dimensions, designated tag, and
indication of relative stiffness (dots) and roughness (triangles).
The more dots/triangles, the stiffer/rougher the cloth.

of the rectangle is a uniform random value in the [0°, 180°[
interval. Additionally, a uniform random point in the inside
area of the rectangle is indicated. The test sample is then
moved to align with the rectangle on the video feed, after
which the point is pinched with two fingers, the cloth is lifted
about 10 cm above the work surface, and dropped. We do not
claim this method to be general in the sense that it can achieve
any possible “crumpled” cloth state, we rather advocate for
more standardisation in the field of robotics and maintain that
this randomisation methodology is both sufficiently general
and reproducible.

C. Evaluation

We run 20 trials for each sample. A trial can fail in one of
two ways: the cloth is dropped by either one of the robotic
arms before the final fling, or the recovery flow is triggered for
a third time. Trials can thus be completed without triggering
the recovery flow (one-shot completion) or by triggering it
once (two-shot completion) or twice (three-shot completion).
Experiments that terminate early due to a motion planning
error are ignored to not detract from the core concepts of this
paper, as also done in [5].

Trials brought to completion are evaluated by three metrics.
The first metric measures whether edge tracing has succeeded.
Edge tracing is successful when both grippers hold adjacent
corners of the cloth between their fingertips before laying it
down. Imperfect edge tracing will lead to partial unfolding,
which is still considered to be a completed trial. The final cov-
erage of the unfolded cloth is reported as a second performance
metric for comparison with other work. Third, we record the
number of corners that are visible on the work surface after
unfolding. Sufficient visible cloth corners allow subsequent

folding procedures relying on keypoint detection [14], [15]. A
corner is “visible” if it is not folded onto the cloth itself and
locally shows a clear ~90° angle from a top-down perspective.
Having all four corners visible is ideal, though having three
visible corners still allows for subsequent folding by first
grasping two corners and dragging or lifting the cloth.

V. RESULTS
A. UnfoldIR implementation

Fig. 8 shows a one-shot trial of the UnfoldIR pipeline on
the Pink sample. The randomisation methodology as explained
in section IV-B is illustrated by Fig. 8a. The highest and
lowest point detection of Fig. 8b and Fig. 8c is achieved by
recursively sampling a diminishing region of the current depth
image, indicated by the red rectangles, on an increasingly
dense grid. After the lowest point of the hanging cloth is
grasped by the right arm, the left releases its grasp, dropping
the cloth over the narrow finger of the right gripper (see
Fig. 3c). The right gripper then rotates 360°, rolling the club
finger into the cloth and thereby spreading it out. The arms
now move to predefined positions and the left arm grasps
forward until it senses the cloth between its fingertips, at which
point edge tracing can begin. During edge tracing, the grasp
width controller ensures the cloth can easily slide between the
sensorised fingertips without uncontrolled swinging, regardless
of cloth thickness and texture. When a corner is detected by
the tactile fingers, the cloth is spread out in the air and laid
down with a single fling movement. We refer the reader to
supplementary material for a video showing a set of trials.

B. Trial run outcomes

For all five test cloths, Table II contains the number of trials
brought to completion, the outcomes of the employed evalua-
tion metrics for the completed trials as well as an indication of
what caused trials to fail. The number of completed and failed
trials is given as a percentage of the total, i.e. 20. For the
tracing success and corner visibility metrics, the percentage
of completed trials that satisfy them is reported. The final
coverage metric is obtained by averaging the surface area of
the unfolded sample over all completed trials and dividing it
by the surface area of the sample when fully unfolded. In
addition, the standard deviation on these averages is given.
The failure cases are grouped into three categories. First, in
some cases the right arm fails to grasp the lowest point of
the hanging cloth, either due to inadequate visual detection or
because the corner of the cloth hung in such a way that closing
the gripper pushed it out of the way, rather than grasping it.
Second, the cloth can get snagged or dropped in other parts of
the pipeline. This comprises a set of failures that each on their
own occur rarely: the cloth slips during the fling movement,
it gets stuck on a rough edge of the right gripper (Fig. 3c),
etc. Third, the recovery flow failed twice, meaning the trial is
manually stopped.

A one-shot completion typically takes little over one minute,
though the system is not yet optimised for speed. A run
through the recovery procedure up until completion, or un-
til a subsequent recovery trigger, takes about 1 minute and
20 seconds due to extra overhead in robot movements.



(d) Roll. (e) Edge tracing to adjacent corner.

(f) Laying down unfolded cloth.

Fig. 8: One-shot trial of the UnfoldIR pipeline on Pink sample.

TABLE II: Experimental results. Values in grey are percent-
ages of the total number of trials per sample (20), values in
white are percentages of completed or failed trials.

Pink Blue Grey Chequer Beige
One-shot completion 75.0 750 65.0 70.0 45.0
Two-shot completion 80.0 80.0 85.0 90.0 55.0
Three-shot completion 95.0 80.0 90.0 90.0 55.0
Edge tracing success 80.0 21.1 60.0 55.0 30.0
Three corners visible 9477 938 944 83.3 100
Four corners visible 842 313 333 61.1 81.8
Average final coverage 93.5 853 875 91.4 99.0
+12.8 484 4136 £17.8 +2.3
Failure cases 5.00 20.0 10.0 10.0 45.0
Lowest point grasp failed 0.0 50.0 50.0 0.0 55.6
Dropped or snagged 100 50.0 0.0 50.0 333
Two failed recoveries 0.0 0.0 50.0 50.0 11.1

VI. DISCUSSION

The Pink, Blue, Grey, and Chequer samples show high trial
completion rates (80-95%, similarly to [7]). Completed trials
show high average final coverage (>85%, FlingBot [4] reports
coverages >80%) and good results in terms of corner visibility
(83.3-94.7% show three corners or more). Comparing these
four samples in terms of edge tracing success shows that the
stiffer the cloth (see Fig. 7), the more likely it is for edge
tracing to succeed. The edges of the Pink sample are highly
likely to be available for tracing. The Blue sample, on the
other hand, has a higher tendency to fold in on itself, so that an
adjacent corner is rarely found. In most cases, however, a fold
close enough to the edge is grasped such that the tactile fingers

still detect a corner when this fold is traced all the way down,
leading to a completed trial with three visible corners and good
final coverage. The very stiff Beige sample shows excellent
scores in terms of coverage and visible corners, because stiff
cloths inherently resist deformations. However, only 11 out of
20 trials were brought to completion. In most failure cases, the
right gripper failed to grasp the lowest point of the hanging
cloth, because the corner was pushed upwards rather than
staying between the closing fingers. Furthermore, the Beige
sample gets in the way of preprogrammed robot movements,
for example when the robot arms are moving to an appropriate
pose before initiating edge tracing. During preprogrammed
movements, arm-cloth collisions should be avoided, as they
can undo all the previous unfolding steps in the pipeline.
However, finding trajectories that avoid arm-cloth collisions is
difficult when the cloth takes up a large volume in the already
constrained workspace of the UR3e arms. This problem is
amplified with stiff cloth, like the Beige sample, which main-
tains very wide horizontal dimensions when lifted, as opposed
to flexible cloth that immediately sags downward. This leads
to both a low edge tracing success rate and additional failures.
The low edge tracing success rate is thus not inherent to the
principles behind our methodology, rather its implementation
on the UR3e platform. Also, grasping points are spread much
farther apart in the horizontal directions than for more flexible
samples, leading to a large number of discarded trials due to
planning errors. This means that, with better planning on the
same physical setup, there may be a larger number of trials
failing two recoveries than reported in Table II.

To summarise, we have implemented UnfoldIR using two



UR3e robots with a limited work space. Consequently, the
system in its current incarnation performs well for flexible
cloth, but is ill-suited towards stiff cloth. In general, the main
failure modes are due to lowest point detection and scripting
preprogrammed motions to perform grasps. These issues are
readily mitigated with more advanced visual data processing
and planning algorithms.

Overall, UnfoldIR has proven to be an elegant solution to
the unfolding problem. Previous work has shown the effec-
tiveness of vision-only approaches, though the state-of-the-art
is moving away from in-air unfolding, constraining the work
area. We have now shown the potential of a predominantly
tactile system with as little constraints on the environment
as possible. This demonstrates that tactile feedback can be
an invaluable complement to visual unfolding pipelines, and
as such allows for new systems that quickly and effectively
unfold clothing.
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