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Interfacing Biology and Electronics with Memristive
Materials

Ioulia Tzouvadaki, Paschalis Gkoupidenis,* Stefano Vassanelli,* Shiwei Wang,
and Themis Prodromakis*

Memristive technologies promise to have a large impact on modern
electronics, particularly in the areas of reconfigurable computing and artificial
intelligence (AI) hardware. Meanwhile, the evolution of memristive materials
alongside the technological progress is opening application perspectives also
in the biomedical field, particularly for implantable and lab-on-a-chip devices
where advanced sensing technologies generate a large amount of data.
Memristive devices are emerging as bioelectronic links merging biosensing
with computation, acting as physical processors of analog signals or in the
framework of advanced digital computing architectures. Recent developments
in the processing of electrical neural signals, as well as on transduction and
processing of chemical biomarkers of neural and endocrine functions, are
reviewed. It is concluded with a critical perspective on the future applicability
of memristive devices as pivotal building blocks in bio-AI fusion concepts and
bionic schemes.

1. Introduction

Organs and systems in the human body rely on a combinatory
scheme of electrical and chemical signals that ultimately offer a
broad repertoire of potential biomarkers. While capturing those
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diverse signals is the “hunting ground”
of biosensing technologies, making use of
them requires extracting and quantifying
patterns that carry relevant functional in-
formation. As the repertoire of biosensors
broadens along with their resolution,[1] the
challenge mounts of processing the grow-
ing pool of streamed data, and these even-
tually in real time and with low power
consumption for implementation in im-
plantable or wearable biomedical devices
and bioelectronic medicines (Figure 1a)
and in lab-on-a-chip systems. The inter-
est naturally goes toward devices with
the potential of overcoming main bot-
tlenecks such as, above all, the physi-
cal separation between sensing, process-
ing, and actuating modalities that lim-
its the form factor, latency, and energy

efficiency of current systems and that becomes more pronounced
when large-scale, real-time, and long-term monitoring is re-
quired. In this context, novel memristive materials and nanode-
vices could play a central role, thanks to their intrinsic low power
operation and their full compatibility with conventional comple-
mentary metal–oxide–semiconductor (CMOS) technologies for
large array integration, coming into play for processing biosig-
nals either in the form of all-or-none events or as complex spa-
tiotemporal patterns.

Many biological signals come in the form of events by na-
ture. Neuronal spikes represent a striking example relevant for
applications such as the intraoperative positioning of deep brain
stimulation electrodes in Parkinson’s patients or for driving pros-
theses based on brain–machine interfaces (BMIs) (Figure 1b,c).
Memristors are recognized as capable of emulating synaptic pro-
cessing of spikes[2] and therefore appear as an ideal physical link
between brain and electronics.[1] Recorded spikes typically re-
quire fundamental processing steps to extract quantitative infor-
mation on neuronal activity: detection of the spike events, sorting
(i.e., classification depending on features), counting over time
windows are among the most used operations to characterize
neuronal firing. As reported in Section 4 of this review, single
memristors can, at least in part, take over these tasks. Alterna-
tively, in the context of more complex and unconventional dig-
ital architectures, memristors can perform higher level opera-
tions such as patterns recognition and complex features extrac-
tion (e.g., in the view of application in BMI) to the benefit of
artificial intelligence (AI) running on compact low-power con-
sumption processors (Figure 1b–d). Thus, closed-loop schemes
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Figure 1. Essential building blocks and paradigms of BMIs and bioelectronic medicines. a) Highlights of the achievements in bioprostheses and bioelec-
tronic medicines to probe, interface with, and assist the human body, i.e., wearable and implantable sensors and actuators, artificial parts, and implants.
b) Illustration of a bidirectional brain computer interface paradigm comprising a close-loop context from nervous system and prosthesis to the artificial
processing unit and vice versa. A general scheme comprises brain, spinal cord, or nerves as well as a robotic part, hereby a robotic arm. Recordings either
from the brain or spinal cord (SC) (𝛼), or from the nerves and prosthesis sensors (b, c, d) (forward cycle, i.e., transduction to processing) are processed,
elaborated, and then provided as feedback (backward cycle) for stimulation of, e.g., nerves or muscles or to directly control movement of the artificial
arm. The different modalities of signal transduction are indicated: Electroencephalography (EEG), electrocorticography (ECoG), implanted neural inter-
faces (INIs), SC, and peripheral nerve interfaces (PNIs). c) Transduction block indicating examples of signals described in detail in Figure 2 (oscillation
and ERP for noninvasive, LFP and Spikes for invasive interfacing modalities). d) Processing block comprising a chain of distinct sub-blocks (i–v), i.e.,
detection–sorting–features extraction–decoding–encoding. Memristors can be part of the processing chain and, in perspective, merging transduction
with processing acting as smart sensors.

with brain, peripheral nerves, and organs of the human body
promise significant advances in neuroprosthetics and bioelec-
tronic medicines.[1–3] As discussed in greater detail in Section 2,
other brain electrical signals in addition to spikes and originated
from populations of neurons represent promising biomarkers.
They include oscillations and evoked wave responses such as
event related potentials (ERPs) and local field potentials (LFPs)
(Figure 2),[4] each posing specific processing challenges particu-
larly in the context of a prolonged mapping and continuous data
stream.

Chemical biosensors are further extending the signals reper-
toire of accessible biomarkers to neurotransmitters, or other
biomolecules across the human body including hormones

and cytokines. It can be envisaged that they will be incor-
porated in wearables, minimally invasive and implantable de-
vices, or tissue-like systems for in vitro drug discovery as-
says. However, while, e.g., an on/off analysis of blood or
sweat sample can be already carried out rather efficiently
with current sensing and actuating electronic systems, con-
tinuous monitoring and data processing remains a severe
challenge.

In this review, we discuss on the potential of memristive tech-
nologies as efficient and dynamic bridge between engineering
and biology, establishing a direct and functional communica-
tion between the two parts to extract information out of biolog-
ical data. We conclude by expressing some views of where such
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Figure 2. Electrical and chemical signals sensed throughout the human body. a) Brain electrical signals are measured extracranially by EEG, or intracra-
nially by electrocorticography (ECoG) and implanted neural interfaces penetrating the brain tissue (INI). Specific neural interfaces can record from other
structures of the nervous system such as the spinal cord (SCI) and peripheral nerves, either somatic (SPNI) or autonomous (APNI). Recorded signals
depend on the measuring method and typically consist of changes of electrical potential: extracranial potential (EP), for EEG, and intracranial potential
(IP), for invasive devices. ECoG and INI electrodes record the potentials generated at the surface of the brain cortex and inside the brain tissue, respec-
tively. Both can measure field potentials generated by populations of neurons (i.e., local field potentials (LFPs)), and extracellular spikes from single
neurons. Colored blue bars: approximate signal bandwidths (arrows connect the recording method to the signals covered). Body fluids contain chemical
biomarkers such as neurotransmitters (NTs), hormones, and cytokines (CKs). Colored red bars and arrows indicate typical concentration ranges for
each class of substances. b) Examples of brain signals approximately distributed depending on their dominant frequencies (frequency scale in (a)). Os-
cillations span from slow periodic waves and up/down states (U/D) to the gamma waves. Examples of stimulus-evoked event waves include spikes, LFP
(both recorded intracranially), or event related potentials (ERP) measured by EEG. c) Schematic drawing of chemical biomarkers throughout the human
body such as synaptic released NTs, hormones (H) secreted by endocrine cells, and cytokines (CKs) from inflammatory cells. Different biomarkers and
biological sources are positioned according to typical concentrations (concentration scale in (a)).

technological advancements may potentially lead as applications
in biomedicine.

2. An Overview of Biosignals

Electrical and chemical signals can be sensed throughout the
human body and quantified becoming indicators of functional
states, or biomarkers (Figure 2).

2.1. Electrical Biosignals

There are a variety of electrical signals originating from the
nervous system.[5] Electrical signals are measured by electroen-
cephalography (EEG), electrocorticography (ECoG), or implanted
neural interfaces (INIs) penetrating the brain tissue typically

based on multielectrode arrays (MEAs). They can all convey
a large amount of data. In the INI case, for example, a four
probe arrangement with 32 microelectrodes each generates up to
≈2 Mbytes per probe s−1. Advanced CMOS-based MEA probes
comprising hundreds of recording sites reach a data rate of
≈20 Mbyte s−1. Similarly, neural electrical activity can be recorded
by spinal cord (SC) implants and peripheral nerve interfaces, ei-
ther somatic (SPNIs) or autonomous (APNIs) (Figure 2a). More-
over, electrical signals can be sensed from heart and muscles by
electrocardiography and electromyography (not shown). In con-
clusion, a large repertoire of electrical signals can be streamed in
real time offering opportunities for valuable biomarkers in ther-
apeutic applications, which poses, however, a big data challenge.

Processing strategies to extract information from electrical
biosignals depend on whether they are in the form of sin-
gle events or periodic waves. Several electrical signals are in
the form of events. As already mentioned, spikes recorded by

Adv. Mater. 2023, 2210035 2210035 (3 of 17) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202210035 by U
niversiteitsbibliotheek G

ent, W
iley O

nline L
ibrary on [28/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advmat.de

implanted probes are all-or-none signals by nature (Figure 2b).
Potential waves evoked in response to stimuli or motor actions
and recorded extracranially by EEG (i.e., evoked response po-
tentials or ERPs) are events too, along with evoked LFPs that
are recorded intracranially (Figure 2b). Periodic signals, instead,
comprise a large family including UP and DOWN states or
sinewave-like oscillations that can be recorded by extra- and in-
tracranial electrodes and are typically classified depending on the
dominant frequency. Periodic signals range from below one, up
to a few hundred Hertz (Figure 2b). They can last for long (e.g.,
minutes) and form complex signals (e.g., as nested waves) that
require high-order processing. Noteworthy, all these signals (in-
cluding spikes) are recorded extracellularly for clinical or lab-on-
a-chip purposes, which implies that their amplitude is typically
small (i.e., microvolts to few millivolts). Moreover, the fastest sig-
nals (i.e., spikes) are below a few kilohertz in bandwidth which,
along with the small amplitude, rises challenges for memristor-
based processing.

The bandwidth of the recording method has significant impact
on measured signals. For EEG, because of skull attenuation and
to avoid contamination from muscle activity, a standard upper
frequency limit is set at around 30 Hz. Thus, the EEG spectrum
typically spans from delta (0.5–4 Hz) up to beta (12.5–28 Hz)
oscillations but can hardly reach the gamma range (about 30–
150 Hz, varying across studies), and the same frequency spec-
trum limitation applies to ERP events. Invasive neural probes,
that include ECoG grids placed in the epidural or subdural space
above the brain cortex in addition to INI, expand the spatiotem-
poral resolution to cover the whole range of measurable brain
activity, from oscillations and ERP to evoked LFP (<300 Hz) and
spikes (<3 kHz) (Figure 2b).

2.2. Chemical Biosignals

Neurotransmitters (NTs) released by synapses, or hormones (H)
and cytokines (CK) secreted by cells in body fluids can be sensed
by chemical biosensors and represent potential biomarkers (Fig-
ure 2c). In neurons, in fact, an important form of chemical com-
munication is expressed through spike-triggered NT release at
the axon terminals and binding to the corresponding receptors
of the target cell (either postsynaptic neuron, muscle cell, or
gland cell).[6] In some cases, this form of communication can
influence multiple neurons at once, e.g., through the diffusion
of NTs out of the synaptic clefts (where concentration reaches
the millimolar range). Nevertheless, NT concentration decays
rapidly [t = 0.1–1 ms],[7] due to diffusion, reuptake, binding to
receptors/transporters, or enzymatic breakdown). For example,
among NTs, dopamine plays a crucial role in memory, attention,
and learning functions.[8] It can act as an important biomarker
(e.g., for diagnosis of neuroblastoma) and a normal concentra-
tion window (in serum or urine) is considered in the range from
few to 10 ng mL−1. Abnormal dopamine levels in the brain (excess
or deficiency) may cause or be linked to several health conditions
such as Parkinson’s disease and other psychiatric disorders. Fur-
ther to neurotransmitters, hormones (e.g., insulin, cortisol, thy-
roxine), and cytokines (e.g., tumor necrosis factor alpha, inter-
leukin 6, and interferon gamma), are key markers of endocrine
and immune functions, which are interrelated with those of the

nervous system.[9] Noteworthy, contrary to neurotransmitters in
the synaptic space or its proximity, concentration changes of hor-
mones and cytokines in blood and extracellular fluids tend to fol-
low slow dynamics (typically from minutes to hours).

3. An Overview on Memristive Technologies and
Materials

Memristors are devices whose internal resistance depends on
the history of applied voltage and current. They provide to elec-
tronics a new dimension,[10] and may deliver highly scalable,[11]

fast,[12] power-efficient (requiring minimum energy for opera-
tion capacity[13]), and reconfigurable electronic systems.[14] When
compared to CMOS-based memory, memristors exhibit a multi-
tude of states for less energy and space,[15] while their miniatur-
ized size and simple, two-terminal architecture allow high inte-
gration density (e.g., via a cross-point array) enabling in parallel
computing and processing of large volume of input signals.[11]

Thus, while entering the era of big data, memristor-based de-
signs may outperform conventional digital approaches for hard-
ware implementation of compute-intensive systems such as neu-
ral network accelerators with better power and area efficiency by
directly addressing the memory bottleneck.[16] Memristors, how-
ever, can also function as analog processors (i.e., outside the digi-
tal scheme), e.g., emulating synaptic computation. This offers at-
tractive opportunities in the field of biosensors and their biomed-
ical applications, in terms of unconventional brain-inspired com-
puting strategies and to avoid power-hungry analog-to-digital
conversion.

Memristive systems nowadays involve a variety of different
materials and architectures.[17] The most widely known build-
ing blocks for fabricating memristive devices usually com-
prise a stack of oxide active layer(s) such as tantalum ox-
ides, titanium oxides, hafnium oxides, sandwiched between
two metal electrodes, like, for instance, gold or platinum (Pt)
of nanometer thickness or semiconductor materials like heav-
ily doped silicon and indium tin oxide, resulting to devices
overall known as metal–oxide memristors. Meanwhile, mem-
ristive technologies involving chalcogenides,[18] perovskites,[19]

silicon,[20] 2D materials,[21] and liquid-based materials have also
been reported.[22] Memristive behavior can be also expressed
in systems purely comprising organic materials,[23] such as
polymers and fully or partially engineered of natural, biologi-
cal compounds.[24] Memristive structures can be fabricated as
vertical layers (vertical stack) of cross-point arrays (in stand-
alone or crossbar arrangement),[11,25] as well as planar (lateral)
architectures,[26] and in the form of nanoscale configurations,[27]

such as nanowires,[28] and nanogaps.[29]

Additionally, memristive devices come in many “flavors”
related to the underpinning switching mechanisms, and
characteristics,[15a,30] such as thermal–chemical mechanism,[31]

phase change,[32] electrochemical metallization, valence change
memory.[33] The origin of switching,[30] and consequently the
hysteresis appearing in the current to voltage characteristics
of nanoscale devices exhibiting memristive characteristics, can
be attributed to a wide range of phenomena including redox-
based events, the drift of oxygen vacancies,[34] (e.g., in valence-
change mechanism, the creation and electromigration of oxy-
gen vacancies induce the distribution of the carrier density and
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the valence states of cations,[35] and/or interstitials,[36] filament
formation[37]). The formation process can occur either abruptly
(binary) or gradually (analog), within an active core under the in-
fluence of an applied electric field (e.g., in fuse–antifuse mech-
anism, metallic filaments are created through the insulator ma-
trix during the electroforming process and are fused as a result
of Joule heating and the electric field). Furthermore, memory ef-
fects are also attributed to the finite mobility of ions as they re-
distribute within a charged nanopore under applied potentials
and, more specifically, due to noninstantaneous ion redistribu-
tion. Thus, these effects are considered to originate from the dy-
namic properties of charge carrier ions.[38]

Irrespective of diversities in the underpinning physics, all
memristive devices have in common a reconfigurable resis-
tance that correlates to synaptic weights in biological neurons.
Interestingly, resemblances, however, do exist as exemplified
by metal/oxide resistive random-access memory technologies
(ReRAM or RRAM)[30] (we adopt in this review a widely ac-
cepted notion that ReRAM/RRAM is a class of memristors[10,39]).
ReRAM has two terminals, (top and bottom electrodes) that
remind the pre- and postsynaptic neurons, and the switching
layer in-between that recalls the synaptic cleft. At a closer look,
however, a significant difference emerges. ReRAM can be pro-
grammed to a multitude of distinct resistive states,[15b] thus in-
deed reminding the tuning of the postsynaptic membrane con-
ductance by NT and plasticity. However, ReRAM relies on the
switching layer that is dynamically reconfigured when stimulated
by electrical input causing physical ion migrations/redistribution
associated to chemical redox processes within the film. Thus, the
role of NTs and molecular signaling networks in the biological
synapse is taken over by a much simpler physical mechanism in
ReRAM: the direct electrical tuning of ion motion in the switch-
ing material.

Despite the physical diversity with respect to the biolog-
ical counterparts, owing to their ability to emulate a vari-
ety of processing and storage functions of synapses in bio-
logical neural networks,[2] memristive technologies have been
proven excellent candidates for neuromorphic,[40] brain-inspired
computing[25,41] and artificial neural networks (ANNs),[40b,42]

AI,[43] pattern classification[44] and learning.[45] These proved
the memristor as a remarkable “more-than-Moore” device that
emerged as a strong addition to the traditional technologies re-
lying on CMOS scaling which has been slowing down, is facing
challenges, and will meet headroom in the future.[46]

4. Memristive Technologies for Biosignal
Processing – Electrical Modality

A mounting challenge for neural interfaces and their applica-
tion perspectives as implantable systems is how to process the
increasing volume of sensor output data in real time and in a con-
text of stringent constraints on power and size form. Processing
in the “cloud” or external workstations does not represent a real
solution as it requires high speed data links which, apart reliabil-
ity and security challenges, rely on bulky and/or high-power wire-
less transmitters or wired cables.[47] Let us consider a practical ex-
ample: state-of-the-art technologies offer hundreds to thousands
of sensing nodes in a miniaturized front-end.[48] However, the al-
gorithms to process the data cannot be run on an implantable

device yet.[49] Memristive technologies offer a new prospective
solution to address this challenge, both in terms of analog pro-
cessing strategies and in the context of hybrid analog/digital or
digital architectures. For example, as reported below, physiologi-
cal event signals such as spikes generated by neural activity can
be efficiently detected, integrated, and even sorted via the analog
thresholded nature of the memristive systems, thus avoiding dig-
itization. The single memristor is driven by recorded spikes from
neurons once duly amplified, undergoing switching events that
can be used for spike detection and counting as well as for tem-
poral integration like in biological synapses (Figure 3a,e,f). On a
similar basis, the different analog responses of a memristor to
different spike waveforms as recorded from the living neurons
can be used for sorting (Figure 3c,d). In a more general frame-
work, signals recorded by neural probes could be used as input
to memristor arrays and artificial neural networks for extraction
of parameters of interest, exploitable in future applications as
biomarkers for diagnosis or for prosthetics (Figure 3b).

A simple, yet potentially very useful operation rule for process-
ing recorded spikes as analog signals is the so-called memristive
integrating sensor (MIS) platform.[50] A fundamental aspect of
the working principle is that, after suitable preamplification of
recorded spikes, they are applied without any digitization as input
to the memristive system, which signifies the registration of an
occurring event as a change in the corresponding state variable.
Thus, in essence, the changes in the device state-variable levels
are exploited to encode neuronal firing information by perform-
ing signal detection and integration of spiking activity, i.e., emu-
lating temporal integration of biological synapses. The MIS was
showcased utilizing raw biosignals originating from spiking ac-
tivity of retinal ganglion cells recorded from a MEA front-end sys-
tem, and preamplified through inbuilt amplifiers. Thus, signals
are voltage–time series which are the input to the MIS platform
and information on spike amplitude and frequency is transduced
via a gradual (analog), saturating switching that encodes multi-
ple spiking events via a single memristive element as nonvolatile
resistive state transitions. Noteworthy, instead of digitizing the
full voltage time series as it would be in case of conventional
systems, in this case digitalization is only realized periodically
for readout of stored spiking information from the memristor,
ultimately retaining only a limited yet representative amount of
data. Another, yet more complex analog processing strategy was
adopted for spike sorting,[51] i.e., the recognition and then classi-
fication of spikes from different neurons based on the different
shapes of their voltage waveforms. In this case, it has taken ad-
vantage from the fact that the dynamics of a memristor change
represents the envelope of the input parent spike (Figure 3a).

Forward looking, low threshold memristors may allow com-
plete independence from signal-amplitude amplification require-
ments and additional intermediate agents. The direct transduc-
tion of electrical signals from neurons without preamplification
or intermediating agents, but entirely through a two-terminal
organic memristive device signifies an important step to this
direction.[52] The scheme is implemented for unidirectional,
activity-dependent coupling of two live neurons in brain slices. In
this case, the neuronal activity was recorded intracellularly, and
the excitation threshold in the postsynaptic neuron controlled the
values of the device resistance. Additionally, protein-nanowire-
based memristors are reported and schemes able to function at
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Figure 3. Memristors for neural signal processing and information processing. a) Concept illustration where spikes suitably amplified are used as input
to the memristive spike sorter, which links different types of spikes of various strengths and shapes, generated by different neurons and, consequently,
featuring different signature waveforms. The response of memristive devices is a change in resistance corresponding to the envelop of the single spiking
event. b) Binarized features extracted after the processing of collected EEG signals (vowel features from speech imagination) are used by a memris-
tive preneuron’s block. A leaky integrate-and-fire neuron is used in the postneuron block, where the postneurons are paired into groups comparing
vowel duets. Decision logic determines which postneuron fires first based on their output signals. c) Succession of different spike waveforms. d) Such
spike waveforms utilized as input for the spike classification, overall identifying three different clusters with respect to spike type, through the change
in resistive state versus starting resistive state for each pair of consecutive measurements taken. e) Indicative experimentally measured memristor re-
sponse to a streaming spike train with clear correlations to the firing patterns and transitions (I “Tonic→Bursting,” II “Bursting→ Irregular,” and III
“Irregular→Adapting”). f) Obtained outputs from the network over time, highlighting the detected pattern transitions. (a), (c), (d) Reproduced with
permission.[50] Copyright 2016, Nature Publishing Group.(b) Reproduced with permission.[45a] Copyright 2015, Nature Publishing Group (e). (f) Repro-
duced with permission.[54] Copyright 2022, Nature Publishing Group.

very low power and same voltage levels as the brain, namely in
the range of biological action potentials.[23,53]

While classification of signals in this instance is happen-
ing using the thresholded integration capability of memristors,
more conventional neuromorphic types of classifiers can be
implemented. Employing memristive architectures provides an
energy-efficient and reconfigurable strategy for large-scale com-
puting applications.[14] A memristor-based reservoir computing
system has been reported,[54] where the memristor was directly
driven by emulated neural spikes, firing patterns and transi-
tions (Figure 3c), while its state reflected temporal features of
the spike train (Figure 3f). A memristor-based neural network
has been also implemented in classification of EEG-represented
brain states for learning and recognizing imagined speech pat-
terns corresponding to speaking vowels.[45a] The system opera-
tion was based on capturing and processing vowel-related EEG
signals, extracting the distinct features and converting them to bi-
narized input to a memristive hardware neural network (HNN).
The applied to the memristive HNN feature codes, were ulti-
mately recognized by a integrate-and-fire postneuron scheme,

combined with decision logics determining which postneuron
fires first based on the output signals (Figure 3b). Additionally, a
spiking neural network compatible for implementation in a neu-
romorphic device is applied for the detection of high frequency
oscillations generated by epileptogenic tissue.[55]

Meanwhile, current trends in the BMI era are reported by Neu-
ralink with the interest going toward scalable, high-bandwidth,
flexible, and fully implantable BMI systems, showcasing a proto-
type comprising ultrafine polymer probes and miniaturized cus-
tom high-density electronics that allow streaming of full broad-
band electrophysiology data simultaneously from all the elec-
trodes under consideration.[56] Besides, hardware design com-
bined with analysis of signal quality and decoder performance
of neural signals collected from experimental intracortical BMIs
(iBMIs), opens new opportunities for the development of wire-
less iBMIs that are considerably power efficient without loss of
performance.[57] Memristor arrays were also utilized in the con-
cept of a BMI scheme, to implement filtering and identifica-
tion of epilepsy-related brain states, via integration with neural
interfaces.[58] The memristors are implemented both as signal
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preprocessors (Finite Impulse Reponse or FIR filter bank) and
as decoding elements (classification or regression task) overall
comprising one array-based neural signal analysis system. The
core of the system is the memristor array translating the neural
signals (LFP signals recorded in real-world setting) into control
commands for the external effectors. Considering that the brain
dynamics and the neural signals are related in several specific fre-
quency bands, the frequency-related information may allow the
distinction between the different brain states. Thus, information
from filtered signals concerning waveform amplitude and energy
at each frequency band is extracted and fed to a single-layer per-
ceptron neural network to identify the epilepsy-related brain state
that is characterized as normal (no epileptic neural activity), inter-
ictal (epilepsy between seizure events), and ictal (epileptic seizure
event in the brain). Additionally, an effort toward epilepsy pre-
diction has been demonstrated through a multichannel neural
signal processing system based on one transistor–one resistor
memristor arrays.[59] In this system, the energy and variation in-
formation of the input neural signals are extracted by leveraging
the inherent memristor conductance modulation, where the crit-
ical information of neural signal waveform is ultimately extracted
and encoded. The system is validated through the processing of
a 16-channel iEEG signals demonstrating high-accuracy seizure
prediction with more than 95% accuracy; the power consumption
in each channel is estimated to be only 60.81 nW per channel,
which indicates an energy efficiency that has not been achieved
with any conventional technologies.[60] A detailed comparison be-
tween memristor-based and conventional designs is available in
Section S3 of the Supporting Information.

Further applications involving memristive/neuromorphic
technologies in monitoring and processing of biomedical
electrical signals include embedded systems able to process
electromyography (EMG) signals locally on the electrodes side
(e.g., performing EMG classification using reservoir computing,
following the conversion of the EMG signal to spikes),[61] as well
as implemented for classification of physiological/abnormal
activity of cardiac intervals.[62] For instance, a neuromorphic
computing system consisting of a two-layer architecture of
crossbar array is applied for a real-time cardiac arrhythmia mon-
itoring through classification of different beat types.[62] The first
crossbar layer corresponded to the synaptic weights connecting
the input and hidden neurons. Raw electrocardiogram data are
directly used as input, normalized, and mapped. Following the
signals’ collections from crossbar first layer, they are applied
in a similar way to the second crossbar layer. Finally, the out-
put signals representing the possible beat types are applied to
the decision-making block giving a system prediction of the
corresponding class.

5. Memristive Technologies as Biotransducing
Elements – Chemical Modality

Electrochemical (bio)sensing schemes of memristive nature and
properties have recently drawn particular attention (Figure 4).

For example, electrochemical memristors can be activated
via bio-electrocatalytic glucose oxidation and integrated with a
biomolecular computing system and operating in combination
with enzyme-based logic systems (Figure 4a).[63] Such systems

comprise a biocatalytic cascade mimicking the operation of con-
catenated logic gates and the control is imposed by the logi-
cally processed inputs of glucose and oxygen. In addition, elec-
trochemical systems with memimpedance and memcapacitance
properties (that depend on the state and history of the system
and are caused by combinations of nonlinear electric responses)
are also showcased.[64] The scheme depicts transitions between
open/closed states originated from the bulk electrolysis of hydro-
gen peroxide that results in solution pH changes. Chemical sig-
nals such as neurotransmitters release into the synapse, govern
connectivity between neurons. To realistically emulate the func-
tion of biological synapses, the synaptic weight expressed by the
neuromorphic device must be regulated in a dynamic way by a
local neurotransmitter. The direct coupling of a neuromorphic
device with dopaminergic cells was demonstrated,[65] achieving
synaptic-like conditioning based on neurotransmitter-mediated
signaling mimicking the natural dopamine action. Dopamine ex-
ocytozed by PC-12 cells at the presynaptic end, locally oxidized at
the postsynaptic gate electrode, emulates the postsynaptic recep-
tor binding observed in biological synapses changing the charge
state of the gate electrode. This mechanism emulates the synap-
tic weight modulation by the neurotransmitter resulting to ion
flow in the aqueous electrolyte, altering the conductance of the
postsynaptic channel (Figure 4b). The PC-12 cells are stimulated
with potassium chloride solution to elicit exocytosis and to moni-
tor the dopamine release rate that elicits the postsynaptic voltage
pulses and consequently controls the conductance modulation.

Besides, memristive technologies demonstrate a remark-
able performance among electrochemical biosensors. Chemi-
cal and biological species such as proteins are composed of
charged residues, hence demonstrating a net positive or neg-
ative charge. Consequently, the additional surface charges due
to the biomolecules introduced in the system result in an in-
crease/decrease in the overall net charge, modifying the effective
local potential. When surrounding the memristive device (e.g., in
the case of planar structures) (Figure 4c–f), these surface charges
introduced act by creating an equivalent, virtual all-around bio-
gate effect (Figure 4e-f), that is equivalent with the one depicted
in the case of nanostructures without any biofunctionalization
but fabricated with an all-around silicon gate (Figure 4c,d). There-
fore, the net charge from the presence of biomolecules induces a
change in the initial hysteresis creating a sort of voltage memory,
defining a concentration and kind-dependent voltage difference
between the current minima for backward and forward regimes
that is related to capacitive effects and diffusion currents occur-
ring in the system.[66] In the metal/oxide vertically stack mem-
ristor architecture, the charged organic molecules modify the ef-
fective local potential, ultimately acting equivalently to an electri-
cal stimulus that imposes a shift in the device’s memory state
(Figure 4g–i). While a memristor reacts with a change in the
state variable when subjected to an input stimulation (i.e., volt-
age pulse) of an amplitude that exceeds certain thresholds (Fig-
ure g,j), the state variable of a chemical memristor changes as a
result of a chemical input (i.e., charges carried-on by the organic
molecules or disease biomarkers) (Figure h,i), where the analyte
has the role of the excitation parameter, ultimately leading to a
label-free biodetection method.

The memristors are converted to target-specific sensing ele-
ments through surface biofunctionalization with target-specific
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Figure 4. Memristors as biosensing elements. a) A switchable biofuel cell controlled by logically processed biochemical signals comprising pH-
switchable bio-electrocatalytic electrodes and pH-change-producing enzyme logic system. The enzyme-induced pH changes ultimately switch the activity
of the bio-electrocatalytic oxygen reduction at the modified cathode, between the ON and OFF states. b) Schematic illustration depicting artificial and
biological neuron integration. The firing rate of the presynaptic neuron defines the dopamine concentration at the device–cell interface while the pulse
rates of both the presynaptic and postsynaptic domains define the change in postsynaptic current (or long-term potentiation) ultimately resulting in a
correlated spiking learning mechanism. c) Current-to-voltage characteristics (IDS–VDS) of gate-all-around nanowire FETs for a fixed back gate voltage
(VGS). d) Gate-all-around silicon nanowire FET schematic illustrating the device concept. Polysilicon is deposited and patterned to form the gate. Metal-
lic source and drain contacts ultimately form source-to-body and drain-to-body Schottky junctions. Chromium/nickel bilayers are patterned on top of
the silicon pillars, partially covering nanowires at the anchor points, leading to the silicidation of the nanowire channel from the chromium/nickel
bilayer toward the gated region of the nanowire. The scanning electrode microscope image depicts the silicon nanowire surrounded by the gate.
e) Current-to-voltage characteristics (IDS–VDS) of a freestanding Schottky-barrier silicon nanowire device functionalized with biological molecules.
A voltage difference is introduced between the current minima in the current to voltage characteristics upon the presence of charged biological sub-
stances. The biological substances surrounding a freestanding silicon nanowire array that create a virtual all-around biogate acting in a similar way with
the inorganic all-around-gate. f) Schematic illustrating a device of two-terminal freestanding Schottky-barrier silicon nanowire anchored between nickel-
silicide terminals and biofunctionalized with biological molecules. The scanning electron microscopy image shows the nanowire device and the covered
by biological molecules. g) Transient response of a memristor’s (stack of metal–oxide architecture) state variable in response h) to voltage input pulses.
i) Transient response of a chemical memristor state variable in response to biochemical inputs rendering j) distinct antigen levels. While in the case of
memristor a specific state can be achieved by modulating different voltage pulse characteristics, in the chemical memristor distinct concentrations of
antigen are transduced via analogous memory-state changes by introducing a chemical state variable. (a) Reproduced with permission.[63] Copyright
2013, Royal Society of Chemistry (b) Reproduced with permission.[65] Copyright 2020, Nature Publishing Group (c–f) Reproduced with permission.[66]

Copyright 2021, IEEE Sensors Council (g–i) Reproduced with permission.[73] Copyright 2020, Nature Plublishing Group.

receptor molecules like, for example, antibodies or DNA ap-
tamers. First, the device surface is treated with O2 plasma or Pi-
ranha solution for clearing organic residues and for generation
free surface hydroxyl-terminating groups. Hydroxyl groups serve
as surface treatment, enabling a stable chemical attachment of
the biomolecules. Surface functionalization strategies such as di-
rect absorption (physisorption), covalent binding, e.g., through
the implementation of a silane and affinity methods (e.g., high
affinity between biotin and streptavidin) for optimum coupling
of the receptor molecules on the devices’ surface. Following the
biofunctionalization process, the sensors are implemented for
biomarker sensing by exposure of the devices to the target solu-

tion. Morphological atomic force microscopy (AFM) analysis of
two different memristor structures (a planar memristor consist-
ing of a freestanding silicon nanowire and Schottky barriers and
a vertically stack metal/oxide memristor architecture) is shown
in Figure 5 carried out on bare devices (Figure 5a,b) and after the
biofunctionalization of the same devices with antibodies specific
to prostate specific antigen (PSA) (one of the main biomarkers
for Prostate Cancer) using the direct absorption functionalization
strategy (Figure 5c,d) qualitatively revealing the presence of the
biological substances on the surface of the memristors, that ulti-
mately results in an increase of the surface features recorded as
well as in the formation of some agglomerating patterns, due to
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Figure 5. Memristors surface morphology before and after surface biofunctionalization with an anti-prostate-specific-antigen antibody, obtained with
atomic force microscopy (AFM). a) AFM morphological analysis of silicon nanowire structures before biofunctionalization. b) Metal/oxide memristor’s
Pt top-electrode surface before functionalization. c) Silicon nanowire structures after the biofunctionalization with 250 μg mL−1 anti-PSA antibodies
and d) the Pt top-electrode surface of the metal/oxide memristor after the biofunctionalization with 200 μg mL−1 anti-PSA antibodies. Reproduced with
permission.[66] Copyright 2021, IEEE Senors Council.

coalesced biological molecules, that are depicted in the form of
high peak wrinkles. Especially for the bare nanowire device (Fig-
ure 5a), the shape of the nanowire is clearly distinct. After bio-
functionalization, a clear change in the morphology can be seen
in Figure 5c and agglomeration of biomolecules can be observed
on the devices’ surface.

Memristive biosensors present a versatile approach for
antigen-specific transduction,[67] as the sensors’ specificity can
be determined in an ad hoc manner via biofunctionalization and
achieved ultrasensitive sensing capabilities (limit-of-detection in
attomolar range) showcased for PSA.[67] Other applications in-
volve glucose,[68] acetylcholine,[69] granzymes and interferon-
gamma,[70] brain cancer,[71] Ebola matrix protein,[72] and for the
detection of immune attack in sections of breast cancer patient
tumor biopsy.[73] The inherent state programmability and recon-
figurability attributes of the memristors,[14] offer the additional
benefit of the in situ, at-device-level calibration of entire biosens-
ing arrays,[73,74] resulting in a homogeneous sensing baseline
across the individual cells, addressing the longstanding bottle-
neck of generated offsets and variable responses across the sens-
ing cells, and can be readily used for sensing without resourc-
ing to external software/hardware calibration approaches. The
properties of ultrasensitivity and inherent state programmabil-
ity and reconfigurability expressed by the memristor-based sen-
sors render them a valuable alternative technology to the con-
ventional CMOS-technology-based biosensor systems and, for in-
stance, in this framework, the biosensor field-effect transistors
(BioFETs).[75] Moreover, in cases where particularly high sensitiv-
ity is required and/or large biosensing panels are involved, where
the intersensor variation can mask the biosensing outcome and

the at a common sensing baseline is essential for a reliable sens-
ing, memristor-based biosensors can be considered as a more
advanced solution and suitable solution comparing to the con-
ventional technologies. Additionally, thanks to their scalability,[11]

properties enabling high array densities, and their integration
compatibility with fluidics,[74] in perspective, such technologies
can be challenged and utilized in more complex sensing schemes
as, for example, large-area, multipanel diagnostic capabilities for
the development of diagnostic tools allowing large throughput of
tested specimen and facilitating the detection of multiple analytes
per patient.

6. Perspectives

Memristive technologies have been employed to support chal-
lenging new systems and applications. In particular, following
the memristor’s physical implementation that was suggested in
2008,[76] the research interest in memristor technologies is con-
stantly growing and, apart from many technical publications,
resulted in a plethora of patents as well. More specifically, the
number of international patent applications within a decade, de-
picted a significant rise (i.e., from 40 in 2005 to 158 in 2015).[77]

Moreover, according to the Global Memristors Market – Growth,
Trends, and Forecast (2019–2024), the memristor market was val-
ued at USD 278.05 million in 2018. Looking in the present and
forward, the International Market Analysis Research and Con-
sulting (IMARC) Group now expects the memristor market size
to reach a value of USD 1.7 billion by 2027. Regarding the mem-
ristor market segment analysis, and in particular, the industry
vertical (or end-user industry), the consumer electronics as well
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Table 1. Materials and concepts for memristive biointerfacing: electrical and chemical concepts for biointerfacing from (bio)signal transduction to the
emergence of high-level functions to perceive and control biology.

Electrical Chemical

Monitoring On-chip (bio)signal compression,[50] spike sorting
thresholding[51a]

Dopamine detection,[100] sensing of cancer biomarkers,[67,73]

organic artificial neurons for neuromorphic
sensing/biointerfacing[78a,c]

Emulating Memristor-built neurons,[23] neuronal coupling,
2D-memristor-based artificial synapses[101]

Biohybrid synaptic connection,[65] neuronal
coupling/synchrony,[52] biorealistic organic artificial

neurons[78a,c]

AI hardware ECoG processing and classification,[59] epilepsy detection[58] Time-domain classification in aqueous media,[102]

in vitro closed-loop cell control[103]

as the information and technology and telecommunication sec-
tors are expected to hold the highest market share, with an in-
creasing demand for memristor devices that can deliver high-
speed performance, due to the growing demand for high process-
ing power and memory density, while maintaining the cost. This
trend is highly driven by wearable and connected devices (USD
392.4 billion by 2030 according to Precedence Research). Health-
care, being one of the main pillars of the end-user industry will
also note a significant growth, that is also highly related to the
increasing trend in wearable technologies for monitoring phys-
iological information for health and performance. Based on the
applications, the neuromorphic and biological system segment
is expected to own a key market share due to the introduced ad-
vancements in cognitive psychology and AI modeling. Consid-
ering that IMARC Group expects the neuromorphic chip mar-
ket size to reach USD 8.6 billion by 2028, and the trends such
as Neural Architecture Search, memristors can be a key tech-
nology for enabling the industry to realize the potential of such
technologies. The combined properties and attributes of mem-
ristive/neuromorphic systems render these technologies capable
for undertaking the sophisticated interfacing of electronics with
biological systems, enabling real-time sensory processing, online
classification and low-latency decision making, and ultimately
power-efficient manipulation of physiological data of both elec-
trical and chemical nature. Table 1 summarizes representative
concepts for interfacing biology with memristive technologies:
from low-level biosignal transduction, and intermediate process-
ing circuitry, to high-level emerging functions such as hardware.
Electrical and bio/chemical concepts of signal manipulation are
also indicated in this low-to-high level flow. While this review
focuses on the most mature technologies, further opportunities
may emerge involving memristive devices of different architec-
tures and materials, unconventional form factors, and even more
terminals, demonstrating different modus operandi.

Realizing and operating memristive technologies in close
physical or functional proximity with biology, especially when
dealing with long-term interfacing, involves a range of chal-
lenges. Current challenges include the realistic emulation of bio-
logical functionalities while ensuring biocompatibility and min-
imal side effects when in contact with biological tissues, as well
as the prevention of potential mismatch between signal trans-
duction and processing circuitries. Mismatch mitigation or even
physical colocation in a single device entity of information pro-
cessing and sensing modalities allows for efficient and compact
concepts of biointerfacing. For instance, a memristive device that

performs computation (e.g., signal integration) while being sen-
sitive to a host biological environment, can adjust its properties
in situ, without needing separate sensing and computation units
or signal transfer between them. A typical biorelevant environ-
ment is an aqueous electrolyte with alkaline ions (in physiolog-
ical concentrations at the millimolar range), neurotransmitters,
and neuromodulators (such as dopamine, glutamate, etc.). Re-
cently, biorealistic organic artificial spiking neurons have been
demonstrated in liquid operation and responsivity to common
biomolecular species of the biological milieu.[78] Colocation of
processing and sensing modalities is also necessary when chem-
ical precursors are more prominent/occur earlier than electrical
in the detection of biological phenomena of interest. Biomimetic
approaches and emulation of biological functions/computational
primitives can lead to advanced bioparameter matched comput-
ing systems facilitating a direct communication between elec-
tronics and biological processes. However, the functional simi-
larity to biological systems without parameter matching and rel-
evant metrics close to the biological regime (i.e., the metabolic
efficiency of biological neurons and synapses), still requires ad-
ditional circuitry for interfacing, adding costs to the vision of
a seamless integration. For instance, energy-efficient and real-
time biointerfacing requires device metrics such as operation
voltages and response/relaxation time scales, that are close to
those of biological events along with ultralow switching voltages
and energy requirements (in the range of ≈50 mV, ≈10 pJ per
event[79]). Although emulators of biological neurons exist, their
operation voltages (approximately volts) are typically well above
the amplitude of extracellular/intracellular action potentials (mi-
crovolt to millivolt).[40b] Protein-built memristors in the role of
artificial synapses may function close to the biological regime.[23]

Nevertheless, entirely biobuilt devices still have a performance
gap comparing to their inorganic counterparts (i.e., endurance,
stability, operation speed, and power consumption),[80] internal
structure change under different working conditions, and limita-
tions for forming designed micro/nanostructured patterns, e.g.,
with conventional lithographic techniques. Indicatively, the fun-
damental limit of a technology to be downscaled in dimensions,
defines the ultimate potential of the technology in integration
density and operational capacity. Toward this direction, memris-
tor technology downscales aggressively in terms of dimensions
and integration density (2 nm minimum critical dimension).[11]

On the other hand, monitoring in a continuous way, and
in vivo directly from the human body increasingly shifts
the research interest toward wearable or implantable devices.
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Memristors can be involved in the realization of such schemes,
undertaking the role of intelligent biointerfaces, dynamically
transducing the chemical/biological signals via their inherent
dynamic response. Taking into consideration that memristors
function as thresholded integrators increasing the available
time for measurements, namely when increasing the integra-
tion aspect,[50] the resulted confidence level will be significantly
higher. Thus, even for the case of acquisition of noisy sig-
nals, if those signals are integrated long enough, valuable mea-
surements can be successfully achieved. Thanks to their en-
ergy efficiency,[81] memristive technologies may overcome piv-
otal limitations reported in the wearables/implantable electron-
ics field concerning high-power consumption. Adaptability and
biocompatibility are essential properties for maximizing the ac-
ceptance rate of the device in a biological host. Memristive sys-
tems and ionoelectronic devices that consist of soft and/or or-
ganic materials,[22,24,78a] allow the artificial counterpart to follow
or force the evolution of the biocircuitry over time, under natu-
ral or on-demand conditions, respectively, and are friendly to the
biological environment.

However, the direct interfacing of biological tissues requires
that the two domains are characterized by similar mechanical
properties. Devices that consist of organic (semi)conductors are
friendly to the biological host.[82] Electronic circuits of similar
mechanical properties with biological tissues (approximately
megapascal to kilopascal)[83] and substances (cells, tissues)
enable conformal, (micro)motion/shape artifact-free bioint-
erfacing, for long-term symbiosis of biology with electronics,
minimizing the mismatch between neuromorphic electronics
and biology.[84] Due to their soft nature, organic materials exhibit
mechanical properties that are on the same range with biological
substances (e.g., dura mater, skin, spinal cord, and brain). Direct
biointerfacing exposes the electronics into a harsh, corrosive,
and complex environment that contains water and various
ionic and molecular species. Therefore, reliable biointerfacing
requires robust materials, free of parasitic and side reac-
tions with oxygen, ions, and water, especially when integrated
in devices and systems for long-term recordings and stim-
ulation. Indicatively, conducting polymers based on poly(3,4–
ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) ex-
hibit stable operation for ≈4 months when incorporated in
microelectrode arrays for recording,[85] while being able to
deliver a few billions of stimulation pulses.[86] Ideally, devices
and systems for chronic biointerfacing require even further
improvements in material reliability and endurance, while
in-depth knowledge of the failure mechanisms is necessary for
expanding the state-of-the-art boundaries.[87] Nevertheless, in
controllable and non-biological environment, organic artificial
synapses and nonvolatile memories are stable over a billion of
write/erase cycles.[88]

Hardware/algorithmic codesign permits mutual technolog-
ical hardware/software development on targeted ANN ap-
plications and mitigates hardware and device nonidealities
(i.e., stochasticity/drift in switching voltages) via algorithmic
design,[39d] while neuromorphic systems can complement con-
ventional processors and high-performance,[89] 3D-integrated
memristor can improve the system’s ability to process large
amounts of information – a critical need when dealing with big
data.[10]

Apart from qualitative improvements and development (e.g.,
in reliability, endurance, integration, downscale of operation volt-
ages), the introduction of new directions and material-related
qualities, is necessary in memristive technologies for fulfilling
the vision of seamless biointerfacing.[90] Efficient communica-
tion between electronics and biology requires even more of in
materio computing, with computation and processing (i.e., con-
ditioning, classification, multiplexing) that takes place locally
due to intrinsic materials properties (e.g., via complexity, dis-
tributed physical properties, stochasticity, spatiotemporal phe-
nomena, topological entities) and eases the computational load
from supportive electronics. Bidirectional communication is also
seamlessly enabled when both domains, electronics and biol-
ogy, share the same computational primitives. This requires mul-
timodality; for instance, synaptic plasticity and neuronal func-
tions are not only emulated electrically but also biochemically, by
considering the actual biological carriers of information (i.e., lo-
cal/global electrolytes, alkaline ionic species, neurotransmitters,
biomolecules, etc.). Such venture requires new approaches for
in materio, iono-biochemical processing and recognition that is
hard to be implemented only by capacitive/faradaic coupling of
biology with electronics. In this way, computation, communica-
tion, and recognition will be tightly embedded on the edge, and
at the actual interface.

Figure 6 presents a comparison between the conventional
biosensing and processing system and an envisaged memristor-
based counterpart. From the sensing perspective, it adds electro-
chemical sensing capabilities to the conventional sensing modal-
ities. Besides, one bottleneck of the conventional bio sensing sys-
tems is the requirement for relatively high-resolution and high-
speed analog-to-digital converters (ADCs) to digitize the sensed
biosignals and interface with the conventional digital signal pro-
cessors. The abilities of memristors to process analog signals di-
rectly make it possible to address this bottleneck through system-
level optimization.

As shown in Figure 6, in a memristor-based system, the ADCs
are only needed to digitize processed results which require sig-
nificantly lower resolution and speed compared to digitizing the
raw signals at the sensing node. From processing perspective,
the application of memristors in energy-efficient FIR filter banks,
in-memory computing, and high-density, high-speed, and low-
power nonvolatile memories benefit biosignal processing directly
(Figure 6 Option 1). Besides, the high-density, low-power, high-
speed access, and nonvolatile memory properties of memristors
significantly reduces the energy consumption required in data
movements. A detailed comparison between memristor-based
and conventional designs for these core biosignal processing
components is available in Tables S1–S4 (Supporting Informa-
tion). Additionally, there are other alternative biosignal process-
ing methods enabled by memristors. The MIS concept,[50] and
memristive physical reservoir computing,[54] are emerging ap-
proaches for real-time large-scale neural signal analysis based on
the premise that more efficient processing can be achieved by
using the physical properties of memristors to process and com-
press the signals in situ and thus minimizing the latency and
energy consumption induced in digitization, transmission, stor-
age, and accessing of the massive amount of raw sensing data
(Figure 6 Option 2). Besides, a truly bioinspired approach for
biotransduction and processing can be facilitated by memristors
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Figure 6. Comparison between the conventional and memristor-based biosensing and processing systems. The fundamental circuit components in
conventional biosensing systems are instrumentation amplifiers (IAs) and analog-to-digital converters (ADCs) which amplify and digitize the sensed
signals. The main components in the processing system include preprocessing unit which typically runs time–frequency analysis such as fast Fourier
transform (FFT) and filter bank processing, matrix–vector multiplication (MVM) engines which are the core units to accelerate typical biosignal classi-
fication algorithms, and memory units including both volatile and nonvolatile RAMs. The CMOS technology allows integration of almost all the circuit
components on a single chip, except that external memories are typically required due to the limited on-chip memory capacity. Memristor as a sens-
ing element brings electrochemical sensing capabilities in addition to the conventional biosensing modalities. The sensed signals do not need to be
digitized for further processing because of memristor-based processing interface with analog signals directly, eliminating the power consumed by a
high-resolution, high-speed ADC at the sensing node. There are multiple approaches for memristor-based processing. First, memristor crossbars can
be used to facilitate the chip implementation of the individual components in the conventional biosignal processing architecture, leading to more energy
efficient FIR filters, in-memory MVM computing, and higher on-chip memory capacity to reduce the energy overhead required for accessing external
memories (Option 1). The advantages of the memristors in these aspects are presented in Tables S1–S4 (Supporting Information). Second, noncon-
ventional biosignal processing methods have emerged to use memristors to process the biosignals directly, utilizing the device state-variable levels to
detect and integrate neuronal firing activities (MIS) or to implement physical reservoir computing that are efficient to process temporal inputs such as
biosignals (Option 2). Note that in both Option 1 and Option 2, the ADC is only needed to digitize the processed results which require significantly
reduced speed and resolution compared to digitizing the raw signals at the sensing node. Third, analysis of biosignals with neuromorphic or brain-
inspired processors can be facilitated by memristors; they can be used to implement artificial synapses connecting artificial neurons leading to more
efficient neuromorphic processors, and also to interconnect the artificial neurons with the biology creating opportunities to enhance the performance
of brain-inspired processors by having them trained by the brain.
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because of not only their advantages in neuromorphic and brain-
inspired chip implementation,[42a] but also their recently demon-
strated capabilities to interconnect biological neurons with those
neuromorphic processors.[91] This will potentially allow perfor-
mance enhancement of neuromorphic and brain-inspired pro-
cessors by having them trained by biology.[92] The extended dis-
cussion on this aspect is in the Bio-Artificial-Intelligence Fusion
subsection below.

Certainly, memristive technologies are emerging subjects that
are still under improvements. The application of memristive
technologies in biotransducing and processing is an even newer
area of research. While concepts have been proved indicat-
ing promising results such as the superior energy efficiency
for artificial neural network implementation,[42a] and biosignal
processing,[59,60] many of the memristor-based demonstrations
are from prototype devices without the cointegration of dedicated
CMOS peripheral circuitry.[50,58,87] This not only makes it indirect
to estimate the performance of a complete memristor-based sys-
tem but is also not exerting the technology’s full potential. Many
of the memristor-based designs are using old CMOS technolo-
gies which limits the performance of the peripheral circuitry. For
example, in Table S2 (Supplementary Information), higher en-
ergy and area efficiency was achieved with a nonmemristor-based
design,[92b] benefiting from the advantages of the 7 nm CMOS
technology which is 8 generations newer than the CMOS tech-
nology used in a memristor-based counterpart, and the CMOS
peripheral circuits were the main limiting factors for the latency,
power consumption, and area occupation of the memristor-based
design.[42a] Since memristor integration is only possible at wafer-
level processing requiring CMOS fabrication with full mask sets,
typically old CMOS technology (e.g., 130, 180 nm, etc.) was used
for economic considerations.[92c] Besides, the peripheral circuits
were not optimized yet for performance considering the aim
of these designs are to showcase the potential of memristors
with the highest priority. In the future, the codevelopment of the
CMOS part, and optimization and innovation at system level will
be compulsory to demonstrate the overall performance superior-
ity when all components and practicalities required for the end
application are taken into account.

7. Future: Bio-Artificial-Intelligence Fusion

Integrated AI, including advanced programming functions (pat-
tern analysis and classification algorithms), can be a key link
between the biological data acquisition and analysis. Such
bio-AI schemes may serve in big-data processing, in self-
learning/adaption systems, also holding great promise for the re-
alization of continuous health monitoring and cloud-connected
point-of-care devices for advanced diagnostics. Although the in-
creasing progress in the field of bio-AI toward healthcare, many
challenges remain and the interest goes toward the development
of low-power bio-AI systems demonstrating miniaturization,
scalability, and integration properties, for the creation of high-
density sensors, combined with low cost, high quality (seam-
less, safe, nontoxic, biocompatible) biointerfacing capabilities,
enabling highly sensitive body-to-signal transduction with high
signal-to-noise ratio.[93]

Memristive technologies, holding an active role in transducing
and processing of chemical and electrical biological data while

maintaining their properties (beyond von Neumann,[94] scal-
able, and low-power systems) in a wide range of materials (inor-
ganic/organic, rigid/soft) consist excellent candidates for bio-AI
systems and for pivotal building blocks for bioartificial hybrids,
seamlessly linking real with artificial components.[95] Memris-
tive/neuromorphic devices connected to the electrical outputs of
neurons ultimately depict changes in their synaptic weight,[42a]

while such technologies were also utilized for functionally cou-
pling live neurons in rat brain slices in a unidirectional, activity-
dependent paradigm.[52] Memristive synapses efficiently support
neuronal synchronization, as demonstrated in a two-neuron net-
work. The similarity of the spike-timing features of the mem-
ristive synapse with those natural excitatory synapses is demon-
strated along with the possibility to control the magnitude of
memristive coupling by the neuronal activity. Memristive ele-
ments are also employed as a bridge between brain and silicon
spiking neurons, in a bidirectional way undertaking the trans-
mission and plasticity functions of real synapses forming a hy-
brid network.[91] The transmission is mediated, noninvasively, by
weighted stimuli through a thin film oxide microelectrode lead-
ing to responses that resemble excitatory postsynaptic potentials
and the modulation of connection strength stands for the plas-
ticity. One biological neuron and two silicon spiking neurons are
connected by two memristive elements giving rise to two pos-
sible pathways: excitement of the biological part by the artificial
part through the memristive element and the reverse cycle where
the artificial part is stimulated by the biological one via the sec-
ond memristive element. Further advancements may enable the
direct cell stimulation employing memristive technologies exclu-
sively without any additional connection and intermediating el-
ements such as microelectrodes connected to the memristors to
mediate the electronic-to-biological transmission. The realization
of memristors with even lower threshold may render the devices
sufficiently sensitive to respond to action potentials and trans-
duce electrical signals directly from neurons without preamplifi-
cation stages.

In perspective, even more dynamic structures and links can
be achieved by the coupling of memristive/neuromorphic tech-
nologies with biological systems, supporting even more uncon-
ventional applications and enabling the development of novel di-
agnosis and therapy tools. Taking into consideration that the rel-
evant first steps have already been done with application includ-
ing closed-loop bidirectional BMIs,[96] lab-on-a-chip,[95a] adaptive
pacemaker systems,[97] neural interfaces for the peripheral ner-
vous system and neuromorphic interfaces with the central ner-
vous system, neuroprostheses, artificial touch,[98] and AI-assisted
and bioelectronic medicines,[99] computer schemes may be re-
placed by AI-embedded neuromorphic hardware where the pro-
cessing unit is a collection of artificial neurons connected to the
nervous system of the patient through memristive synapses in an
architecture adjustable to the processing complexity. In the long-
term vision, utilization of hardware accelerators undertaking the
role of disease accelerators for obtaining biorealistic modeling of
the diseases’ progression could signify immense advancements
in the diagnostics field, while ANN-based biosensing panels to-
gether with AI algorithms may serve for pattern extraction and
diagnostics models out of a large throughput of biological data.
Interbrain neuroprostheses applications may enable a direct link
to the muscles, granting access to walking control for amputees
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and hemiplegic patients with a traumatic lesion of synaptic con-
nections between the corticospinal neurons and motor neurons
in spinal cord. Restoring brain connectivity issues as in the case
of traumatic injury along with other focal pathologies associated
with a synaptic loss of function may be achieved by the introduc-
tion of electronic synapses reproducing the feature functions and
plasticity of their biological counterparts, connecting neurons di-
rectly and replacing the damaged parts at the brain.
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