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ABSTRACT Machine Learning (ML) has made its way into a wide variety of advanced applications, where
high accuracies can be achieved when these ML models are evaluated in the same context as they were
trained and validated on. However, when these high-accuracy models are exposed to out-of-distribution
points such as noisy inputs, their performance could potentially degrade significantly. Recommending the
most suitable MLmodel that retains a higher accuracy when exposed to these noisy inputs can overcome this
performance degradation. For this, a mapping between the noise distribution at the input and the resulting
accuracy needs to be obtained. Though, this relationship is costly to evaluate as this is a computationally
intensive task. To minimize this computational cost, we employ metalearning to predict this mapping; that
is, the performance of different ML models is predicted given the distribution parameters of the input noise.
Although metalearning is an established research field, performance predictions based on noise distribution
parameters have not been accomplished before. Hence, this research focuses on predicting the per-class
classification performance based on the distribution parameters of the input noise. For this, our approach is
twofold. First, in order to gain insights in this noise-to-performance relationship, we analyse the per-class
performance of well-established convolutional neural networks through our multi-level Monte Carlo simu-
lation. Second, we employ metalearning to learn this relationship between the input noise distribution and
the resulting per-class performance in a sample-efficient way by incorporating Latin Hypercube Sampling.
The noise performance analyses present novel insights about the per-class performance degradation when
gradually increasing noise is augmented on the input. Additionally, we show that metalearning is capable of
accurately predicting the per-class performance based on the noise distribution parameters. We also show
the relationship between the number of metasamples and the metaprediction accuracy. Consequently, this
research enables future work to make accurate classifier recommendations in noisy environments.

INDEX TERMS Noise propagation, image classifiers, classification performance, monte carlo simulation,
metalearning.

I. INTRODUCTION
In recent years, Machine Learning (ML) has made strides
in advanced autonomous applications, such as robotics [1],
autonomous driving vehicles [2] and inland vessels [3].
The tasks of ML within these applications range from lane
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detection and follower algorithms, to sophisticated object-
detection systems on a wide range of objects [4].

Traditionally, these ML systems have been trained on a set
of data points in a certain context and are validated within
that same context. This way of training and validation is
proven to be very effective for operating and reasoning in
many different use case domains [5]. However, problems
arise when the ML model is operating in a context that was

47994 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0032-2029
https://orcid.org/0000-0002-2548-7172
https://orcid.org/0000-0001-9355-6566
https://orcid.org/0000-0001-8029-4720
https://orcid.org/0000-0002-0651-4278


J. de Hoog et al.: Metamodelling of Noise to Image Classification Performance

not represented in the dataset, such as noise on the input. The
model then would make predictions that could be ambiguous
and result in a cascade of problems [5].

One potential solution is to include these discrepancies into
the learning process, so that the ML algorithm learns to gen-
eralise over them. This has been done in previous research,
where the datasets have been augmented with certain noises;
the algorithm reasoned over what it needs to do in case such
noises appear [6]. Although this is a common technique in
research regarding robustness of ML models, this does not
fully solve the problem. Data points that are still outside of
the learned context, also called out-of-distribution, would still
result in ambiguous outputs [7]. An additional complexity is
the fact that it is nearly impossible to take all discrepancies
into account, as this implies the need for datasets that cover
this wide range of noises and faults.

Another potential solution is to tackle the problem through
a divide-and-conquer paradigm, since no single ML algo-
rithm can achieve full coverage over all possible contexts,
discrepancies and noises. This is also called the ‘no free
lunch’ theorem [8], [9]. Instead, one could design different
ML models where each performs sufficient enough in one
context, but lacks performance in others. Therefore, given a
certain input with a particular noise characteristic, the model
with the best performance on this input could be chosen in
order to provide the best output. Differences in performance
between ML models originate from different aspects, such
as hyperparameters of the ML model or the dataset used for
training.

Such a decision-making problem for similar algorithms
in different contexts has already been addressed by Garcia
et al. [10]. The authors analyse the performance of differ-
ent noise filters in certain contexts where noise is present.
As expected, these filters all perform differently in terms of
denoising their input. Hence, by recommending algorithms
throughmetamodelling, one could pick the filter with the best
expected performance given the characteristics of the present
dataset.

In this research, we aim to leverage this metamodelling-
based classifier recommendation approach for predicting the
per-class image classification performance given the param-
eters of the noise distribution on the input. In this way,
selecting the best performing classifier can then be based on
the per-class performance, which has not been done before.
Therefore, in this paper, we propose a twofold methodol-
ogy for image classifying artificial neural networks (ANNs).
First, their per-class classification performance is analysed by
propagating a prescribed range of noise distributions through
the models. Second, for each ANN, this analysis is then
captured in a corresponding metaset and learned by a meta-
model, which covers the relation between the applied noise
distribution characteristics and the resulting classification
performance.

The remainder of this paper is as follows. Section II
elaborates on related work in the field of noise propagation
analyses and metalearning. In Section III, we elaborate on

the proposed methodology. Section IV discusses the experi-
mental setup used to validate our approach. Section V and VI
elaborate and form a discussion on the results, respectively.
Finally, Sections VII and VIII present a conclusion and pos-
sible tracks for future work, respectively.

II. RELATED WORK
In this research, we focus on analysing the relationship
between noise at the input of an image classifier and the
resulting per-class performance, as well as learning this rela-
tionship with metalearning to predict the per-class perfor-
mance based on the noise distribution parameters. Therefore,
this section first elaborates on related work regarding noise
propagation methods, after which related research in met-
alearning is discussed.

A. NOISE PROPAGATION ANALYSIS
Several related works have carried out noise propagation
analyses on image classifiers. Nemcovsky et al. [11] and
Liu et al. [12] have examined the performance of CIFAR-
10 classifiers when exposed to adversarial noise. Hendrycks
and Dietterich [13] have compared the mean Corruption
Errors of different classifiers to adversarial and common
noises on the ImageNet dataset. Liang et al. [14] and Berend
et al. [7] compared the classification performance of clas-
sifiers when exposed to out-of-distribution samples from
CIFAR-10, which includes the augmentation of common
noises such as Gaussian and Uniform noise.

To perform noise propagation analyses of neural networks
with noise distributions, different methods exist to acquire
performance insights. Abdelaziz et al. [15] and Nathwani
et al. [16] compared different techniques to perform uncer-
tainty propagation through ANN-based automated speech
recognition systems. Reference [15] performed uncertainty
propagation with a multivariate Gaussian distribution to
approximate uncertainty of the acoustic score at the out-
put. They compared the usage of layer-wise Unscented
Transform and piece-wise exponential approximations, along
with network-wise Unscented Transform and Monte Carlo
approximations. They concluded that Monte Carlo per-
formed the best approximation in all circumstances, with the
network-wise Unscented Transform as second best approx-
imator. Reference [16] performed similar experiments and
also showed that Monte Carlo consistently outperforms the
Unscented Transform approximation. Nemcovsky et al. [11]
use the Monte Carlo simulation for improving adversarial
robustness of CIFAR-10 image classifiers via randomized
smoothing of the classifier. Liu et al. [12] employed an
adaptation of Monte Carlo simulation where N clean images
are perturbed with corruptions by perturbing each image M
times. With this, they analysed the robustness of models via
the ε-Empirical Noise Insensitivity metric.

Considerable work has already been carried out regarding
robustness of image classifiers and noise propagation meth-
ods. However, these works have only considered the global
robustness and classification performance of the classifier.
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To our knowledge, no work has been done regarding the rela-
tion between input noise and the robustness and classification
performance of the individual classes.

B. METALEARNING
Three major categories exist within metalearning over Arti-
ficial Intelligence (AI) models [17]: (i) regression-based
prediction of the performance of a certain AI model, (ii) sin-
gle-label classification-based prediction of the most suitable
AI model for a given task, and (iii) multi-label classifica-
tion-based prediction of a ranking of the most suitable AI
models for a given task.

Reif et al. [17] researched the possibility of creating a
regression-based metamodel for non-expert end-users. They
considered that predicting performance values of a classifier
based on dataset characteristics was most suitable, as this
would provide the most valuable insights for the end-users.
Garcia et al. [10] tackled the problem of estimating the
most suitable filter against noise in classification datasets.
They do so by creating a regression-based metamodel which
maps the relation between the characteristics of noise datasets
and the induced performance of a classifier. In the work
of Muñoz et al. [18], an objective way of assessing the
performance of supervised learning methods is proposed.
Additionally, they designed amethodologywhere the relation
between dataset characteristics and objective performance
measures is captured in a regression-based metamodel. Kot-
lar et al. [19] elaborate on the performance of anomaly
detectors on different datasets. They capture the relationship
between characteristics of the anomaly-containing datasets
and the performance of detectors into a regression-based
metamodel. Eggensperger et al. employ metaregressors to
benchmark hyperparameter optimization systems [20] and
algorithm configuration procedures [21].

In the field of using metamodels for predicting the best AI
model for a given task, several works have been proposed.
Lorena et al. [22] proposed a methodology for predicting the
best classifier given the complexities of increasingly complex
synthetic datasets. Additionally, they also propose metalearn-
ing techniques for recommending parameters of a certain AI
model. Next to that, they also designed ametaregressor which
predicts the expected Normalized Mean Squared Error of a
regression-based AI model. Ler et al. [23] elaborate on the
selection of algorithms via metamodelling by focusing on the
complexity of the dataset itself, without having prior knowl-
edge about the performance of a classifier on it. With this,
they create a set of metafeatures which is less model-centric
and focuses more on the general complexity. The metaset
labels consist of the predictive accuracy of the underlying AI
model. Aguiar et al. [8] focuses on recommending the most
performant multi-target regressor for a given set of dataset
characteristics.

In terms of metamodels used in research, different
approaches exist. The survey of Hutter et al. [24] notes
that different metaregressors have been used for similar

performance prediction applications, and that the choice of
metamodel depends on the metasamples. Garcia et al. [10]
employed metamodels based on the Random Forest (RF) and
k-Nearest Neighbours (k-NN) techniques. They concluded
that the RF implementation performed best. Eggensperger
et al. [20], [21] also selected RF and k-NN, along with
Gaussian Processes (GP), Gradient Boosting (GB), Support
Vector Regression (SVR) and Ridge Regression (RR). They
concluded that GB and RF performed best, with RF perform-
ing better on metasets with a larger amount of samples and
parameters. Horváth et al. [25] used metaregressors based
on RF and k-NN to predict hyperparameters of Decision
Tree (DT) and Support Vector Machines (SVM) algorithms.
Roy et al. [26] discussed the usage of linear metaregressors,
along with DTs and non-linear models such as SVRs and
Multi-Layer Perceptrons (MLPs).

In order to generate the metasets on which the metamodels
are trained on, metasamples need to be gathered that originate
from the underlying ML model. Jin et al. [27] focus on
creating surrogate models of more complex and expensive AI
models. As the samples are of key importance in the perfor-
mance of surrogate models, the authors propose an adaptive
sampling strategy based on Latin Hypercube Sampling (LHS)
where the performance of the surrogate model guides the pro-
cess of gathering extra samples. Metta et al. [28] research the
generation of surrogate models for feasibility region analysis
of complex AI models. For this, they also make use of LHS
when building the initial surrogate model. In the research of
Duchanoy et al. [29], the authors conducted a compact survey
for which sampling technique to use for their metamodelling
use case. Out of the possible options, candidates were Monte
Carlo simulation, LHS, Uniform Design and Voronoi sam-
pling. The authors chose the latter, as this was most suitable
for their research project. Muñoz et al. [18] used LHS to
sample instances from a 2D design space.

III. TWOFOLD METHODOLOGY
The proposed methodology is designed in a twofold way.
Firstly, we elaborate on a methodology to propagate noise
through an image classifier, such that the relation between
the input noise characteristic and the resulting per-class per-
formance can be evaluated. Secondly, we aim to capture
this noise-to-performance relation of the classifier into a
metamodel. Given the characteristic of the input noise, this
metamodel is then able to predict the per-class performance
of a certain image classifier.

A. NOISE PROPAGATION THROUGH IMAGE CLASSIFIERS
In this research, we aim to observe the performance of an
image classification ANN when exposed to noise on the
input. We carry out this observation through our multi-level
Monte Carlo simulation, using the whole validation set of the
data the network has been trained on. The technique is shown
in Figure 1 via steps A to D.

First, in Eq. (1), the original input image X ∈ Rp is
augmented with a noise sample E ∈ Rp, sampled from
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FIGURE 1. The multi-level Monte Carlo technique is visually shown via
steps A through D. In step A, a noisy image X′ is propagated through
classifier F . In step B, step A is carried out for multiple noise samples
drawn from the same noise distribution D(P). The resulting outputs are
aggregated into expected output E[Y]. Step C carries out the previous
steps for all images in the dataset, resulting in an expected confusion
matrix E[C]. Finally, in step D, all previous steps are carried out for
multiple noise distributions to be applied on the input images, resulting
in a corresponding set of expected confusion matrices.

distribution D with parameter tuple P ∈ Rs. The noisy input
is then propagated through a classifying ANNF : Rp

→ Rq,
which results in a classification output Y ∈ Rq. This is
shown in Figure 1A. Note that this research primarily focuses
on additive noise. However, this methodology can also be
applied to other types of noise, such as multiplicative noise
models.

Y(P) = F (X + E ∼ D (P)) (1)

The process of propagating a noisy image in Eq. (1) is now
performed N times in Eq. (2), with N as a hyperparameter.
Each time, a new noise sample is augmented onto X, after
which each noisy image is propagated throughF . This results
in N corresponding classification outputsY. By averaging all
outputs, we get the expected value E[Y], which represents
the expected output of F when noise distribution D (P) has
been added on image X. By adjusting hyperparameter N ,
we can adjust the accuracy of the result E[Y]. This process
is presented in Figure 1B.

E [Y(P)] =
1
N

N∑
n=1

F (X + En ∼ D (P)) (2)

In Eq. (3) and Figure 1C, the aforementioned process is
leveraged over the whole validation set X1...M the model F
was validated on, with M as the total amount of images in
the set. All expected values E[Y]1...M are combined together
into an expected value E[C], which represents the expected
confusion matrix of F when exposed to noise distribution
D (P).

E [C] =
1
M

M∑
m=1

E [Ym(P)] (3)

Based on this expected confusion matrix, various perfor-
mance metrics can be derived. For example, the classification

accuracy can be derived from the ratio of correct predictions
to the total number of predictions. Other examples of metrics
include precision, recall and F1-score.With these metrics, the
performance of the ANN can be judged for a particular input
space along with a certain noise distribution.

The next analysis step comprises of the performance eval-
uation for a range of parameter sets of the noise distribution.
For example, the degradation of performance for each class
can be observed for increasing noise on the input space. This
gives a clear sense about the classes of the classifier that start
to degrade the quickest, and which classes retain a reasonable
performance.

For a particular noise distribution D, a parameter space
P ∈ Rr×s is defined, as shown in Eq. (4). The first dimen-
sion denotes the actual parameter tuple P of the distribution,
whereas the second dimension denotes the set of different
parameter tuples. For example, a Gaussian distribution is
characterised by a parameter tuple with two parameters:mean
µ and variance σ . The second dimension then denotes differ-
ent settings for µ and σ .

P = {P1, . . . ,Pr }

∀P ∈P : P = (p1, . . . , ps) (4)

Eqs. (1 - 3) are evaluated for all elements of vector P,
ranging from P1 to Pr . In this way, we obtain a corresponding
set S consisting of expected confusion matrices E[C]1 to
E[C]r , as defined in Eq. (5), where each of the elements
represents the performance of F when subjected to D(Pi).

S =

{
1
M

M∑
m=1

E [Ym(Pi)] | Pi ∈ P, 1 ≤ i ≤ r

}
(5)

B. METAMODELLING NOISE-TO-PERFORMANCE
RELATION
As the goal is to capture the relation between the noise
characteristic on the input and the performance on the output,
this defines the input and outputs of the metamodel. More
specifically, as presented in Eq. (6), the metamodel G serves
as a regression function that learns the relationship between
the parameters of the input noise distribution P ∈ P and the
expected performance E[C] of the classifier F .

G : (P ∈ P) 7→ E[C]P (6)

This immediately implies the advantage of using meta-
models: the metamodel only needs to be created once, so the
analysis on the underlying classifier is also carried out once.
Inferring this relation now needs only one evaluation of
the regression function. Without metamodels, the noise-to-
performance relation could only be inferred by carrying out
the noise propagation ad-hoc, which is a costly process.

To create such a metamodel, a metaset is needed on which
it is fitted. Figure 2a shows the technique visually. We use
a variant of Latin Hypercube Sampling (LHS) that operates
within a defined range of parameters for a particular noise
distribution. This sampling method provides metasamples
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FIGURE 2. The process for training and evaluating metamodels is shown
in Figures (b) and (b), respectively.

where each one represents a set of parameters of a noise
distribution. By using LHS, each dimension of the noise
distribution parameter space is divided into k equal parts,
after which a random sample is drawn from each equal part,
resulting in k different samples. For example, as shown in
Figure 2, LHS could operate over a range of means and
standard deviations for Gaussian noise. Hence, each sample
represents a Gaussian distribution with a particular mean and
standard deviation.

For each metasample obtained via LHS, we carry out the
Monte Carlo simulation described in Section III-A. Hence,
this yields a metaset where the inputs are the parameters for
this noise distribution and the outputs being the correspond-
ing performance measures for all classes of the classifier.

Next, we fit a regression model on this metaset, which
then learns the function between the parameters of the noise
distribution to the neural network’s performance.

Finally, when the metamodel has been trained on the
generated metaset, the model has learned the relationship
between the noise distribution parameters and the expected
performance of the ANN. Therefore, as shown in Figure 2b,
given a particular set of parameters of the noise distribution,
the expected performance is predicted.

IV. EXPERIMENTAL SETUP
As our methodology consists of two major parts (i.e. the
noise propagation analysis and generation of metamodels),
the experiments are set up in these two categories as well.
First, we compare and elaborate on the performance of image
classifiers when analysed by the process mentioned in Sec-
tion III-A. Second, we present the performance of the cre-
ated metamodels and how the different models hold up to
each other. Finally, the influence of the collected metaset on
the prediction performance of the metamodels is also being
investigated.

The experiments are executed on Tesla V100 graphical
processing units within an NVIDIA DGX-2.

TABLE 1. For each architectural design of image classifiers, different
pre-trained versions are employed.

FIGURE 3. The addition of uniform noise to a sample image from
CIFAR-10 is shown. Underneath are the histograms, showing the
distribution of the three RGB channels.

A. DATASET & MODELS
Regarding the dataset for these experiments, we selected
the CIFAR-10 dataset. As this dataset is significantly com-
plex [30] and widely used in other research tracks [31], [32],
it implies the generalisability and extensive usability of this
dataset. Given the CIFAR-10 dataset, we opted for differ-
ent pre-trained convolutional neural networks (CNNs) that
already underwent the hyperparameter optimization process
and were trained in the same conditions. As shown in Table 1,
we opted for three architecturally different CNNs, each with
three or four distinct versions.

As mentioned in Section II-B, different metaregressors
exist that have been employed in various application fields.
As the choice of metaregressor depends on the applica-
tion and metasamples at hand [24], there is no straightfor-
ward choice of metaregressor for our application. Therefore,
we opted to implement and compare the regression mod-
els that have been discussed in Section II-B, i.e.: (i) Ran-
dom Forest, (ii) k-Nearest Neighbours, (iii) Decision Trees,
(iv) Gradient Boosting, (v) Gaussian Processes, (vi) Sup-
port Vector Regression, and (vii) Ridge Regression. As
the performance of these metaregressors depends on their
hyperparameter configuration, we conducted a randomized
hyperparameter search and implemented the most optimal
parameters accordingly. These hyperparameter search spaces
and best-performing values are shown in Table 2.

B. NOISE DISTRIBUTION
For this research, wemake use of the frequently usedUniform
Distribution [36], [37]. This distribution has two parameters:
the start and end points of the range of this distribution. In our
research, however, we use the distribution in a symmetric
fashion; that is, it is centred around zero and the width is
parametrised by only one parameter r , shown in Eq. (7).

X′
= X + u ∼ DU (−r, r) (7)
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TABLE 2. Hyperparameter search spaces and best-performing values of the metaregressors used in our experiments.

FIGURE 4. The result of adding different levels of noise distribution DU
to the CIFAR-10 dataset is shown.

The value u in Eq. (7) represents the sample from
the uniform noise distribution DU . This sample u is a
three-dimensional matrix with the same shape as the imageX
to which the noise is added. For each pixel (i.e., each tuple of
RGB channels), three samples are drawn fromDU . As shown
in Figure 3, the image of the dataset and the equally-shaped
noise sample are added together, resulting in a perturbed
image X′. Figure 4 shows how different values for r affect
an image sample from each class in the CIFAR-10 dataset.
We chose value 2.0 as a maximum as this already heavily
distorts the image; values higher than 2.0 would have a low
research contribution. This is also shown experimentally in
the results of Section V-A.

C. SAMPLING STRATEGY
In order to fit a metamodel on the metasamples that capture
the performance-to-noise relationship, these samples need to
be generated via the multi-level Monte Carlo simulation pre-
sented in Section III-A. As parameter N is a hyperparameter
of the Monte Carlo simulation, this parameter is open for

adjustments. According to our tests, N = 10 is an acceptable
compromise between computational complexity and accu-
racy. Hence, 10 corresponding classification results of the
ANN are collected, which are aggregated together into the
expected valueE [Y]. This process is carried out for the whole
validation set of CIFAR-10, which contains 10,000 different
images. This in turn adds up to 100,000 forward propagations
through the ANN to represent its classification performance
for one parameter setting of the noise distribution.

For the analysis process presented in the first part of the
Results section below, we gathered 200 equal-distanced sam-
ples, ranging from noise values 0.0 to 2.0. Hence, each noise
sample represents an increase of 0.01, which yields a granular
and detailed analysis.

As the aforementioned analysis process is computationally
expensive (i.e. 20,000,000 forward propagations), a more
intelligent way of generating metasamples for the metamodel
needs to be devised. Therefore, the methodology presented in
Section III-B is designed to cover the distribution parameter
space more intelligently. By employing LHS, the number of
metasamples s determines the number of equal divisions k
of the parameter space. For all k selected noise distribution
settings with LHS, we apply the aforementioned multi-level
Monte Carlo simulation. In the second part of the results,
we alter the amount of metasamples s to train the metamodels
on, which therefore also changes the number of equal divi-
sions k of the parameter space. In this way, we are able to
examine the relation between the number of metasamples and
the performance of the different metamodels.

V. RESULTS
In this section, the results are presented. The first sub-
section elaborates on the analysis of noise-to-classification
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FIGURE 5. The classification performance of the VGG11 network
architecture is shown. As classification accuracy alone is not a sufficient
metric for judging performance, the F-score is included as a second,
complimentary metric.

behaviour. In the second subsection, the results of the trained
metamodels are presented.

A. ANALYSIS OF IMAGE CLASSIFIERS
The noise-to-classification behaviour analysis is carried out
for all ANNs shown in Table 1. For legibility, the results of all
analyses are shown on different abstraction levels. First, the
results of one particular ANN implementation are thoroughly
discussed. Next, the analyses of different implementations of
one architecture are compared. Finally, we compare different
architectures through aggregations of their different imple-
mentations.

Figure 5 shows the performance of VGG11 in terms of
its classification accuracy and corresponding F-score. In Fig-
ure 5a we immediately notice that the global trend of the
classification accuracy decreases when the augmented input
noise increases. However, some classes deviate from this
global trend. First, when no noise is present on the input,
all classes but ‘cat’ and ‘dog’ are high in accuracy. This
classification confusion between ‘cat’ and ‘dog’ has also
been demonstrated by Yan et al. [38], where they show a
higher corresponding misclassification rate of said classes.
They attribute this confusion to an ambiguous boundary of
classification, due to similar features in both classes. Second,
the progress of classes ‘bird’ and ‘frog’ is remarkable: at
medium and high noise levels the network seems to bias
towards frogs and birds respectively. This would seem to
indicate that, when a high level of noise is present on the
input, these classes are still detected with a high accuracy; the
class accuracy for birds has only dropped 6%, as it was 88%
when no noise was present. However, only using the accuracy
metric to judge the performance of an ANN is not good
practice. Figure 5b shows the F-score performance metric of
the network. As this metric combines the precision and recall
performance values, it provides context around the observed
classification accuracies. We notice that for all classes, the
F-score monotonically decreases in value, which indicates a
high number of misclassifications. Hence, the accuracy for
class ‘bird’ is high due to the fact that all images in the dataset
are being detected as a bird. This means the image classifier
is biased towards the ‘bird’ class when the input noise level

FIGURE 6. The classification accuracies for the four different versions of
the VGG architecture are shown.

is high and no features can be detected. This could be due to
the hyperparameters regarding architecture, initialisation or
training procedure, which results in the current local mini-
mum of the neural loss function [39]. Interesting to see is that
the F-score for ‘cat’ and ‘dog’ are lower than the rest, similar
to the graphs from Figure 5a. The progress of the other classes
shows that the number of misclassifications is high.

As mentioned in the introduction of this paper, we aim to
use different classifiers that all solve the same classification
problem. As VGG11, shown in Figure 5a, is only one ML
model in a range of models, we aim to compare different
versions of the same architecture, in order to examine differ-
ences between them. Figure 6 shows a collection of versions
of the VGG architecture. Figures 6a and 6b show VGG11
and VGG13, while VGG16 and VGG19 are shown in Figures
6c and 6d, respectively. From the start, we notice that the
four figures are quite similar. When no noise is present on
the input, the classes ‘cat’ and ‘dog’ share the same char-
acteristic. They are consistently lower than the other classes
from the dataset, albeit small differences are still present.
Next, small differences in accuracy are noticeable when a
relatively low noise level is present. For example, the class
‘horse’ is more stable regarding uniform noise in VGG11
than in VGG13. At a noise level of 0.4, the accuracy is
67% in VGG11, whereas VGG13 reaches a performance of
only 47%. Both VGG16 and VGG19 achieve an accuracy
of approximately 51%. At first sight, the lower complexity
of VGG11 suggests a higher robustness to uniform noise
than the higher-complexity implementations of VGG. Hence,
these differences already show that it is feasible to recom-
mend suitable architectures for appropriate classes of interest
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TABLE 3. The relation between noise and class accuracies in percentages is shown. Each cell shows the performance of four VGG networks (from left to
right, top to bottom: VGG11, VGG13, VGG16, VGG19).

based on class-specific accuracy for a given measure of the
input noise. When the noise level continues to increase, more
noticeable differences start to appear. As mentioned in the
previous paragraph, the characteristics of classes ‘bird’ and
‘frog’ are remarkable when in the presence of high-noise
levels. As shown in Figure 5a and 6a, the classification
accuracies of both classes start to cross at a noise level of
1.27. However, for VGG13 shown in Figure 6b, this is not
the case. The accuracy for ‘frog’ keeps increasing, while the
class ‘bird’ is monotonically decreasing along with the other
classes in the dataset. It is confirmed that the F-score for class
‘frog’ in VGG13 is also consistently lower than in VGG11.
The reason for this behaviour is unclear and could be due to
several reasons. For instance, the randomweight initialisation
or optimization during training could lead to another local
minimum of the loss function. This, in turn, leads to different
outcomes the network defaults to when a high level of noise
is present.

In Table 3, we present a more in-depth numeric repre-
sentation of the results for the four versions of the VGG
architecture. First, we look at the performance of the ANN
models regarding increasing noise. When no noise is present
on the input, VGG13 is mainly better than the other classi-
fiers for seven out of 10 classes. In the other three classes
(i.e. ‘horse’, ‘ship’ and ‘truck’), VGG19 is the best image
classifier. However, these differences are only marginal and
negligible. When the input noise is increased to a low level
(0.1 ≤ r ≤ 0.3), there is no single classifier that performs
best at all classes. Hence, depending on the class of interest,
another image classifier would be recommended. However,
when the noise further increases (r ≥ 0.5), we notice
VGG11 being better than the other classifiers for most of
the classes, with the exceptions of the class ‘frog’. This is
an interesting insight, as the complexity of the classifier is
smaller than the other three networks. This could be attributed
to the problem of overfitting. This is a common issue in
training deep ANNs, for which several works have proposed
methods for preventing overfitting in such complex networks
[40], [41].

FIGURE 7. The average class accuracies with standard deviations for each
set of architectures are shown.

As the previous results only compared different imple-
mentations of VGG, said results only give insights into the
VGG architecture itself. Therefore, in this final paragraph,
we compare different architectures relative to VGG. Since
the different implementations of a particular architecture have
mutual similarities, for legibility these implementations have
been aggregated into one single graph showing mean and
standard deviation. Hence, the four different implementations
shown in Figure 6 are aggregated in Figure 7a. Similarly,
Figure 7b shows the aggregation of ResNet with ResNet18,
34 and 50. Figure 7c shows the DenseNet architecture with
DenseNet121, 161 and 169 aggregated. We notice that the
distribution over the different versions is more concentrated
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for both ResNet and DenseNet than it is for VGG. How-
ever, except for the difference in distributions, the overall
characteristics are similar. Again, classes ‘cat’ and ‘dog’ are
consistently lower than other classes, and classes ‘bird’ and
‘frog’ have similar outlier characteristics. Minor differences
are present in classification accuracy of other classes. For
example, with VGG and ResNet, class ‘ship’ is performing
better than ‘deer’ for low noise levels, but the opposite is
true for DenseNet. This figure shows that the difference
in architecture does not result in a significant difference in
performance. On the one hand, we notice that the robustness
to uniform noise behaves in a very similar way, but small
differences are present. On the other hand, we notice that
the characteristics of these behaviours are very similar, too.
Classes ‘bird’ and ‘frog’ are outliers and the networks bias
towards ‘frog’, while classes ‘cat’ and ‘dog’ are consistently
lower than the others. This sheds light on the importance
of the dataset on which the networks were trained towards
each network’s respective performance to uniform noise. This
importance of the CIFAR-10 dataset has also been shown in
other researches: different CNNs experience similar perfor-
mance drops in case of benign data distribution shifts [42]
or learned similar non-sensical statistical patterns of the
dataset [43].

B. EVALUATION OF METAMODELS
To assess the predictive performance of the regressive meta-
model, we assess the errors between the actual values
from the multi-level Monte Carlo analysis, mentioned in
Section III-A, and the predicted values by the metamod-
els. These errors are presented in the graphs in Figure 8.
Each graph represents an average error with standard devi-
ation over four metamodels, which have been trained on
metasets of VGG11 through VGG19. As the ResNet and
DenseNet architectures were determined to have a similar
noise-to-classification performance relationship, and there-
fore have similar performing metamodels, we omitted these
architectures for legibility. The X-axis denotes the number
of metasamples in each set; these samples are collected with
LHS in the way as described in Sections III-B and IV-C.
This results in a noise distribution parameter space divided
into as many parts as samples taken, with a random sam-
ple drawn in each part. After training, each metamodel has
been evaluated with 8 different validation metasets, where
each set consists of 40 metasamples, sampled with LHS in
the same way as described before. For each metaset, the
Mean Absolute Error (MAE), Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE) are calculated. For
all validation sets applied on the 4 metamodels, these error
measurements are aggregated into a corresponding average
and standard deviation. These aggregated MAEs, MSEs and
RMSEs are shown in Figures 8a, 8b and 8c, respectively.
We use these three different metrics to show the errors with
three different nuances. The MAE shows the distribution
over the average error in the metamodel predictions, whereas

the MSE indicates the presence of outliers as it gives more
weight to outlier values. The RMSE gives an indication to
the distribution of the standard deviations over the prediction
errors.

First, the MAE graphs are presented in Figure 8a. Note
that the vertical axis denotes the differences in classification
accuracy percentages. Hence, a value of 10−2 denotes an
absolute difference of one percent between the predicted
classification accuracy and the actual accuracy coming from
the noise propagation analysis. We immediately notice the
inaccuracy of the RR metamodel. As this metaregressor is
a linear approximator, we show that our problem is rather
non-linear. Next, we notice the inaccuracies of the other
metamodels when using a low amount of samples. That is,
when using 10 LHS-generated samples, each metaregressor
performs worse than when using a larger amount of samples.
Though, in absolute values, the MAE for the GP, SVR and k-
NN-based metaregressors is still low. The GP metaregressor
has an average MAE of approximately 0.00342 or 0.342%,
while SVR and k-NN have MAEs of 0.345% and 1.204%
respectively. Next to that, it can be seen that the MAE of the
tree-based metaregressors (i.e. RF & DT) are considerably
higher than the other metaregressors, aside from RR. This
could be due to different factors related to the low size
and dimensionality of the metaset, such as overfitting of the
regressors or inconsistent trees due the limited subsampling
of data or features [44]. When increasing the amount of
samples to 40 or more, we notice that the performance of
GP and SVR converges to an average MAE of approximately
0.14% and 0.16%, respectively. As the size of the metaset
increases, the performance of k-NN slightly improves, but the
performance of RF increases rather drastically. RF performs
even better than k-NN when employing a metaset size of
160 samples or more. This trend is in line with the research
of Noi and Kappas [45]; they show that the performance of
SVM is superior to RF and k-NN when using a low amount
of samples, but that the performance of the last two improves
as the amount of samples increases. It should be noted that
all metaregressors aside from RR and DT perform similarly
when using a large amount of samples; the MAE ranges
between 0.24% and 0.14% for GB and GP as worst and best
regressor, respectively.

Figure 8b presents the MSE graphs. Again, we notice that
RR is the worst predictor due to the non-linear characteristic
of our use case. For all other metamodels, we notice that the
MSE is increased when using a limited metaset (i.e. 10 to
40 samples). This shows that all metamodels reveal inconsis-
tent prediction accuracies when fitted on a limited metaset.
However, when increasing the metaset size to 40 samples or
more, all MSEs start to converge. Similarly to the previous
figure, GP and SVR show the best performance with the least
outlier consistencies. RF, k-NN and GB show slightly worse
MSE values, although the difference is small. The DT meta-
model shows worse MSE values, implying that the prediction
accuracies are more inconsistent than the other metamodels.
We should note that theMAE for the classification accuracy is
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FIGURE 8. Relation of number of metasamples to (a) MAE, (b) MSE, and (c) RMSE. The error is shown in class accuracy percentages. Every graph
shows the average and standard deviation over the four versions of the VGG architecture.

less than one percent, so although outliers are clearly present,
they are still within limited ranges.

Finally, the RMSE measurements are shown in the graphs
of Figure 8c. Similar to the previous figures, the error range
is increased when using a low amount of samples, while
it starts to converge when using 40 samples or more. The
same relation between the metamodels is present as well:
RR shows the highest RMSE due to its linear approach, the
DT model is second-to-last, and the other metamodels are
showing small differences in RMSE, bounded between GB
and GP as highest and lowest RMSE respectively.

Finally, Figure 9 presents the class accuracy predictions
of the different metamodels when trained on 10 samples of
the VGG11 network. In this way, it shows how the increased
errors of Figure 8 manifest in the actual predictions. As the
other versions of VGG and network architectures have simi-
lar noise-to-performance relationships, and therefore similar
performing metamodels, these other network configurations
are omitted for legibility. It is clear that the GP and SVR
models already show accurate predictions when trained on
10 metasamples: the global trend of the individual classifica-
tion accuracies is clearly shown. However, small aberrations
are still present, such as the classification accuracy of most
classes at very low noise inputs. Both GP and SVR show that
cat has a higher classification accuracy than dogs, but this
is the other way around in the actual analysis of VGG11.
Additionally, the predicted class accuracies tend to have a
positive slope towards a maximum, such as the classes ‘deer’
and ‘truck’. However, in the actual analysis, this slope is
flatter, if not negative for some classes. This shows that GP
and SVR can accurately predict classification performance
with only 10 metasamples, but that small errors are still
present. Regarding the other metamodels, it is shown that
10 metasamples do not contain enough information yet for
accurate predictions. The interpolation process of k-NN is
clearly struggling with the limited information, while the
other metamodels are showing even larger errors with their
inaccurate step-wise decreases. The RR model is clearly
unable to model our non-linear application.

In our use case, it is clear that GP and SVR are sample-
efficient metamodels. Using 10 metasamples already results

in accurate predictions, but 20 or 40metasamples are required
for minimizing the small aberrations, yielding high-accuracy
predictions. k-NN and RF do not achieve the same sample-
efficiency, but they start to achieve high prediction accuracies
when trained on 40 samples or more. The other metamodels
require more metasamples for high prediction accuracies,
making them less sample-efficient.

VI. DISCUSSION
When looking at the analysis results of the image classi-
fiers and their performances on CIFAR-10 with uniform
noise, an interesting insight arises. Their respective perfor-
mances for the same classes are very similar: (i) the networks
appear to bias towards ‘bird’ and ‘frog’ when the noise level
increases, and (ii) classes ‘cat’ and ‘dog’ all have consistently
lower accuracies than the other classes, even when no noise
is added. This implies that the observed differences are more
likely due to the characteristics of the dataset on which the
classifiers are trained, than the classifier architectures them-
selves. It is indeed shown that ‘cat’ and ‘dog’ have a more
difficult feature set [38], while other classes could be trained
on rather non-sensical statistical patterns of the dataset [43].
This shows that our noise propagation analysis is in synergy
with prior findings regarding the effect of the CIFAR-10
dataset on image classifiers. It can be noted, however, that
slight differences are present in the different classifier archi-
tectures. For example, as presented in Figure 6 and Table 3,
the four versions of VGG-based architectures have small
differences. VGG11 appears to be consistently better than the
other versions for a certain set of classes, especially for the
class ‘horse’; the difference between VGG11 and the other
variants increases considerably when the noise increases too.
Dodge and Karam [46] also have a similar finding: noise on
the input is being amplified through the convolutional layers.
Less layers therefore results in less noise amplification. In the
case of the DenseNet-based architectures, it is the only set
of architectures where the class ‘deer’ has a better perfor-
mance than ‘ship’, which is reversed for VGG- and ResNet-
based architectures. Hence, as each classifier has its own
advantages and disadvantages, specific classifiers could be
recommended based on the task at hand.
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FIGURE 9. The predicted class accuracies of the metamodels are shown when trained on 10 metasamples. Metamodels are shown
from left to right, top to bottom: Gaussian Processes, Support Vector Regression, k-Nearest Neighbours, Random Forest, Gradient
Boosting, Decision Tree, and Ridge Regression.

As stated before, metamodels noticeably facilitate the rec-
ommendation of classifiers [10]. In our research, we focused
on regressive metamodels predicting the accuracy of widely
used and researched classifiers, instead of directly recom-
mending one or more networks. We conducted experiments
over the number of samples needed for an accurate regressive
prediction and noticed that, with a limited number of samples
(i.e. 10 - 40 samples), a wider distribution of errors occurred
when predicting the classification accuracy. Although this is
true for all tested metamodels, the GP and SVR regressors
still performed very accurate, achieving prediction errors
of only 0.342% and 0.345% respectively. This could be
attributed to the fact that both are kernel-based metaregres-
sors, which makes them accurate function approximators
with only a low amount of samples [47], [48]. However, more
research is needed to validate this statement. The other meta-
models suffer from interpolation aberrations due to the lack
of metasamples, resulting in the distribution of the prediction
errors being higher and wider. The worst performing meta-
model is the RRmodel, which is unable to model our classifi-
cation accuracy problem in a linear fashion.When employing
a medium amount of metasamples (i.e. 40 - 100 samples), all
metamodels start to converge towards their best prediction
accuracy. GP and SVR reach convergence at 40 samples,
at which point most aberrations are minimized. k-NN, GB
and RF reach convergence at around 100 samples. When
using 100 metasamples or more, their MAE values are very
similar: their MAEs range between 0.245% and 0.142%
for GB and GP respectively. Only the DT and RR meta-
models do not reach prediction accuracy convergence before
200 metasamples. RR fails to model our non-linear problem,

while DT only achieves a prediction accuracy that is similar
to other metamodels that were trained on 60 metasamples
or less. This shows the sample-efficiency of the other, more
accurate metamodels, with GP and SVR as best performing
metaregressors in our use case.

VII. CONCLUSION
In the field of algorithm recommendation, the most suitable
algorithm is selected based on a set of features of interest.
In this work, we present a twofoldmethodology for predicting
the performance of classifiers based on the characteristics
of the input noise distribution. This, in turn, could be used
for algorithm recommendation systems. First, we propose a
multi-level Monte Carlo simulation on an image classifier,
which yields an in-depth analysis of the classifier perfor-
mance. Afterwards, we make use of a combination of LHS
and the aforementioned multi-level Monte Carlo simulation
to generatemetasamples for themetamodel to fit on. Carrying
out the noise-to-performance analyses on pre-trained state-
of-the-art image classifiers, we notice that they have small
differences between them, while showing largely similar
behaviour.

Regarding the metamodel fitting, we studied the relation
between the amount of metasamples and the resulting pre-
dictive performance of classification accuracies. A low to
medium amount of metasamples in combination with the
use of sample-efficient metamodels such as GP or SVR is
recommended to accurately predict classification accuracies.
Increasing the amount of metasamples would only result
in a marginally better prediction performance as nearly all
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metamodels converge towards similar performance with low
absolute errors.

By using our metamodelling strategy, algorithm recom-
mendation systems can efficiently select the most suitable
algorithm given the parameters of a noise distribution on the
input. Without using these metamodels, this would result in
a very computational complex analysis each time a perfor-
mance prediction needs to be made.

VIII. FUTURE WORK
To improve this research, several tracks of future work follow.
First, a more in-depth analysis of per-class performance could
be carried out. In this way, more detailed insights can be
gathered on class accuracy fluctuations and biases. Secondly,
this methodology could be carried out on amore diverse set of
noise distributions. This could include a synthetic distribution
with a larger amount of parameters, as well as real-life noise
distributions, such as rain interference, overexposure or blur.
Finally, our method could be validated on larger and more
complex image datasets, such as CIFAR-100 or ImageNet.
It could also be of interest to extend this methodology towards
non-image-based tasks, such as object recognition algorithms
on point clouds [49].
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