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ABSTRACT We propose a pioneering approach that integrates optimization algorithms and technology
computer-aided design to automatically optimize laterally-diffused metal-oxide-semiconductors (LDMOS)
with a field-oxide structure.We define the ratio of the square of the breakdown voltage divided by the specific
on-resistance as the figure-of-merit (FOM) and the objective function of our optimization. We compare
the performance of three different algorithms: Nelder-Mead, Powell, and Bayesian Optimization. We show
how the LDMOS performance evolves as each of the three optimization algorithms reach their optimized
structure. We show that a straightforward Nelder-Mead optimization leads to a local optimum when
optimizing over six input parameters. We find that Bayesian Optimization is the most data-efficient method
to find the global optimized structure in the multi-domain design space.

INDEX TERMS Bayesian optimization, LDMOS, nelder-mead algorithm, power semiconductor device,
powell algorithm, step gate field oxide structure.

I. INTRODUCTION
The mass production of consumer electronic devices has
recently increased the demand for power integrated cir-
cuits [1], [2], [3]. Silicon-based laterally-diffused metal-
oxide-semiconductor (LDMOS) field-effect transistors are
widely used in low-voltage to high-voltage power electronic
applications [4], [5], [6], [7], [8], [9]. LDMOS can easily
be integrated with bipolar junction transistors and CMOS
technology. Therefore, LDMOS transistors are the most pop-
ular power device to implement the ‘‘smart power integrated
circuits (IC),’’ which have automotive, motor control, power
management IC and factory automation applications.

Researchers and engineers are dedicated to pursuing a
‘‘perfect’’ switch with an infinite breakdown voltage (BV )
and a zero resistance (Rds(on)) in power electronic systems
[10]. An ideal transistor can work as a switch without losing
any energy during its duty cycle. The breakdown voltage in
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LDMOS transistors can be improved by increasing the length
of the drift region and adjusting doping profiles to realize
the reduced surface field (RESURF) condition [11], [12],
[13]. On the other hand, to improve the on-state resistance,
the total length of the power device needs to be reduced.
Moreover, on-state resistance can also be improved by
increasing the device width, but a device with simultaneous
smaller width and length is preferred for cost. This increased
device size cost is captured by the specific on-resistance
(Rsp(on) = Rds(on) × Area, where Area is the total length of
the device (half-pitch) times the width of the device in the
Z-direction (1 µm in our simulations in the section II-A)).
Therefore, there is a tradeoff between breakdown voltage and
specific on-state resistance. The quality of a given technology
is usually measured by a figure-of-merit (FOM) equaling
BV 2/Rsp(on). A key to lead experimental efforts is the use
of technology computer-aided design (TCAD) simulations
[14], [15].

For higher voltage applications, a field-oxide (FOX) is
required in the LDMOS [16]. However, an open question is
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what the best shape for the FOX for an LDMOS is. To answer
the question on what the best FOX shape is, the optimal
doping profile that goes together with the FOX shape needs
to be determined. Manually determining the optimal FOX is
a painstaking process. A traditional method to understand the
behavior of LDMOS with field oxide structure is to find the
analytical solution [17], [18]. There is some research com-
bine TCAD simulation and machine learning to accelerate
the development of simulation works in different areas [19],
[20], [21], [22], [23], [24], [25], but to date, no automated
methodology is available to determine the optimal doping
profile for a given FOX shape.

This article proposes a novel optimization framework to
automatically optimize power device using the combination
of TCAD and numerical optimization algorithms. We define
six input parameters for a LDMOS with a stepped-gate field-
oxide structure (SG-FOX). We evaluate three different opti-
mization methods: Nelder-Mead, Powell, and Bayesian and
apply them to TCAD simulations to improve the device’s
FOM and then compare the results from the three differ-
ent optimization algorithms. The result shows that Bayesian
Optimization takes fewer iterations than other optimization
methods, while returning a comparable FOM compared to
the Nelder-Mead and Powell. Therefore, Bayesian Optimiza-
tion can be a more efficient optimization algorithm than the
Nelder-Mead and Powell in finding the global extremum for
the device optimization problem.

II. METHODOLOGY
In Subsection A, we introduce an SG-FOX LDMOS device
and define the input parameters that we will change through-
out our optimization. We also describe some characteristics
of the SG-FOX LDMOS device. Subsection B defines the
FOM to quantify the device performance and introduces the
numerical optimization algorithms we use in this work. At the
end of this section, we explain the optimization flow for this
work in Subsection C.

A. DEVICE TCAD SIMULATIONS AND CHARACTERISITCS
Fig. 1 shows a schematic diagram of the initial device struc-
ture of an n-channel LDMOS with a SG-FOX structure. The
concept of using SG-FOX in LDMOS was first introduced in
1995 [26], [27]. We use a p-doped background and Gaussian
doping profiles to define the source, the drain, the body
region, the drift region, and a p-type buried layer under the
drift region. The source/drain are n+ Gaussian profiles placed
on the device surface on both sides. The body region is a p-
type Gaussian profile placed on the uniform background. The
drift region is built using three n-type Gaussian profiles. The
first drift Gaussian is the main drift region, and the doping
concentration value is higher than the uniform p-type back-
ground concentration but lower than the p-body Gaussian
profile. The second drift Gaussian is used to control the leak-
age current on the device’s surface and the channel length.
The doping concentration of the second drift Gaussian should
be higher than the first drift Gaussian. The third Gaussian

FIGURE 1. Schematic cross-section of a laterally-diffused
metal-oxide-semiconductor (LDMOS) with SG-FOX structure. This device
structure is the initial condition for the Nelder-Mead (NM) and Powell
algorithms. For Bayesian Optimization (BO), the bounds of BO and other
parameters are listed in TABLE 1.

doping is located under the drain Gaussian profile and has
the same doping profile as the second Gaussian doping.

The following parameters do not change during optimiza-
tion: The background is a p-type 2× 1016 cm-3 uniform dop-
ing. The gate oxide thickness is 12 nm, and the step gate (SG)
oxide thickness is 80 nm. The origin (X = 0 µm, Y = 0 µm)
is at the top left corner of the device. The n+ source/drain
has a doping concentration peak value of 1020 cm-3, and
the length of the peak line is 0.1 µm. The p-body Gaussian
body doping has a depth of 0.4 µm and a peak value of
2× 1018 cm-3 starting from the silicon surface. The length of
the peak line of the p-body is 0.1µm. The drift region consists
of three Gaussian doping profiles. The peak line of the first
drift doping is located at a depth Y = 0.3 µm. The second
drift doping starts at the surface with a doping concentration
value 5× 1017 cm-3 and starts at X = 0.3 µm. The third drift
doping has the same doping concentration, doping depth, and
length of the peak line as the second drift doping. The third
drift doping peak line ends on the drain side of the device.
A deeper p-buried layer is located on Y = 0.8 µmwith a peak
value 9 × 1016 cm-3.
Six parameters, listed in TABLE 1, are optimized: 1) the

peak doping concentration (x1 = Ndrift) of the first doping,
2) the length of the first Gaussian doping peak line (x2 =

Ldrift.1), 3) the length of the second Gaussian doping peak line
(x3 = Ldrift.2), 4) the gate position (x4 = GP), 5) The length
of SG-FOX (x5 = LFOX), 6) the length of the junction field-
effect transistor (JFET) region (x6 = LJFET). The initial value
and bounds for algorithms are also listed in TABLE 1.

We define these six parameters as input parameters to our
optimizations. Changing the input parameters results in a
device with a different FOX shape and drift region shape
and has a large impact on the LDMOS performance. Our
optimization problem is to find the highest FOM device by
changing the input parameters.
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TABLE 1. Six parameters in TCAD simulation as the inputs for the
optimization problem. The initial values are for Nelder-Mead and Powell
algorithms and the bounds are for Bayesian Optimization.

We use a commercial drift-diffusion package [28] to per-
form our simulations and use default silicon parameters.
The Fermi-Dirac distribution is used for carrier distribu-
tions. We use the Lombardi model as the mobility degrada-
tion model at the silicon-insulator interface and the Philips
unified mobility model in the bulk region. The generation-
recombination, doping-dependent, temperature-dependent
Shockley-Read-Hall, Auger, and the vanOverstraetenmodels
are used [29]. The bandgap narrowing model is also included.

We calculate the breakdown voltage (BV ), the specific
on-state resistance (Rsp(on)), and the leakage current (Ileak) in
the TCAD simulation. The breakdown voltage is extracted
from IDS-VDS simulations by ramping the voltage on the
drain until the solver no longer convergences. We calcu-
late the on-state drain-to-source resistance (Rds(on)) by com-
puting the current under the boundary condition VGS = 5
V, VDS = 0.1 V, and VBS = 0 V. The specific on-state
resistance is then Rsp(on) = Rds(on)×Area. The leakage cur-
rent of the SG-FOX LDMOS device is defined as the drain
current under the OFF-state bias condition (VGS = 0 V,
VDS = 5 V, VBS = 0 V). We design the SG-FOX LDMOS
with an off-state leakage current smaller than 10−13 A/µm.
We extract BV , Rsp(on), and Ileak of the SG-FOX LDMOS
device in each iteration of the optimization process.

B. OPTIMIZATION ALGORITHMS
We define the objective of our optimization as the figure of
merit FOM = BV 2/Rsp(on) in the six-dimensional input space
we defined. This FOM is one of the most well-known metrics
for evaluating the performance of power devices [30], [31].
A higher FOM indicates that the device has characteristics
closer to an ideal switch. Researchers can use this FOM to
gauge the performance of a power device. We directly define
this FOM as the objective function to be optimized by our

algorithms. Our goal can be expressed mathematically as

x∗ = argmax FOM(x) = argmax
BV 2

Rsp(on)
(1)

where we wrote our input parameters in vector form x =

{x1,x2, . . . ,x6}T = {Ndrift, Ldrift.1, . . . , LJFET}T . We perform a
grid search, a Nelder-Mead (NM), a Powell, and a Bayesian
Optimization (BO). We choose NM and Powell since they
can optimize the objective in a design space without gradient
information. BO algorithms can also find the global optimal
solution without requiring gradient information. We selected
these algorithms that do not need spatial gradient information
because, in general, the calculation of gradient information in
a completely unexplored unknown space requires additional
computational resources, which increases the time required
to find the optimal solution. We briefly explain the four
algorithms in the following subsections:

1) THE GRID SEARCH METHOD
The most naïve optimization method is the grid search
method, in which the FOM is calculated on a regular grid
spanning several input parameters. Performing a grid search
on a six-dimensional space is computationally prohibitive,
so we only apply it on a two-dimensional space:Ndrift ranging
from 3×1016 cm−3 to 2.1×1017 cm−3 in steps of 1016 cm−3

and GP ranging from 5% to 95% in steps of 5% and another
data point at 99%, not taking 100% to avoid numerical issues
in the TCAD simulations. Therefore, the 2D grid search FOM
is evaluated 19 × 20 = 380 times. We demonstrate the grid
search result in the two-parameters optimization problem in
section III-A.

2) THE NELDER-MEAD ALGORITHM
The NM algorithm uses a simplex, a polytype with a number
of vertices equal to n + 1 (n is the dimension of the input
space), to traverse the n-dimensional input space to find the
optimal point x∗. For example, the simplex in a 2-D space
is a triangle (with n + 1 = 3 vertexes). The NM algorithm
evaluates the objective function and optimizes it under four
different operations: reflection, expansion, contraction, and
shrinkage. This simplex will change its size and traverse the
n-dimensional space until the algorithm reaches the stopping
criterion. [32] provides a detailed flow chart of the NM
algorithm.

3) THE POWELL ALGORITHM
The Powell algorithm starts from an initial data point x0
and executes a line search in the first direction, which is
determined by changing the first input parameter (x1). The
optimal point in the first direction is x1. Next, the algorithm
performs a line search in the second direction starting from
x1, by changing the second input parameters (x2). The Powell
algorithm finds the optimal points in different directions and
gradually approaches the final result. After running n line
searches, the (n+1)th direction is determined by the direction
from the data point x0 to the point xn. The line search process
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FIGURE 2. The optimization workflow. We use python to generate the
updated structure using the NM, Powell, or BO algorithm. In the flow
chart, i is the number of parameters in TCAD simulations, j means the j th

iteration in the optimization loop. For NM and Powell, an initial guess
parameter set is provided at the start, for BO, a range for each of the
input parameters is provided. For NM and Powell, a convergence criterion
is specified while for BO, the number of iterations is fixed.

continues until the stopping criterion is reached. A detailed
explanation can be found in [32].

4) BAYESIAN OPTIMIZATION
Bayesian Optimization needs bounds for all input variables
and a number of iterations (N). BO has two critical compo-
nents: the surrogate model and the acquisition function. The
surrogate model is a Bayesian statistical model attempting to
replicate the objective function. The acquisition function is
used to decide where to sample the next data point. We use
a Gaussian process regression-based surrogate model and
the expected improvement (EI) as the acquisition function.
Gaussian process regression has been applied successfully
in various fields [33], [34]. The posterior probability distri-
bution is updated by the measured result (likelihood) and
the prior probability distribution (the distribution before the
measurement). After updating the posterior distribution, the
acquisition function is based on the ‘‘new’’ posterior prob-
ability distribution information to decide the next sampling
point. For detailed information about BO, we refer to [35].

C. OPTIMIZATION FLOW
Fig. 2 shows the optimization flow chart. We start from
a device with a given initial x (NM and Powell) or given
bounds (BO). We calculate the device FOM using the com-
mercial device simulator for each iteration. The NM and
Powell convergence criterion is Error < 10−4. For BO we
run 20 iterations in the two parameters optimization case.
After each iteration, the optimization algorithm generates a
new vector xj+1 = {x1,j+1, x2,j+1, . . . , x6,j+1}T , and the com-
mercial simulation software calculates the FOM for the next
device.

III. RESULTS AND DISCUSSION
We present the results and the discussion in this section.
In subsection A, we perform optimization of just two input
parameters: the GP and Ndrift while fixing the other four
parameters to Ldrift.1 = 950 nm, Ldrift.2 = 80 nm, LFOX =

800 nm, and LJFET = 380 nm. We present the results of
three different algorithms and compare the initial structure
and the final structure. In subsection B, we optimize six
parameters using the NM algorithm but find a relatively poor
FOM. In subsection C, we use one-stage BO to determine
the optimal parameters in the six-dimensional search space.
In subsection D, we find more optimized six parameters
using a three-stage implementation of the NM algorithm.
In subsection E, we discuss the advantages and disadvantages
of the NM and BO algorithm.

A. TWO-DIMENSIONAL OPTIMIZATION
Fig. 3 presents the two-dimensional GP and Ndrift optimiza-
tion process. We perform the Powell and NM optimization
which are deterministic.We also apply the BObutwe perform
two separate BO optimizations since BO is stochastic. The
progress of the optimization is illustrated through the color
code, the deeper blue marker means closer to the initial con-
dition, whereas the deeper red markers are closing in on the
final result. We perform a grid search, calculating the FOM
for 380 devices as outlined in subsection II-B-I) to outline the
optimization landscape and use the result as a background.
The contour plot reveals an optimal location on the ridge
(light green) for Ndrift = 1.20 × 1017 cm−3, GP = 65.0 %,
and the optimized device has Rsp(on) = 5.42 m�× mm2,
BV = 32.2 V and FOM = 191 kW/mm2.
The Powell and NM start from the same initial condition,

located on Ndrift = 5 × 1016 cm−3 and GP = 75 %, and
gradually migrate toward the optimum in Fig. 3(a) and (b).
In Fig. 3(a), the Powell algorithm optimizes Ndrift with fixed
GP= 75%. Once the optimal Ndrift assuming a GP= 75% is
found to be 1.3×1017 cm−3, the Powell algorithm optimizes
the GP with Ndrift = 1.3 × 1017 cm−3. After finding the
optimal GP in the optimal Ndrift, the Ndrift is re-optimized
again and the Powell algorithm continues until convergence
in the 108th step. Fig. 3(a) shows two clear search directions
and they intersect on the final optimal region. The final
device of the Powell method has Ndrift = 1.28 × 1017 cm−3,
GP = 73.8 %, Rsp(on) = 5.16 m�× mm2, BV = 31.3 V and
FOM = 190 kW/mm2.
Fig. 3 (c) and (d) show the results from the BO’s first

and second trials. The BO proceeds seemingly randomly,
but both BO final results are in the optimal region of the
contour plot. The NM, the Powell, and BOs take 114, 108,
and 20 iterations, respectively. We list the final results by
differentmethods in TABLE 2. All four algorithms can finally
achieve an optimal device with similar performance. How-
ever, BO is the most data-efficient method since it takes the
fewest steps to get a comparable result in the two-dimensional
optimization problem.
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FIGURE 3. The contour plot and scatter plots for optimization of GP and Ndrift. The contour plot in the background shows the grid search method result
with 380 data points. Scatter plots indicate results from three different algorithms. (a) Powell (b) Nelder-Mead (c) A first Bayesian Optimization
(d) A second Bayesian Optimization. All algorithms arrive at the top of the ‘‘ridge’’ following different paths. For NM and Powell, the initial device has
Ndrift = 5 × 1016 cm−3, GP = 75%, and FOM = 58.89 kW/mm2.

FIGURE 4. Optimization results from three different algorithms on the Rsp(on) vs. BV plot. (a) Powell (b) Nelder-Mead (c) The first Bayesian
Optimization (d) The second Bayesian Optimization. The colors show the normalized steps. Blue is the initial step, and red is the final step. For NM and
Powell, the initial device has Rsp(on) = 8.42, m�×mm2, BV = 22.27 V, and FOM = 58.89 kW/mm2.

TABLE 2. Six parameters in TCAD simulation as the inputs for the
optimization problem. The initial values are for Nelder-Mead and Powell
algorithms and the bounds are for Bayesian Optimization.

Fig. 4 shows the evolution of BV and Rsp(on) during
the optimization. The device evolves from the initial con-
dition with BV = 22.27 V, Rsp(on) = 8.42 m�× mm2,
Ileak = 2.48 × 10−15 A/µm, and FOM = 58.89 kW/mm2

in Fig. 4(a) and 4(b). The dashed line shows the frontier for
FOM = 250 kW/mm2. Fig. 4(a) and 4(b) show the result
from the Powell and NM algorithm, respectively. In Fig. 4(b),
the initial condition is the first vertex of the simplex in the

NM algorithm. The second and third vertices are calculated
by changing Ndrift and GP, respectively. These three vertices
form a triangle which is the simplest shape of simplex in
2-D space. The next iteration is determined by calculating
the reflection point in NM. The triangle moves by four
different operations until the stopping criterion is reached
in 114 steps. The optimization process forms a trajectory
toward the frontier which is shown in Fig. 4(b). The final
device of the NM optimization hasNdrift = 1.20×1017 cm−3,
GP = 63.1 %, Rsp(on) = 5.45 m�× mm2, BV = 32.4 V and
FOM = 193 kW/mm2.
Fig. 4(c) and (d) show the evolution of the two BOs. After

optimization with 20 iterations, the first BO yields Ndrift =

1.23× 1017 cm−3, GP= 67.8 %, Rsp(on) = 5.32 m�× mm2,
BV = 32.0 V and FOM = 193 kW/mm2. The second BO
yields Ndrift = 1.12 × 1017 cm−3, GP = 56.8 %, Rsp(on) =

5.70 m�× mm2, BV = 32.8 V and FOM = 189 kW/mm2

after 20 iterations. These different results show the intrinsi-
cally stochastic property of the Gaussian process.

From Fig. 3 and 4, although the optimization paths for
NM, Powell and BO algorithms differ, we observe that they
all reveal the same optimum. However, the NM and Powell
algorithms require more than one hundred iterations and
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gradually improve the device every iteration, while BO only
requires 20 iterations to achieve comparable performance.
Assuming that each iteration takes 5 minutes to calculate the
FOM, NM and Powell require more than 6 hours longer than
BO to achieve the best result. In general, all three algorithms
perform well in lower dimensional optimization problems.

FIGURE 5. The breakdown curve of the initial and final devices from the
NM optimization. The leakage current also can be extracted in this curve.
The leakage current can maintain Ileak < 10−13 A/µm during all steps of
the NM optimization.

Fig. 5 shows the breakdown curves of devices before and
after the NM optimization. We do not show the breakdown
curve of the devices obtained using the other optimization
methods but the curves look very similar. The breakdown
voltage of the initial device is 22.68 V and improves to 32.4
V after NM optimization. The leakage current also can be
extracted as the subplot shown. The subplot shows that the
leakage currents of both devices is lower than 10−13 A/µm
and we verify that no devices have a leakage current exceed-
ing 10−13 A/µm during optimization.

Fig. 6 shows the electrical field and impact ionization
distributions at breakdown conditions before and after the
NM optimization. We define region I as the part of the drift
region not under the FOX and region II as the part under
the FOX. We observe that the electrical field on the surface
is raised significantly after optimization. The electrical field
in region I is less than 2.5 × 105 V/cm before NM opti-
mization (Fig. 6(a)) but exceeds 2.5 × 105 V/cm throughout
region I after optimization, as indicated by the green color
in Fig. 6(a’). The impact ionization profile is concentrated
on the drain side before NM optimization (Fig. 6(b)), and
it becomes more spread out at breakdown after the NM
optimization (Fig. 6(b’)).
Fig. 7 shows the electrical field under the Si/SiO2 interface

before and after NM optimization of GP and Ndrift. After
optimizingGP and Ndrift, the electrical field along the cutline
C-C’ is higher on average, indicative of the higher breakdown
voltage. After optimization, there are two peaks (A and B) in
the electrical field. Peak A arises from the poly gate corner on
the step gate oxide structure. Peak B arises from the end of the
poly gate on the SG-FOX (GP). Peak A occurs at X = 700

FIGURE 6. Comparison of the (a) electrical field and (b) impact ionization
of before (a, b) and after (a’, b’) Nelder-Mead optimization for GP and
Ndrift.

FIGURE 7. The electrical field distribution along the C-C’ cutline under the
surface before and after NM optimization. After the optimization, the
electrical field on the surface is much closer to the RESURF condition. The
high electrical field on the drain side (peak B) is shifted toward the
source side because the GP is optimized to 63.10 %. Peak A comes from
the poly metal gate corner on the step of field oxide.

nm after optimization because we do not change the length
of the FOX (LFOX) during the two-parameter optimization.
On the other hand, peak B shifts toward the source side since
the GP was optimized from an initial value GP = 75 % to an
optimized value GP = 63.10 %.

B. OPTIMIZATION FOR SIX PARAMETERS USING
ONE-STAGE NM
We now go back to the six parameters we identified in Table
1. We perform a NM optimization in this subsection which
we refer to as a ‘‘one-stage’’ NM optimization. As we will
see later, the one-stage NM does not reach a global optimum
and in section D we will perform a ‘‘three-stage’’ NM opti-
mization to get closer to the global minimum.

Fig. 8 shows the result from the optimization over
all six parameters using the NM algorithm. We add the
two-parameters optimization in Fig. 8 for comparison.
The six-parameters optimized device has a FOM measur-
ing 217 kW/mm2 and is closer to the FOM = 250 kW/mm2
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FIGURE 8. The solid dots show the result from the six parameters
optimization using NM. The circles show the result from the two
parameters optimization using NM from subsection A. The final result of
three-stage NM optimization in subsection D is shown as the black dot as
the reference. The result from the one-stage six parameters optimization
is worse than the three-stage NM optimization, meaning the result of a
one-stage six parameters NM optimization is not the global maximum.

frontier. The NM optimization for six parameters takes 357
iterations to converge. The final structure of the six
parameters optimization has Ndrift = 5.96 × 1016 cm−3,
Ldrift.1 = 1025 nm, Ldrift.2 = 250 nm, GP = 63.1 %,
LFOX = 478 nm, LJFET = 165 nm and its performance is
Rsp(on) = 2.53 m�× mm2, BV = 23.44 V and FOM = 217
kW/mm2. In the one-stage NM, the six parameters optimiza-
tion result has a better performance than the two parame-
ters optimization result but lower than the three-stage NM
optimization result which we will explain in the following
subsection D. We also show the result of the three-stage NM
optimization, determined in section D, in Fig. 8.

Fig. 8 shows that in our case, the one-stage NM did not
yield the global maximum in the six-dimensional space.
Similarly, the Powell algorithm drove the result towards
a local maximum and remained stuck there. The per-
formance of one-stage NM optimization is worse than
the three-stage NM optimization and one-stage BO opti-
mization results which we will show in the following
subsection C.

C. GLOBAL OPTIMIZATION BY BO
While for NM, a six-parameter optimization got stuck in a
local maximum, BO can find the global maximum by opti-
mizing up to 20 parameters simultaneously at an acceptable
expense [35]. We use the bounds in TABLE 1 and perform
a 100 iterations (N = 100) BO on all six parameters.
Fig. 9 shows the BO optimization result for six

parameters. The one-stage BO returns a device with
Rsp(on) = 2.97 m�× mm2, BV = 26.76 V, and FOM =

241.38 kW/mm2 (Ndrift = 1.03 × 1017 cm−3, Ldrift.1 =

938 nm, Ldrift.2 = 199 nm, GP = 99 %, LJFET = 220 nm,
LFOX = 560 nm). The FOM obtained using BO is more than
11 % higher compared to the optimal device obtained by the
one-stage NM in the previous subsection.

FIGURE 9. The result from BO with one hundred iterations. The data
points are distributed randomly at beginning of optimization process.

D. OPTIMIZATION FOR SIX PARAMETERS USING
THREE-STAGE NM
Fig. 10 shows the result of the three-stage NM optimiza-
tion. The first stage is the optimization of Ndrift and GP,
as described in III-A. We use the blue dots and the blue color
bar to present the data from the first stage optimization. The
second stage optimizes the five parameters (Ndrift, Ldrift.1,
Ldrift.2, GP, and the ratio between the LJFET and LFOX).
We optimize these five parameters but fix the half-pitch of
the device to 1.65 µm in the second stage optimization. The
results from the second stage optimization are shown in red
dots and the red color bar. There are 256 iterations in the
second stage of optimization. In the third stage, we optimize
the GP, Ndrift, and LFOX, and the results are shown in green
dots and the green color bar. The total length of the device will
be changed after the third NM optimization. The third stage
of NM optimization takes 161 iterations. The steps in each
optimization stage are normalized and are presented in color
(from deep to light colors). After three-stage NM optimiza-
tion, the final device has Ndrift = 1.44 × 1017 cm−3, LFOX =

647 nm, GP = 76.85 %, Rsp(on) = 3.32 m�× mm2, BV =

28.15 V, and FOM = 238.59 kW/mm2. The three-stage NM
optimization takes 530 iterations to get the final structure.
In Fig. 8, we have identified a maximum located at

Rsp(on) = 2.53 m�× mm2, BV = 23.44 V and FOM =

217 kW/mm2. The three-stage NM optimization path did
not pass near this maximum, which prevented the algorithm
from realizing the maximum in this six-dimensional design
space. To avoid such getting stuck in a local maximum,
designers have to carefully choose optimization parameters
and repeat the optimization process when using methods like
NM. However, since we usually do not know the location of
local maximum in advance, methods like BO that can find
other, more optimal, maximum offer an advantage.

E. COMPARISON BETWEEN THREE-STAGE NM AND
ONE-STAGE BO
The result from the one-stage BO is comparable with the
result from the three-stage NM, indicating that both the
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FIGURE 10. Three-stage NM optimization result. We optimize Ndrift and
GP in the first stage (Blues). In the second stage (Reds), we fix the total
length of the device and optimize five parameters in TABLE 1. Finally,
we optimize the LFOX, GP, and Ndrift in the third stage (Greens).

three-stage NM optimization and the BO are able to find the
global maximum for our problem under study. The one-stage
BO optimization for six parameters takes fewer iterations and
has a higher FOM than the one-stage NMwhich we presented
in subsection B and three-stage NM which we presented in
subsection D.

Fig. 11 compares the devices from the one-stage BO and
three-stage NM optimization. While both optimization meth-
ods realize a device with FOM ∼240 kW/mm2, and the
three-stage NM algorithm costs 530 iterations, the six-input
optimizer by BO only takes 100 iterations. In our case, one
device simulation approximately takes five minutes, mean-
ing a difference of 35.83 hours different between the two
methods.

However, the BO is not definitively the better method.
One of the disadvantages of BO is that it is hard to set up
reasonable bounds before executing the simulation. On the
other hand, NM, and also Powell, do not need bounds.
The setting of a suitable range of bounds for BO relies on
expert knowledge. Another drawback of BO is the need to
pre-set the number of iterations before beginning the BO
loop, although recent research has addressed this issue with
automatic stopping conditions [36]. Additionally, the estab-
lishment of bounds must account for potential numerical
issues in TCAD simulations, making it a crucial consideration
in selecting suitable bounds. Despite the various drawbacks
listed above, the overall use of BO algorithm in device opti-
mization process can still be more efficient than manual
optimization or direct method optimizations, like NM and
Powell method.

Another interesting point is that the BO and NM device
configurations are significantly different as Fig. 11 showed,
although both realize a FOM ≈ 240 kW/mm2. The device

FIGURE 11. (a) The doping profile from three stage optimizations by NM.
(a’) the electrical field distribution. (b) the doping profile after
six-parameters optimization using BO. (b’) the electrical field distribution.

structures from the algorithmic development may pro-
vide researchers or engineers with different ideas which
are unintuitive. For example, we note that BO realizes a
slightly higher FOM with a GP = 99 % while NM has
a GP = 76.85 %. This means that unlike in the two-input
optimization, for the six-input optimization there are multiple
local maxima in the six-dimensional input space for the FOM.
In our case, one with GP ≈ 77 % and one with GP ≈ 99 %.
Direct methods, gradually evolving from an initial guess, will
never reach an alternate optimum (GP≈ 99 %). Even human
device engineers may not consider a completely different
parameter space. Therefore, BO can not only accelerate the
development of the LDMOS or other transistors but also may
provide different design ideas never considered before.

Lastly, We have the flexibility to optimize different
FOMs by changing the objective function. In this study,
we only maximized FOM = BV 2/Rsp(on). To optimize reli-
ability, we may maximize or minimize other FOMs that
are reliability-related, such as maximizing safe operating
area and minimizing hot-carrier degradation. If we need
to simultaneously optimize multiple FOMs, we must use
multi-objective function device optimization [37] or other
variants of BO. However, the reliability simulation for
LDMOS is still an active developing topic of research [38].
Therefore, we are not yet able to automatically optimize the
device using reliability as one of our FOMs.

Some further extended research can be explored, including
process optimization using BO instead of the design of exper-
iments (DOE) and utilizing this accelerated optimization
algorithm to tackle previously intractable problems, such as
identifying the fundamental physical limitations of different
shapes of field oxides. This study has provided a novel
approach to solving these previously unsolved problems,
which are difficult to resolve through analytical methods.
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IV. CONCLUSION
Wehave developed an optimizationmethod that directly com-
bines the different optimization algorithms and the physical-
model-based TCAD simulations for a SG-FOX LDMOS.
We defined the FOM = BV 2/Rsp(on) as the objective func-
tion and used NM, Powell, and BO to optimize a SG-FOX
LDMOS. We started with a two-parameter optimization to
illustrate how the different methods reach their optimum.
The two-parameter optimizations showed that the three algo-
rithms identified similar optimized devices, but BO takes
fewer iterations compared to Powell and NM. Powell and
NM take 108 and 114 steps in the two-parameters optimiza-
tion problem, respectively. Performing NM and BO on all
six parameters significantly improves device performance.
Using a three-stage NM optimization, a device with simi-
lar performance as the BO optimized device can be found.
One-stage NM found a significantly inferior device com-
pared to one-stage BO. Overall, the FOM was improved 4
times to FOM ∼240 kW/mm2 by three-stage NM opti-
mization or one-stage BO. One-stage BO reached the opti-
mum in 100 iterations compared to 530 iterations for the
three-stage NM.

BO is the most data-efficient method to achieve the best
final structure for our SG-FOX LDMOS optimization. How-
ever, the need to set appropriate bounds before exploring the
device is a disadvantage of Bayesian Optimization. Another
inconvenience in the current BO implementation is that a
pre-determined number of the iteration needs to be specified
instead of a convergence criterion in its current implementa-
tion. NM or Powell are methods on the other hand that do
not require bounds but only an initial device. Perhaps most
remarkably, BO and three-stage NMyielded significantly dif-
ferent device designs realizing similar FOM. Overall, BO and
NM are powerful tools for the design of new devices to
accelerate time-consuming manual optimization.
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