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Abstract: In this study, we use NEGF quantum transport simulations to study the fundamental
detection limit of ultra-scaled Si nanowire FET (NWT) biosensors. A N-doped NWT is found to be
more sensitive for negatively charged analytes as explained by the nature of the detection mechanism.
Our results predict threshold voltage shifts due to a single-charge analyte of tens to hundreds of
mV in air or low-ionic solutions. However, with typical ionic solutions and SAM conditions, the
sensitivity rapidly drops to the mV/q range. Our results are then extended to the detection of a
single 20-base-long DNA molecule in solution. The impact of front- and/or back-gate biasing on the
sensitivity and limit of detection is studied and a signal-to-noise ratio of 10 is predicted. Opportunities
and challenges to reach down to single-analyte detection in such systems are also discussed, including
the ionic and oxide-solution interface-charge screening and ways to recover unscreened sensitivities.

Keywords: biomolecule; DNA; ions; MOSFETs; nanotechnology; quantum wires; semiconductor
device modeling

1. Introduction

Nanoscale devices, such as Si nanowire FETs (NWTs) [1–11] or graphene nanoribbon
and carbon nanotube FETs [12–16], are promising transducers for the label-free detection of
biological species. Both theoretical and experimental studies have predicted improvement
of sensitivity (S) when scaling down NWTs dimensions. In-depth studies of S and physics of
Si nanowire transducers scaled in the nanoscale regime are, however, lacking. Semi-classical
models (e.g., Drift–Diffusion), which do not capture quantum effects and use macroscopic
mobility models, are typically used for simulating transport in such systems [4]. Here,
we investigate the physics and properties of deeply scaled Si NWT biosensors (NWTBs)
using an in-house quantum-transport simulator based on the Non-Equilibrium Green’s
Functions (NEGF) formalism [17,18], which we augmented to include the simulation of
ions and analytes in solution. In particular, we investigate the opportunities and challenges
to achieve single-analyte detection in such a system, where S is expected to be the highest
and quantum effects are strong [19]. We focus here on the transduction part, assuming that
the analyte can reach the device. In a real system, an array of such ultra-sensitive detectors
should be used to achieve both a high probability of detection and an overall single-analyte
resolution range [20].

In Section 2, the nanowire device structure under study and the simulation models
are discussed. Section 3 presents our results. Section 3.1 investigates the fundamental
physics and sensitivity of ultra-scaled NWTs in the presence of a single charge. The impact
of charge polarity, cross-section size, and channel length are investigated in both air and
solution for various ionic contents. The demonstration and understanding of the physical
phenomena responsible for the asymmetric response of an NWT versus charge polarity and
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the different decrease rates for each polarity of S versus channel length are also presented.
The important effect of pH-dependent oxide interface charges and the role of passivation
by the surface functionalization on S are quantified as well. Leveraging on the results of
the previous section, Section 3.2 then investigates the sensitivity and limit of detection of
the concrete case of an optimized NWT for detecting a 20-base-long DNA molecule. The
opportunities and challenges for reaching single-analyte detection in such a system are
then quantified for physiological-like (100 mM) and dilute (1 mM) ionic solutions. The
impact of front- and back-gate biasing, as well as bottom oxide (BOX) thickness as a mean
to increase the sensitivity and limit of detection, are also investigated and discussed.

2. Materials and Methods

The device under study is a N-doped NWT with a square cross-section of side-
dimension dSI. The channel is intrinsic (Figure 1A). The back-gate oxide (BOX) has an
equivalent thickness EOTBOX. The side and top gates are floating and consist of an oxide
layer of equivalent thickness EOT. In order to increase the selectivity of the NWT, dielectric
self-assembled monolayers (SAM) can also be added on top of these gates. The SAM
affinity-based layers are assumed to be flat and homogeneous with a thickness tSAM and
a relative dielectric permittivity εrSAM. A charged analyte with charge za.q is placed on
the top gate, centered at half the channel length and width. On the NWT top and sides, a
surrounding media is considered and taken wide enough so that the results do not change
when further increasing its thickness (typically from 10 to 100 nanometers). Both air and
a NaCl solution with an ionic concentration cion0 were considered (Figure 2). The NWT
can be either biased by its back gate (VBKG) located under the channel below the BOX
(Figure 1A), or, when in solution, biased by a fluid gate (VFG) assumed in Faradaic contact
with the solution (Figure 2).
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Figure 1. (A) Schematic view of the studied [100] square-cross-section N-type nanowire. The top and
lateral gates (not shown on the figure) are left floating. (B) Self-consistent simulation flowchart used
to simulate the Si NWTBs in solution.



Sensors 2023, 23, 5405 3 of 16
Sensors 2023, 21, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 2. Surface plots in the Z-plane cutting across the middle of the NW of the simulated (A) 
carrier concentration (electrons, ions), and (B) potential profile. The NW has a 20-base-long DNA 
single strand (with 1 negative charge/base) linked to its complementary PNA (0 charge/base) recep-
tor on the top gate/SAM linker stack and a 25 nm surrounding 100 mM NaCl ionic solution. dSI = 3 
nm, L = 20 nm. S/D extensions: LS = 8 nm LD = 12 nm, VD = 0.7 V; doping N+ = 1020 cm−3. Gates: VG = 
−0.25 V. VBKG is left floating. Oxide: Front: Al2O3, EOT = 0.5 nm. Back: SiO2, EOTBOX = 10 nm. SAM 
layer of thickness tSAM = 1 nm, permittivity εR,SAM = 2.3. T = 300 K. Reprinted with permission from 
Ref. [21]. 2014, John Wiley & Sons. 
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dependent surface charge density related to the chemical reaction at the oxide–solution 
interface (r = (x,y,z) = rox-sol) between the local H+ ions and the oxide [24]. For computing 
the H+ concentration, Equation (1) can be used with cion0,H+ = 103 × Navo × 10−pH m−3, where 
Navo is the Avogadro number. From there, the surface charge density (σ0) can be computed 
using the site-binding model [25]: 

Figure 2. Surface plots in the Z-plane cutting across the middle of the NW of the simulated (A) carrier
concentration (electrons, ions), and (B) potential profile. The NW has a 20-base-long DNA single
strand (with 1 negative charge/base) linked to its complementary PNA (0 charge/base) receptor on
the top gate/SAM linker stack and a 25 nm surrounding 100 mM NaCl ionic solution. dSI = 3 nm,
L = 20 nm. S/D extensions: LS = 8 nm LD = 12 nm, VD = 0.7 V; doping N+ = 1020 cm−3. Gates:
VG = −0.25 V. VBKG is left floating. Oxide: Front: Al2O3, EOT = 0.5 nm. Back: SiO2, EOTBOX = 10 nm.
SAM layer of thickness tSAM = 1 nm, permittivity εR,SAM = 2.3. T = 300 K. Reprinted with permission
from Ref. [21]. 2014, John Wiley & Sons.

To model the ions in solution, we assume that each species i with charge valence zi
follows a modified Boltzmann distribution (MBD). The MBD is a Boltzmann distribution
modified to include, using an effective ion diameter di, steric effects that become important
at large voltage (Φ(r)) [22]:

cion,i(r) = zi.cion0,i
e

ziΦ(r)
2Ut

1 + 2νi sinh2( ziΦ(r)
2Ut

)
with νi = 2d3

i .cion0,i (1)

In Equation (1), Ut is the thermal voltage, while vi is the adimensional packing pa-
rameter related to di (dNa = 3.68 Å, dCl = 2.42 Å) [23]. Although usually in negligible
concentration when compared to other ions in buffered solutions, considering the natural
water ions, and in particular H+, is of importance in order to account for the pH and voltage-
dependent surface charge density related to the chemical reaction at the oxide–solution
interface (r = (x,y,z) = rox-sol) between the local H+ ions and the oxide [24]. For computing
the H+ concentration, Equation (1) can be used with cion0,H+ = 103 × Navo × 10−pH m−3,
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where Navo is the Avogadro number. From there, the surface charge density (σ0) can be
computed using the site-binding model [25]:

σ0 = q.NS

a2
H+

S
− KaKb

KaKb + Kba
H+

S
+ a2

H+
S

and aH+
S
=

cion,H+(r = rox−sol)

103.Navo
(mole/l) (2)

where a
H+

S
is the activity or Molar concentration of the interface (r = rox-sol) H+ ions. The

dimensionless intrinsic dissociation constants Ka and Kb, as well as the density of available
sites, NS, are oxide-dependent [24].

To simulate the electron transport in the nanowires, we used our Self-Consistent
NEGF simulator [17,18] that achieves good agreement with other NEGF simulators [26,27]
and experimental results [28]. The electronic wave functions were calculated in the Si
and surrounding oxides. We used an effective mass (EM) Hamiltonian including NWT
diameter-dependent effective masses and non-parabolic corrections that were extracted
from a sp3d5s* Tight-Binding Hamiltonian [17]. Phonon scattering was included using the
Self-Consistent Born approximation [18]. The real space (RS) equations for retarded (GR),
lesser (G<) and greater (G>) Green’s functions read [29]:

GR =
(

EIN − H − ΣR
)−1

(3)

G< =GRΣ<GR† (4)

G> = GR − GR† + G< (5)

where E is the scalar energy, IN the identity matrix, H the device Hamiltonian and ΣR,< the
retarded, lesser self-energies that include the interaction terms (e.g., with the semi-infinite
leads ΣC

R,< and the electron–phonon scattering terms ΣS
R,<) are matrices of rank N, i.e.,

the number of degrees of freedom (typically for EM the pseudo-atomic positions of a
cubic-atomic lattice with mesh parameter a = 0.25 nm).

From the Green’s functions, the NEGF-computed RS electron density, n, at position ri,
and the device current Ikl from any cross-section slab k to its next neighboring slab l, can be
computed by:

n(ri) =
nsnv

2π

∫ ∞

−∞
−iG < (ri, ri, E)dE (6)

Ikl =
nsnv

2π

q
n

∫ ∞

−∞
trace

(
HklG<

ik − G<
kl Hlk

)
dE (7)

where nS (nV) is the spin (respectively, the valley) degeneracy factor. We note that we did
not directly solve the RS equations. We instead performed a unitary transformation of
the NEGF matrices using a coupled-mode-space (CMS) approach [17,18]. The CMS NEGF
method is faster than the real-space algorithm, while it conserves the required accuracy by
preserving the mode coupling in the vicinity of the perturbation potential induced by the
charged analytes [17,30].

Finally, as depicted in the simulation flowchart of Figure 1B, the charge distributions
(electrons and ions, as well as σ0) were included to compute the potential in our finite-
difference-method (FDM)-based non-linear-Poisson (NLP) solver. To stabilize and expedite
the self-consistent convergence, we predict in an inner loop of our NLP solver the carrier
changes with respect to potential variations (Figure 1B). For electrons, the NEGF electron
density is first interpolated to the Poisson mesh using a tri-linear interpolation method.
Semi-classical predictors based on Fermi–Dirac integrals are then used to estimate the
NEGF density changes due to potential variations [27]. The ions and surface charges
are directly solved on the Poisson FDM mesh using Equations (1) and (2). After the
potential convergence in the NLP solver is achieved, a tri-linear interpolation is used to
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interpolate the 3D-potential Φ(r) onto the NEGF-solver cubic lattice to update the device
Hamiltonian and a new outer iteration is started. The procedure is self-consistently iterated
until the charge and current variations in the outer loop are below 1%. Dirichlet boundary
conditions were used for the gate electrodes, while Neumann boundary conditions were
used elsewhere.

The uses of the NEGF allows for a rigorous treatment of quantum effects such as
confinement and tunneling that play a significant role on nanowires with nanometer-size
diameters and a few tens-of-nanometers channel lengths. Furthermore, in such a formalism,
the influence of the analyte and possible ions is directly included in a non-perturbative and
exact way through the electrostatic potential that is solved for in the full domain, NWT
and surrounding media (Figures 2 and 3). This allows for naturally taking into account the
microscopic transport changes induced by the analyte (Figure 4). Such changes results in a
change of the device macroscopic mobility and impact both current and sensitivity. In the
case of Figure 4D, for instance, one can observe that due to the negatively charged analyte,
the microscopic transport is different from the case without an analyte (Figure 4E). The
band bending induced by the presence of the analyte triggers inelastic electron–phonon
scattering. This, in turn, strongly reduces the velocity overshoot that is present in a 60 nm
long device without an analyte.
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Figure 3. (A) Conduction band minimum Ec(x) along the channel and (B) simulated ID(VG) curves
of a dSI = 3 nm NWT with L = 20 nm and with an analyte with za = −1, 0, and 1 in air. VD = 0.7 V,
EOT = EOTBOX = 0.5 nm. tSAM = 0 nm. The analyte charge is distributed in a volume of 0.25 × 0.25
× 0.25 nm3. The primary physical effect, which is an electrostatic shift on the energy sub-bands (A),
results in a shift in the ID(VG) characteristics (B).
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The conduction band Ec(x) is also plotted (black line). The position of the S and D Fermi levels is
indicated by a red dot at the S and D sides. dSI = 3 nm. Originally published in [19].

3. Results
3.1. Physics and Sensitivity in the Presence of a Single Charge

In this section, we introduce various definitions of the NWTB sensitivity and sum-
marize, for completeness, the fundamental trends of their detection limit, when using as
analyte a simple electronic charge (i.e., the smallest detectable charge unit) [18]. To compare
air and solution results, we shall assume that the NWT is only biased by its back gate
(VG = VBKG). We furthermore assume that EOT = EOTBOX = 0.5 nm (Figure 2). This leads
to very similar sensitivities to those achieved by the commonly used front-gate-biasing
scheme (VG = VFG). The exact impact of these assumptions will be discussed later in
this paper.

3.1.1. Sensitivity: Physics and Definitions

When in the presence of a positively (+q case) or negatively (−q case) charged analyte,
the energy sub-bands and, hence, the ID(VG) characteristics are shifted in opposite direc-
tions (Figure 3). The sensitivity can be estimated in mV/|q|, both for a positive (za = 1)
and negative (za = −1) charge, i.e., respectively, S+ and S−, as the gate voltage shift needs
to achieve the same current in the characteristics for both charged and uncharged (za = 0,
0q case) cases at a given reference current, ID,0q, or equivalently VG,0q (ID or VG of the
uncharged case) (Figure 3). This gate voltage shift is often abusively called the threshold
voltage shift, ∆VTH, although it is in fact bias-dependent (the ID(VG) characteristics are
not just shifted horizontally). Indeed, ∆VTH typically decreases for increasing NWT in-
version levels (∆VTH is a decreasing function of ID or VG). The reason is that the ID(VG)
characteristics slope is modified by the presence of the charged analyte. For the −q (+q)
case, the slope is improved (degraded) as the negative charge pushes the channel closer to
the back gate (closer to the front gate), and hence improves (degrades) the gate coupling.
The variation of ∆VTH with the back-gate bias is further amplified when using a fluid-gate
biasing scheme, as will be discussed at the end of this paper.
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It is also possible to measure the current variation, ∆ID, (vertical shift) at a fixed gate
voltage (Figure 3). This leads to a current-based sensitivity definition:

σID (VG) =
∆ID(VG)

min(ID,i(VG))
(8)

The subscript i in ID,i stands for the minimum of the charged or uncharged current that
is used for the normalization. This is used to achieve consistent results when comparing
+q and −q cases. As ∆VTH and σID are related through the transistor current–voltage
characteristics, the best current sensitivity is achieved in a subthreshold regime, where the
relation is exponential [18].

3.1.2. Impact of Physical Parameters on the Unscreened Sensitivity

The impact of the cross-section diameter on the sensitivity of a 20 nm long N-NWT
in air has been studied in [18]. In all cases, the sensitivity to a single charge is as high
as several tens to hundreds of mV, translating to order-of-magnitude changes in current
levels in the subthreshold regime. The general trend, however, is the reduction of the NWT
sensitivity when increasing dSI, as could be expected from the nature of the electrostatic
interaction which reduces with distance. Interestingly, a dissymmetry can be observed:
|S−| is larger than S+ (Figure 3B) and the dissymmetry rapidly increases with L [18].

A negative charge locally creates a barrier in the conduction band and increases both
the top of the channel barrier (TCB) and VTH. A positive charge results in a local potential
well by lowering the electron energy. As a result, TCB and VTH decrease (Figures 3A and 4).
The height of the barrier or the depth of the well increase for smaller cross-sections. In
the −q case, S− is directly linked to the charge-induced barrier. For longer channels, the
enhanced inelastic scattering allows for more electrons with an energy lower than TCB to
overcome the barrier by absorbing phonons. Hence, the sensitivity decreases with L, but
rather slowly (Figure 4A,D).

In the +q case, S+ and the VTH shift are not directly induced by the potential well
created by the charge, but rather by its efficiency to lower TCB. S is therefore lower than in
the barrier case and rapidly decreases as L is increased (Figure 4C,F). Additionally, as S+ is
less sensitive to the direct analyte electrostatic interaction (i.e., the depth of the potential
well), secondary effects, e.g., short channel effects, may play a more significant role on S+
value. We hence observed a reduced S+ dependency on dSI when compared to S− [18].

3.1.3. Ions and Surface Charge Screening in Solution

Figure 5A shows the strong reduction of S+ and S− for the L = 20 nm 2 × 2 nm2 NWT
case, when the surrounding media is changed from air to solution with cion0 = 0, 1 (i.e., a
typical buffered solution), and 100 mM (i.e., a typical undiluted physiological solution).
As explained in [3], in solution, the higher media permittivity (εr = 80), when compared
to air (εr = 1), causes the analyte-induced electric field to generate a wider but also much
smoother energy barrier perturbation. S is further reduced for increasing ion concentrations
due to screening. In solution, also, S quickly degrades with increasing charged-analyte-to-
channel distances, e.g., when increasing the front-gate EOT or introducing a SAM layer
(Figure 5B). Finally, as previously mentioned, H+ ions are responsible for the creation of a
surface charge density at the oxide–solution interface (Equation (2)). Such a phenomenon
is exploited, for instance, for pH sensing [24]. For biosensing, however, if the oxide is not
passivated, σ0 creates an additional screening effect that further reduces the sensitivity
besides the direct screening of the ions (Figure 6A,B).
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As shown here, these two screening effects, not the intrinsic sensitivity of the NWT
itself, are the crucial effects to overcome to reach single-analyte detection in ionic solutions
when using ultra-scaled NWTs. The reduction of the surface charge density is intrinsically
linked to the used surface passivation technique [31]. In [32], experiments showed an
important reduction of the NWT response to pH, down to the mV/pH range, after alkyl-
silane functionalization. These results were found to be consistent, based on analytical
models, with a reduction by three orders of magnitude of the density of available oxide
sites NS (Equation (2)) [32]. Our numerical simulations on the impact of NS on the NWT
pH sensitivity also confirm the same trend (Figure 6C). Furthermore, assuming such a
passivation, our simulations show that in this case the original sensitivity (without oxide
charge) can be restored (Figure 6A,B). Another solution may be the use of oxide-free NWBTs,
providing a sufficient electrical and chemical insulation, and passivation can directly be
provided by the SAM itself [2,6,31]. The sensitivity improvement measured in such devices
is consistent with our theoretical calculations without oxide charges and a reduced analyte
distance from the surface of the sensor [31].

Concerning ion screening, a publication has shown promising results by the appli-
cation of a pulsed electrical signal that allows for recovering the unscreened sensitivity
in transient regime with a time constant in the µS range [33]. Other publications have
proposed to overcome the screening-induced performance limits of nanowire biosensors
using electro-diffusion flow [34] or AC techniques in the MHz range [35].

3.2. Sensitivity and Limit of Detection in the Presence of a Single DNA Molecule
3.2.1. Impact of Physical Parameters on the Sensitivity in Solution

We now investigate S of the NWT (assuming a well-passivated oxide) with or without
(reference case) a 20-base-long DNA single strand attached on top of a 1nm SAM layer
on the top gate, and using an uncharged PNA molecule as a selective probe (Figure 2).
The device is biased through its fluid gate, while the back gate is grounded. For the DNA,
we assume a non-permeable-to-ions, uniformly charged rod model with one charge per
base [5,36]. The rod diameter is 1nm and each base has a length of 0.34 nm. The relative
dielectric DNA permittivity is assumed to be 8 [37].
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Figure 6. VTH shift in function of VBKG for a charged analyte with za = −1 and +1 without and
with oxide charges for an Al2O3 oxide with different passivation (bare oxide (NS = 8.1018 m−2) and
alkyl-silane-passivated (NS = 8.1015 m−2)) conditions in (A) 1 mM and (B) 100 mM solution. We
fitted the alkyl-silane passivation effect on the site-binding model NS parameter (Equation (2)) to the
experimental NW pH sensitivity measurements of [32] before and after passivation. (C) Simulated
impact of NS on the NWT pH sensitivity (VG = VFG, VBKG = 0 V). dSI = 3 nm. VD = 0.7 V. L = 20 nm.
Oxide: EOT = EOTBOX = 0.5 nm. pH = 7, T = 300 K.

In Figure 7, the impact of L on ∆VTH in solution is observed for two different ionic
contents. S is enhanced compared to the single-charge case. This is due to, firstly, an
increased number of charges to detect and, secondly, to the non-permeability to ions in
the DNA case. As observed in the single-charge case, S decreases when increasing L. For
the diluted solution (1 mM) case, however, the L = 100 nm NWT still presents a significant
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shift (∆VTH = 19 mV, that leads to about 30% of relative drain current variation σID). For
the 100 mM solution case, on the other hand, only the L = 20 nm device seems to achieve a
reasonable S for single DNA strand detection.
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Figure 7. Simulated ∆VTH (VFG) compared to the reference case for a 20B DNA analyte, extracted at
VFG0 = −0.1 V in solution in function of L for cion0 = 1 mM and 100 mM. VD = 0.7 V. EOT = EOTBOX

= 0.5 nm. tSAM = 1 nm. VBKG = 0 V.

The impact of back-gate bias and EOTBOX is investigated for the latter case
(Figures 8 and 9). When increasing EOTBOX or letting the back gate float, σID is increased
(Figure 9A). A too-strong control of the back gate on the channel potential is indeed
detrimental to the electrostatic shift (∆EC) induced by the DNA molecule on the channel
conduction band. However, the reduced front-gate coupling, induced when biasing the
back gate (this can also be observed when looking at the reduced subthreshold slope in
back-biased ID(VG) characteristics in Figure 8), amplifies the ∆VTH shift related to ∆EC.
Due to the reduced gate coupling, a bigger gate-voltage shift is needed to recover the
same current level between charged and uncharged case. This explains why, despite
achieving the lowest σID variation (related to a lower electrostatic shift), the device with
EOTBOX = 0.5 nm and VBKG = 0 V features the highest ∆VTH shift (Figure 9B).
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Figure 9. (A) Relative current variation σID (%) and (B) VTH shift in function of VG = VFG extracted 
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shifts feature similar considerations as just explained above (Figure 10). σID being propor-
tional to the electrostatic shift is not much changed, one exception being that it is not pos-
sible to enhance σID by letting VFG float. The ID(VBKG) curve at VFG floating is in fact equal 
to that at VFG = 0V (assuming a 0V work function for the ideal faradaic electrode in 

Figure 8. Simulated ID(VG = VFG) curves of the NW with (symbols) and without (plain line) the
DNA analyte in a 100 mM solution for two different EOTBOX (=0.5 and 10 nm) and VBKG (=0 V and
floating) values. dSI = 3 nm. L = 20 nm. VD = 0.7 V. EOT = 0.5 nm. tSAM = 1 nm. VD = 0.7 V.
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Figure 9. (A) Relative current variation σID (%) and (B) VTH shift in function of VG = VFG extracted
from the ID(VG) curves of Figure 8. dSI = 3 nm. L = 20 nm. VD = 0.7 V. EOT = 0.5 nm. tSAM = 1 nm.
VD = 0.7 V.

The relationships between back and front gate sensitivities both for σID and ∆VTH
shifts feature similar considerations as just explained above (Figure 10). σID being pro-
portional to the electrostatic shift is not much changed, one exception being that it is
not possible to enhance σID by letting VFG float. The ID(VBKG) curve at VFG floating is
in fact equal to that at VFG = 0 V (assuming a 0 V work function for the ideal faradaic
electrode in solution). This is due to the charge neutrality of the ionic solution being
far from the nanowire that pins the solution potential for the floating case. ∆VTH being
further (inversely) dependent on the gate coupling is amplified by the front gate/back gate
coupling ratio. As observed for pH sensors when back-gate-biased, ∆VTH can therefore be
amplified by the capacitive coupling amplification factor rEOT = EOTBOX/EOTFG [38,39].
EOTFG is the total fluid gate EOT, which includes the oxide but also the eventual SAM
dielectric layer (EOTSAM). This effect on ∆VTH (VBKG) is well observed in Figure 10B for
the device with EOTBOX = 10 nm (rEOT = 9.12), for which ∆VTH in excess of 100 mV (the
curve has been normalized by a factor 10, i.e., about equal to the rEOT ratio) are achieved.
For the device with EOTBOX = 0.5 nm (rEOT = 0.228), the reduced ∆VTH (VBKG) is mostly
observed in strong inversion regime. As observed in Figure 10B, ∆VTH (VBKG) presents
more variation with VG and is typically bigger (resp. smaller) than ∆VTH (VFG)*rEOT in
deep subthreshold (in strong inversion) regime. The stronger ∆VTH (VBKG) dependency
on VG can be explained when taking into account the impact of the Si dark space regions
related to quantum confinement in the computation of an effective rEOT (rEOT,eff) > rEOT
(resp. < rEOT) [40]. rEOT,eff decreases with VBKG due to the migration of the channel centroid
position toward the back interface when increasing VBKG.
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Figure 10. (A) Simulated relative current variation (%) and (B) VTH shifts for front-
(VG = VFG) and back-gate (VG = VBKG) bias for various capacitive coupling amplification factors
rEOT = EOTBOX/EOTFG. EOTFG = 2.2 nm in all cases (EOT = 0.5nm. tSAM = 1 nm (EOTSAM = 1.7 nm)).
EOTBOX = 0.5nm for all cases except for the curves related to the NWT with back-gate bias and
rEOT = 9.12, for which EOTBOX = 10 nm. As indicated in the legend for this device, the x-axis (VG)
of its σID(VBKG) curve has been scaled (divided) by a factor 10, while both the x-axis and y-axis
(∆VTH) of its ∆VTH (VBKG) curve have been scaled by a factor 10. dSI = 3 nm. L = 20 nm. VD = 0.7 V.
cion0 = 100 mM.

3.2.2. Limit of Detection

To resolve the conflicting or different impacts of back-gate coupling and back-gate
biasing on ∆VTH and σID optimization observed in Figures 9 and 10, one should optimize
the limit of detection (LOD) and therefore consider how both sensitivity and noise signals
are affected.

In a FET biosensor, the low-frequency noise (LFN), which originates either from the
intrinsic 1/f LFN of the transistor itself or from the contact resistance LFN, has been shown
to be dominating [39,41,42]. In an optimized Si technology, the 1/f LFN of the device is
typically dominant and will be considered here [41]. Considering a number fluctuation
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noise, neglecting front-to-back-gate coupling effects but including correlated-mobility
fluctuations [43], the current noise–power spectral density is given by [44,45]:

SI =

(
1 + αµ0 cox

ID
gm

)2
× g2

mSVFB (9)

SVFB =
δKBTq2Nt

f WLC2
Ox

(10)

For silicon the tunneling attenuation distance, δ, and the Coulomb scattering coeffi-
cient, α, are typically equal to 0.1 nm and 104 V·s/C, respectively. Nt is the density of oxide
traps, WL is the area under the gate and Cox the gate oxide capacitance per unit area. Other
symbols have their usual meaning.

Integrating SI over the measurement bandwidth (between the low- and high-frequency
cut-off f 1 and f 2, respectively), we can compute δid, the total integrated noise, and then
SNR, the signal-to-noise ratio:

SNR =
∆ID
∂id

=
∆lD√

ln( f2/ f1)
√

Sl( f = 1 Hz)
(11)

In Table 1, the equation above has been applied to compute the SNR from the NWT
cases of Figure 10, taking ∆ID and gm from our NEGF simulations. We see that the front-
gate-biased devices achieve a better SNR, one of the reasons being that the front-gate area is
three times bigger that the back-gate area. The best case is achieved for the front-gate bias
with grounded back-gate voltage (i.e., with maximum ∆VTH). This is because the equivalent
gate-bias noise is about equal for both front-gate-bias cases (the noise is number-fluctuation
dominated and we have neglected gate-coupling effects as a first approximation). As can be
seen for the floating back-gate case, the higher current sensitivity is more than compensated
by a higher current noise that leads to a lower SNR.

Table 1. Simulated NWT sensitivity and SNR for the different front- (VG = VFG) and back-gate-
(VG = VBKG) biased NWT cases of Figure 10, at VG = −0.2 V (−2 V for the case with EOTBOX = 10 nm).
Our NEGF simulations were used for ∆ID, whereas the noise was computed by integrating the noise
spectrum in Equation (11). Nt was set to 2.3 × 1018 cm−2, which is typical for Si NWs [41]. The
noise was integrated between f 1 = 0.1 Hz and f 2 = 5 Hz. If not specified otherwise, EOTBOX = 0.5 nm.
dSI = 3 nm. L = 20 nm. VD = 0.7 V. cion0 = 100 mM.

Biasing Scheme |σID| [%] ∆VTH (mV) SNR

VG = VFG
VBKG = 0 V 16 10 11

VG = VFG
VBKG floating 30 7.5 6.1

VG = VBKG
EOTBOX = 0.5nm 18 8.7 5

VG = VBKG
EOTBOX = 10 nm 32 118 3.1

For the back-gate bias case with EOTBOX = 10 nm, the device intrinsic SNR is also not
improved, as the ∆VTH amplification by about a factor of 10 is over-compensated by an
increase of the noise. Our observations are also in line with those reported in [39], where
despite an increased pH sensitivity, the intrinsic sensor device SNR was not improved.

4. Discussion

We have investigated, here, the fundamental charge detection limit of ultra-scaled
NWTBs using a quantum microscopic NEGF approach. Our findings are that for negatively
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charged analytes, an N-doped NWT is more sensitive and should, therefore, be used. By
analogy, a P-doped NWT is expected to be more sensitive to detect positively charged
analytes. Our simulations predict S of tens to hundreds of mV/q in dry (air) or low-
ionic solution environments, and single-charge/analyte detection seems within reach for a
range of device dimensions (channel length, cross-sections) not too stringent compared to
advanced CMOS fabrication capabilities. However, with typical ionic solution and SAM
conditions, the sensitivity rapidly drops to the mV/q range. This translates in small ID
variations (a few % or less) and a narrow range of ultra-scaled device dimensions to reach
single-charge detection. Finding ways to circumvent ionic screening (e.g., by using AC
detection schemes) and oxide charges (e.g., by achieving proper passivation), as well as
having the charge as electrically close as possible to the surface of the sensor, are crucial.

We have, then, extended our study to the detection of a single 20-base-long DNA
molecule using a PNA-selective probe and investigated the impact of parameters such
as back-gate biasing and BOX thicknesses to further enhance the sensitivity and the limit
of detection. Our results seem promising for single DNA-molecule detection using ultra-
scaled NWTs, in particular for the front-gate-biased, grounded-back-gate scheme, where
a signal-to-noise ratio larger than 10 was predicted in a 100 nM solution. As for direct
detection in physiological-like media, only an ultra-short nanowire seemed to yield suffi-
cient sensitivity; Si NWTs could benefit from advanced nanoscale technologies and VLSI to
be integrated in an array of single-analyte-sensitive and high-detection-probability DNA
sensors. Again, to ease the trade-off between sensitivity and probability of detection, a
detection scheme that overcomes ion screening is highly desirable.
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