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Neuromorphic processors aim to emulate the biological principles of the brain

to achieve high e�ciency with low power consumption. However, the lack

of flexibility in most neuromorphic architecture designs results in significant

performance loss and ine�cient memory usage when mapping various neural

network algorithms. This paper proposes SENECA, a digital neuromorphic

architecture that balances the trade-o�s between flexibility and e�ciency using

a hierarchical-controlling system. A SENECA core contains two controllers,

a flexible controller (RISC-V) and an optimized controller (Loop Bu�er). This

flexible computational pipeline allows for deploying e�cient mapping for various

neural networks, on-device learning, and pre-post processing algorithms. The

hierarchical-controlling system introduced in SENECA makes it one of the most

e�cient neuromorphic processors, along with a higher level of programmability.

This paper discusses the trade-o�s in digital neuromorphic processor design,

explains the SENECA architecture, and provides detailed experimental results

when deploying various algorithms on the SENECA platform. The experimental

results show that the proposed architecture improves energy and area e�ciency

and illustrates the e�ect of various trade-o�s in algorithm design. A SENECA core

consumes 0.47 mm2 when synthesized in the GF-22 nm technology node and

consumes around 2.8 pJ per synaptic operation. SENECA architecture scales up

by connectingmany cores with a network-on-chip. The SENECA platform and the

tools used in this project are freely available for academic research upon request.

KEYWORDS

event-based neuromorphic processor, spiking neural network, architectural exploration,

bio-inspired processing, SENECA, AI accelerator

1. Introduction

Neuromorphic engineering’s vision is to boost the efficiency of neural networks to

the level of the biological brain. Our brain can process temporal information from the

distributed sensors, fuse them, and generate sophisticated output activities, all in real-

time. In addition, it also memorizes the results and adapts to environmental changes over

time (LeDoux, 1994). These tasks are done with a small energy budget of 10–20 W (Mink

et al., 1981; Quian Quiroga and Kreiman, 2010). The advance of deep learning research

makes neural network algorithms perform similarly or better than biological brains in many

tasks (Silver et al., 2017; Brown et al., 2020; Shankar et al., 2020). However, executing those

algorithms in hardware as efficiently as the brain is extremely challenging.
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Since neural network algorithms are general purpose (can be

applied to a variety of problems, mainly for signal processing),

they enable the opportunity to build specialized hardware called

Neural Processing Units (NPUs), which are simultaneously

domain-specific (circuit level) and general-purpose (algorithm

level). Therefore NPUs can execute neural networks with

significantly more efficiency compared to CPUs. Neuromorphic

processors are special NPUs that mimic biological principles

by implementing features like memory-processor co-localization,

sparsity exploitation, and data-flow processing. However, due to the

mismatch between available silicon technology and the biological

fabric of the brain, opting for the right level of bio-mimicry is

the main controversial topic in this field of research. Although

all state-of-the-art neuromorphic processors claim to outperform

conventional solutions in specific benchmarks (Basu et al., 2022;

Chen et al., 2022), they are mostly not competitive for practical

applications, where a complex set of various neural networks

and sensors are used (Altan et al., 2018; Grigorescu et al., 2020;

Ravindran et al., 2020). Deployment of practical applications

requires an end-to-end mapping of several neural network models

and learning algorithms.

Despite the general-purpose attribute of neural network

algorithms on their core computations, different computation

pipelines on various types of neuron models, connectivity

types, and learning algorithms can result in performance drops

when deployed in neuromorphic platforms with an architectural

mismatch. Each model of neural network requires one or a few

special computation pipelines. However, a fundamental trade-

off exists between making a flexible computational pipeline

and an efficient processor. Most neuromorphic processors

are highly efficient in executing the core computations (e.g.,

integrating a spike into neurons’ membranes) with a specially

optimized controller that limits the flexibility of the computational

pipeline (Akopyan et al., 2015; Stuijt et al., 2021; Frenkel

and Indiveri, 2022). The design also restricts the effective

utilization of memory hierarchy and data reuse, constraining

performance, area, and power efficiency. We observed that the

lack of flexibility in mapping the practical applications results

in significant performance loss and inefficient memory usage in

such neuromorphic processors (Molendijk et al., 2022), making

them a non-competitive solution for the EdgeAI market. On

the other hand, several recent neuromorphic processors opted

for a high level of programmability by using a complex and

less efficient controller (for example, an embedded processor)

to schedule their computational pipeline flexibly (Davis, 2021;

Höppner et al., 2021). Benchmarking results in this work show such

a controller could consume an order of magnitude more energy

than an efficient controller. Therefore, an effective neuromorphic

architecture design is needed to balance the trade-off between

flexibility and efficiency.

In this paper, we propose the SENECA neuromorphic

architecture, a flexible and efficient design with a hierarchical

controlling system consisting of a flexible controller (RISC-V)

and a custom-made efficient controller (Loop Buffer). During

computation, the loop buffer executes micro-codes made by a

series of simple instructions, and RISC-V controls the order of

execution of each micro-code, which makes the computational

pipeline customizable and efficient. Moreover, the multi-level

flexible controller enables SENECA to employ a hierarchical

memory structure with an efficient data reuse capability. Such

an architecture gives SENECA a high level of flexibility and

area efficiency without sacrificing energy efficiency. We showed

that SENECA is among the most energy-efficient neuromorphic

processors while keeping its high level of flexibility. Briefly, the

main contributions of the paper are the following:

• Introduce a neuromorphic processor with a flexible processing

pipeline to efficiently deploy various neuron models,

connectivity types, and learning algorithms on one platform.

• Introduce the concept of the hierarchical control mechanism

that allows for high flexibility without significant

performance loss.

• Provide detailed measurements of energy consumption of

various logic blocks, neuron processing instructions, and

neural network algorithms in SENECA, which is helpful

for future design space exploration and algorithm-hardware

co-optimization.

• Demonstrate spike-grouping as a method to exploit the

memory hierarchy and improve the energy efficiency of

neuromorphic processing.

We discuss the trade-offs in the design of a digital

neuromorphic processor and compare state-of-the-art

architectures based on those trade-offs in Section 2. We introduce

the SENECA neuromorphic architecture in Section 3. This

architecture was briefly introduced in Yousefzadeh et al. (2022).

In this paper, we provide more extensive architectural details.

We also explain the design choices of SENECA based on the

mentioned trade-offs. Synthesis results, instruction level, and

algorithm level benchmarking of the SENECA processor are

provided in Section 4. The provided results can be useful

for modeling in algorithm-hardware co-optimizations. Our

synthesis result shows SENECA has a high area efficiency, and

the instruction level benchmarking showed a competitive 2.8

pJ/Synaptic operation when employing a data reuse strategy.

Algorithm level benchmarking in Section 4.2 shows SENECA’s

performance for fully connected and convolutional neural

networks next to the on-device learning with e-prop. Algorithm-

level benchmarking provides more insight into instruction-level

benchmarking by measuring all the overheads of the RISC-V

controller. Our experimental results showed that the flexibility

overhead provided by RISC-V is bounded within 10% the main

bulk of the computational load. It also demonstrates the flexibility

of SENECA to map various neural network algorithms efficiently.

The paper ends with a short conclusion in Section 5.

2. Important trade-o�s in
neuromorphic architecture design

Since neuromorphic architecture design aims to follow the

principles of bio-inspired processing mechanisms in the available

nano-electronic technologies, facing several challenges that result

from the platform constraints is expected. In this section, we discuss

the challenges of neuromorphic architecture design by reviewing
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FIGURE 1

Simple block diagrams of common neuro-synaptic cores. (A) Shows a neuro-synaptic core that implements 12 neurons, each with 15 synapses and

one output axon. The core has 3 input axons, and 3 output axons and neurons are fully connected. The red dots in the synaptic array show the

synaptic weight’s strength. (B) Shows a neuro-synaptic core where the axons are time-multiplexed and implemented with a shared connection. (C)

Shows a neuro-synaptic core where both the axons and neurons are time-multiplexed.

existing approaches and justifying the choice of SENECA design

with trade-offs in solving these challenges.

2.1. Logic time-multiplexing

A biological neural network is built from many neurons

connected through synapses and axons. Neurons contain an

internal state (so-called membrane potential) that accumulates

weighted spikes. In its simplest form, each synapse has a

weight that adjusts the intensity of the current injected into the

post-synaptic neuron.

Figure 1 shows three simplified examples of architectures for a

neuro-synaptic core that emulates a population of interconnected

neurons. These architectures can be realized in silicon with

various technologies [for example, analog (Schemmel et al., 2022),

digital (Arthur et al., 2012; Stuijt et al., 2021), and in-memory

processing (Ahmadi-Farsani et al., 2022)]. Figure 1A is the most

bio-inspired one, in which neurons are interconnected through

a cross-bar synaptic memory. However, this explicit connectivity

can become easily prohibitive to be routed in a 2D structure of

conventional silicon ICs.

Since data can travel/process a million times faster in silicon

than in the brain1, a typical silicon neural network can operate

1M times faster than its biological counterpart. Therefore, it

makes sense to partially time-multiplex elements of silicon neural

networks, even though it is not bio-inspired. To the best of our

knowledge, all scalable digital neuromorphic chips adopt a kind of

time-multiplexing technique.

Figure 1B illustrates a neuro-synaptic core architecture where

the axons are time-multiplexed. In this case, each spike pulse

1 Biological action-potential velocity is less than 120 m/s while the speed

of a pulse traveling in a wire is around 2× 108 m/s.

is encoded in a packet of data, including the address of

the source neuron, so-called Address Event Representation

(AER) (Yousefzadeh et al., 2017a). Using this method, each neuron

needs to process one spike at a time (in series), simplifying silicon

neurons’ architecture. In addition, axon time-multiplexing allows

flexibility and scalability by connecting many neuro-synaptic cores

in a packet-switched network, as shown in Figure 2. However, axon

time multiplexing changes a single spike pulse to a potentially

large data packet. For example, in Figure 1B, each packet will need

to have at least log2(number of neurons) bits to accommodate the

address of neurons.

Despite the packetization overhead, axon time multiplexing is

used in all digital neuromorphic processors (to our knowledge). A

step further is to time-multiplex the physical neurons, as shown in

Figure 1C. In this case, one shared physical neuron can emulate

several hundreds of neurons in a neuro-synaptic core. Especially

when the neuron model is more complex, or the physical neuron

is designed to be programmable (for example, to support several

neuron models), neuron time multiplexing significantly improves

the area efficiency and allows to scale up the number of neurons

in a neuro-synaptic core. However, it also introduces some serious

trade-offs.

First, timemultiplexing of neurons requires loading and storing

the neuron states from memory. In Figure 1B, neuron states

can remain inside the physical neurons. But in Figure 1C, a

neuron state memory is introduced. Each physical neuron needs

to load the corresponding neuron state, update it and store it

back in the neuron state memory. This extra memory access

potentially reduces the system’s energy efficiency. Additionally,

even though silicon is much faster than bio-fabric, in practice,

neuron time-multiplexing can slow down the neuro-synaptic cores

and increase latency. The controller in Figure 1C is the second

overhead of neuron time-multiplexing. Neuron time-multiplexing

requires a controller to orchestrate the time-multiplexing process.
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FIGURE 2

A typical neuromorphic processor, scaling with a Network on Chip

(NoC) as time-multiplexed axons.

The complexity of the controller depends on the flexibility

(programmability) and features that the core supports.

Despite the disadvantage of neuron time-multiplexing, its

benefits in area efficiency make it inevitable to be used by almost

all digital neuromorphic processors (Furber et al., 2014; Akopyan

et al., 2015; Davies et al., 2018; Frenkel et al., 2018; Demler, 2019;

Mayr et al., 2019; Moreira et al., 2020; Davis, 2021). However,

for some small-scale architectures (sub mW) (Stuijt et al., 2021)

where power consumption is prioritized over area efficiency and

programmability, the controller overhead might be considerable,

and therefore neuron time-multiplexing is not implemented. The

last column of Table 1 shows a few neuromorphic architectures

and their neuron time-multiplexing ratio. SENECA uses axon and

neuron time-multiplexing to process a flexible number of neurons

in each core.

2.2. Memory

In the architecture shown in Figure 1C, memory cells are the

only part that cannot be time-multiplexed. Each neuron must have

dedicated memory cells for membrane potential (neuron state),

synaptic weights, and axons (destination addresses). As a result,

memory is responsible for most of the area and power consumption

in a neuro-synaptic core.

Several trade-offs are involved in the design of the memory

block (Stansfield, 2022). The first trade-off regarding memory

is the size of memory per core. As a rule of thumb, the area

efficiency in a neuro-synaptic core improves by increasing the

memory size (due to an increase in the time-multiplexing ratio

of other elements). However, the higher time-multiplexing ratio

for the physical neurons, in general, increases the processing

time. Additionally, the distance between the memory cells and

its peripherals increases in a larger memory, resulting in slightly

higher power consumption of individual memory accesses. On the

other hand, using smaller memory in the core means less number

of neurons/synapses per core. Therefore, in such a platform, it is

required to use more interconnected cores to deploy an application,

which also increases the load of the interconnect (more data

movement). Table 1 shows the amount of memory per core in a few

digital neuromorphic processors.

A second challenge is the choice of memory technology.

Register-File (Latch) and SRAM2 are the most common memories

used in digital processors. New memory technologies (eDRAM,

eFlash, MRAM, etc.) are also gaining popularity. It is also possible

to opt for off-chip memory. In this case, the method to connect two

chips to each other greatly affects the performance (2D chiplet, 3D

stacked integration, etc.).

µBrain (Stuijt et al., 2021) uses latch memory, which allows

it to be fully synthesizable (SRAMs are analog IPs and cannot

be synthesized using standard digital gates). Register Files (and

Latches) are fully synthesizable using the standard digital gates

(unlike SRAM, which is an analog IP); therefore, placing each

memory cell very close to the processing logic is possible. However,

it consumes more area than SRAM for larger memory sizes (Teman

et al., 2016). SRAM provides a very competitive balance for the

area, performance and power consumption when only onememory

technology is used. As a result, most of the architectures in Table 1

only use SRAM memory for weight and neuron states. However,

when targeting large-scale neural networks (multi-Gb parameters),

SRAM becomes unaffordable. SpiNNaker (Furber et al., 2014)

uses SRAMs for neuron states and a 1Gb 3D-integrated off-

chip DDR memory for synaptic weights (in its standard SDK).

This arrangement allows for storing a large number of synaptic

weights (1Gb) in a small, affordable chip. Using off-chip DDR

memory dramatically improves the area efficiency and cost since

memory foundries optimize the process of memory cells for

large-scale fabrication (for example, by using fewer metal layers).

However, it also increases the distance between memory and

the processor, which is undesirable, especially for neuromorphic

processors (Pedram et al., 2016).

Due to a highly sparse processing pattern of neuromorphic

applications, the static power consumption in a neuromorphic

chip, if not carefully designed, can easily exceed 30% of the

total power consumption (Stuijt et al., 2021). Data retention in

volatile memory is the primary source of static power consumption.

Using Non-Volatile Memory (NVM) technologies can theoretically

address this issue. However, NVM technologies generally suffer

from high latency (access time), extremely high write power

consumption and limited endurance.

SENECA architecture is designed to use a hybrid memory

architecture and mixed memory technologies. SENECA has the

flexibility to dynamically allocate different parameters to various

memory blocks. Therefore, one can optimize the application

mapping for the best energy and area trade-offs. In this case,

the data’s location will depend on how often it is used. Table 2

shows Power, Performance, and Area (PPA) measurements of

different memory technologies used in SENECA, measured using

randomized experiments in Cadence JOULES (with FDX 22

nm technology, typical corner). As can be seen, each memory

technology has its own unique advantages, which can be optimized

when used in a hybrid memory architecture.

2 SRAM is inherently analog, but it is used as an IP with digital IOs.
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TABLE 1 Comparison between area, memory, and the technology node used in a few neuromorphic chips.

Architecture mm2 Memory (Mb) Technology Neurons(Physical)

/Core /Core /core

ODIN (Frenkel et al., 2018) 0.086 0.28 STM 28 nm 256(1)

TrueNorth (Akopyan et al., 2015) 0.10 0.10 Samsung 28 nm 256(1)

NeuronFlow (Moreira et al., 2020) 0.1 0.12 TSMC 28 nm 1024(1)

Loihi2 (Davis, 2021) 0.21 1.5 Intel 4 nm Flex(1)

Loihi (Davies et al., 2018) 0.41 2.0 Intel 14 nm 1024(1)

ReckOn (Frenkel and Indiveri, 2022) 0.45 1.1 FDSOI 28 nm 256(16)

µBrain (Stuijt et al., 2021) 1.42 0.15 TSMC 40 nm 336(336)

SpiNNaker (Furber et al., 2014) 5.6 0.12 130 nm Flex(1)

SpiNNaker2 (Höppner et al., 2021) 1.09 1.0 FDX 22 nm Flex (64)

Tianjic (Deng et al., 2020) 0.092 0.17 UMC 28 nm 256(16)

SENECA 0.47 2.3 FDX 22 nm Flex(8)

The amount of memory can be used as an indication of the number of neurons and synapses per core.

TABLE 2 Comparison of memory modules used in SENECA.

Memory module Memory size Energy Static power Area Latency

(fJ/b) (pW/b) (um2/b) (ns)

Register-file (inside NPEs) 16W × 16b (256b) 8 600 3.6 < 1

64W × 16b (1kb) 12 610 3.6 < 1

SRAM block (Inst/Data Mem) 8KW × 32b (256Kb) 180(R)–220(W) 10 0.2 2

STT-MRAM (Shared Mem) 256k× 144b (36.8Mb) 2,000(R) 0 0.1 25(R)

HBM (Shared Mem; Xilinx, 2020) 64 Gb 7000 – 0.003 135

2.3. Programmability

Programmability means “The capability within hardware and

software to change; to accept a new set of instructions that alter its

behavior.” In this definition, the biological brain is programmable.

Our brain easily adapts to the augmented artificial sensors and

actuators (Hartmann et al., 2016).

The desired level of programmability in the neuromorphic

processors is much higher than in the brain. At least, a user of a

neuromorphic processor needs to start from a pre-trained network

and be able to program the synaptic weights. In addition, there

are various neural network architectures, learning algorithms, and

neuron models. A highly flexible neuromorphic processor allows

the deployment of several applications and algorithms and is

helpful in researching and developing new ideas.

Adding flexibility to the architecture will cost area and

power. Thereby increasing the energy consumption per operation.

However, the added functionalities may result in optimizations

that significantly improve the application level performance, for

example, by reducing data movement and memory access. Table 3

lists a few neuromorphic architectures based on their level of

programmability. A flexible mapping allows for reusing all memory

blocks for neurons and synapses to use the maximum amount

of memory in each core (no hard partitioning of memories).

Using programmable data type allows for the optimal mapping

of quantized networks. Different layers in a neural network have

different quantization requirements, which can only be exploited if

the processor supports multiple data types.

Supporting efficient deployment of various neural network

architectures (Dense, Conv, RNN, Transformers, etc.) also requires

flexibility. For example, in most neural networks, due to a

regular architecture, it is possible to mathematically calculate the

destination address of a neuron (in the controller in Figure 1C)

instead of storing them in the axon memory, therefore saving a

relatively large amount of memory. Another example is weight

sharing in Convolutional Neural Networks (CNNs). In CNNs,

synapses of a channel share their weights. If the processor

architecture cannot support the weight-sharing feature, it is

required to store several hundred copies of the same synaptic

weights in the weight memory. For example, Implementation of an

HW-optimized CNN in TrueNorth (Akopyan et al., 2015) with 1.5

M ternary weights (3 Mb), consumed 3, 721 cores (372 Mb; Amir

et al., 2017). Mapping of the same CNN in SENECA requires only

4 cores (8.4 Mb).

Supporting various neuron and synaptic models (e.g., plasticity

algorithms) requires additional flexibility. At this moment, there

is no evidence that a specific spiking neuron model or a local

learning algorithm will be dominant due to its superior efficiency

in all applications. Therefore, these flexibilities can result in better

power consumption when considering end-to-end application

deployment. In particular, the local learning algorithm within the

synapse model, which is at the frontier of neural network research,
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TABLE 3 Programmibility (flexibility) of di�erent dimensions in di�erent neuromorphic processors.

Architecture Mapping Data-type Network Neuron Synapse Energy per

architecture model model SOp (pJ)

ODIN Low Fixed Fixed Fixed Fixed 12.7

(Frenkel et al., 2018)

ReckOn Low Fixed Fixed Fixed Fixed 5.3

(Frenkel and Indiveri, 2022)

µBrain Low Fixed Fixed Fixed Fixed 26

(Stuijt et al., 2021)

TrueNorth Low Fixed Low Fixed Fixed 2.5

(Akopyan et al., 2015)

Tianjic Low Fixed High Medium Fixed 1.54

(Deng et al., 2020)

NeuronFlow Low Low Medium Medium Fixed 20

(Moreira et al., 2020)

Loihi Low Low Medium Low Medium 23.6

(Davies et al., 2018)

Loihi2 High Medium Medium High Medium NA

(Davis, 2021)

SpiNNaker High Medium High High High 45

(Stromatias et al., 2013)

SpiNNaker2 High Medium High High High 10

(Höppner et al., 2021)

SENECA High Medium High High High 2.8

Synaptic Operation (SOp) varies in different applications and is only mentioned for high-level comparison. Mapping: low—hard partitioning of memory for weight and state; high—flexible

memory reusing. Data-type: fixed—single data type supported; low—limited data type supported and only support binary events; medium—mixed-precision data type supported and graded

events supported. Network architecture: fixed—only support Fully-Connected network; low—optimal support on Fully-Connected network and very costly support on CNN; medium—

optimal support on Fully-Connected network and costly support to CNN; high—optimal support to both fully-Connected and CNN, and can also support novel network architectures.Neuron

model: fixed—single fixed model; low—single predefined model with limited programmability; medium—multiple predefined models with limited programmability; high—fully programmable

model. Synapsemodel: fixed—single fixedmodel; medium—single fixedmodel with limited programmable learning support; high—fully programmablemodel and fully programmable learning

support.

requires the right level of programmability to explore application-

level performance optimizations. For example, Davies et al. (2018)

provides configurable learning rules using microcode operations

supported by the learning engine per core. By limiting flexibility

to the sum-of-products of synaptic traces, Loihi struggled to deploy

advanced learning algorithms and required algorithm designers to

find non-optimal workarounds to deploy the learning on the chip

(Renner et al., 2021; Tang et al., 2021). Furthermore, trace-based

learning on Loihi requires updating all synapses at each time step,

restricting the learning algorithm from exploiting the event-driven

advantage of neuromorphic computing3. In contrast, SENECA is

at the right level of programmability to deploy various learning

algorithms via the neuron processing instruction set (detailed

in Section 3.2), which can better exploit the application-level

performance optimization.

3 In the neuromorphic processors, the words “events” and “spikes,” and

“neuron activation” are used interchangeably. In this context, Event-driven

processing means the processing pipeline is triggered by incoming spikes or

non-zero neuron activations.

2.4. Interconnectivity

To connect the neuro-synaptic cores to each other in a

neuromorphic system (Figure 2), it is possible to use shared buses

(or circuit-switched Network on Chip [NoC]; Balaji et al., 2019),

point-to-point connections (Stuijt et al., 2021), or a packet-switched

NoC. The packet-switched NoC is the most popular option due to

its higher performance and flexibility (Furber et al., 2014; Akopyan

et al., 2015; Moradi et al., 2017; Davies et al., 2018; Frenkel et al.,

2018; Demler, 2019; Mayr et al., 2019; Moreira et al., 2020; Davis,

2021), as shown in Table 4.

One of the challenges in neuromorphic chips is the “operational

intensity” of a single packet of data. In other words, if the processing

of a packet of data is much faster than the delivery time of that

packet (low operational intensity), then the interconnect is themain

bottleneck. For example, a spike from an axon that is connected

to many neurons triggers a high amount of neural updates. If all

destination neurons are located in one neuro-synaptic core, then

the operational intensity of the spike packet is high. However,

if the destination neurons are distributed in several cores, many

spike packets are required to deliver the same spikes to all of those

cores. In this case, the operational intensity of each packet is lower.
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TABLE 4 Type of network on chip for di�erent large-scale neuromorphic processors.

Architecture Core/Router Multicasting Compression

TrueNorth (Akopyan et al., 2015) 1 No No

NeuronFlow (Moreira et al., 2020) 1 No No

Loihi (Davies et al., 2018) 4 No No

Loihi2 (Davis, 2021) 4 No No

SpiNNaker (Stromatias et al., 2013) 16 Yes No

SpiNNaker2 (Mayr et al., 2019) 4 Yes Software

Tianjic (Deng et al., 2020) 1 Yes No

SENECA 1 Yes Software

Therefore, in the platforms with smaller but more cores, the spike

packets’ operation density is generally lower.

Multi-casting is a feature that increases the operational

intensity of spike packets by reducing the total data movements.

When a core wants to send a spike packet to several other cores in

a uni-cast interconnect, several copies of the packet with different

destination addresses must travel over the interconnect from the

source core toward the destination cores. A multicasting NoC

makes the copies closer to the destination cores, reducing the

communication overhead. As a trade-off, complete support of

multi-casting considerably increases the complexity of the NoC.

SENECA supports a lightweight multi-casting NoC with a small

routing table. Our study showed that a small routing table is enough

formost of the neural networks with regular connectivity. However,

SENECA NoC needs to switch to the unicast mode in extreme

irregularity cases.

Another possibility to improve the operation intensity is to

compress the spike packets. Each spike packet contains an address

field and an optional data field. It is easier to compress the address

field for the spikes which are fired simultaneously since they are

generally correlated. Spike compression saves the NoC energy

and the memory consumption of spike queues (at the entrance

of each core). However, a compression algorithm introduces

extra computational overhead, and its performance is application

dependent. Therefore, selecting a compression algorithm and

accelerating it in a neuromorphic processor is a difficult trade-

off. Additionally, due to spike compression, the spike packets

will have variable lengths, which slightly increases the router’s

complexity. In SENECA, we use a simplified yet effective spike

address compression inside the controller.

2.5. Asynchronous design

Another challenge for digital event-based processing cores is

the clock. At this moment, synchronous digital design, which

requires a clock signal, is far more popular than asynchronous

design. The main reason is that, in synchronous digital design, the

circuit’s behavior is not dependent on the timing characteristics of

the underlying silicon technology.

A clock is a high-frequency pulse that is continuously

switching. In a synchronous digital circuit, the clock signal must

FIGURE 3

Distribution of the power consumption in various elements in

SENECA when executing the online learning algorithm experiment,

explained in Section 4.2.

reach almost everywhere inside a synchronous domain through a

highly controlled latency circuit (called a clock tree). As shown in

Figure 3, a clock tree consumes a substantial part of the dynamic

energy in SENECA, which is a significant overhead.

A traditional method to address the wasted dynamic power of

the system due to clock signal in idle time is clock gating. In this

method, a control logic gates the clock signal of a digital block in

the absence of events. However, due to the overhead of the control

logic, it is not feasible to reach 100% clock gating efficiency.

One possibility to improve the system’s scalability is to have

regional clock generators. In this case, a large clock tree is divided

into smaller local trees. This method is called GALS (Globally

asynchronous, Locally Synchronous) architecture. In GALS, the

interconnects between these synchronous regions must follow an

asynchronous protocol (Yousefzadeh et al., 2016). The trade-off in

GALS design is drawing the asynchronous boundary, which can

be either inside their cores, between cores, or between chips for

large-scale designs.

A possible optimization over GALS is designing clock

generators triggered by the input events. In this so-called self-

clocked logic, a distributed set of simplified oscillator circuits

generates the exact number of pulses required to process an input

event. Therefore, clock gating latches are not required (which

are constantly active). Depending on the number of event-based
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oscillators, a self-clocked circuit design might be a better trade-off

than clock gating. However, it requires a complex, hand-optimized

asynchronous digital design, which affects its design cost and

portability to newer technologies.

Asynchronous design is advertised to be faster and consumes

less dynamic power. However, without spending considerable

design time, it isn’t easy to harvest its benefits. On the other hand,

synchronous circuits can be designed to finish their task extremely

fast and turn off the clock signal to save energy. Considering those

trade-offs, we only used GALS with core-to-core asynchrony in the

SENECA. Table 5 lists several neuromorphic processors based on

their asynchronous design choices.

3. SENECA architecture

In this section, we introduce our proposed neuromorphic

architecture, named SENECA4. SENECA comprises

interconnected neurosynaptic cores, illustrated in Figure 4.

The cores are programmed to process input events and generate

output events. An input event enters the core through the NoC

(Network on Chip) and interrupts the RISC-V. Depending on the

type of event, RISC-V decides how to preprocess it. In general, for

a normal incoming spike, RISC-V performs a pre-processing phase

to retrieve the relevant local information required to process the

spikes (for example, the address of the corresponding parameters

in the Data Memory) and packs that information in the form

of a micro-task. Then this micro-task is pushed to the Task

FIFO. The loop controller executes the tasks one by one based

on the micro-code instructions stored in the loop buffer. The

loop controller is a small dedicated controller programmed to

execute a sequence of instructions in parallel through the NPEs

(Neural Processing Elements). Some neural operations in NPEs

may result in output spikes which will be converted to packets of

data inside the event generator. The event generator unit interrupts

the RISC-V to perform postprocessing on the generated events.

RISC-V can feed the generated events back into the Task FIFO or

send them out through the NoC. Following, we will explain each

element of SENECA in more detail.

3.1. RISC-V controller

In Figure 1C, there is a controller which handles the

input/output spike flow. This controller mainly performs the

address translation task. It generates an address for the newborn

spikes from the physical neuron and translates the addresses of

the incoming spikes to the internal memory address. Address

translation depends on the architecture and mapping of the neural

network. A general-purpose processor allows for efficient mapping

of various applications, improving both area and power efficiency.

In SENECA, we used a tiny RISC-V as part of the controller

of the core. This controller (along with its instruction memory)

consumes around 10% of the total core area, and its energy

efficiency is around 10× worse than the accelerated neural

4 SENECA stands for “Scalable Energy e�cient Neuromorphic

Computer Architecture.”

TABLE 5 Asynchronousity level in various neuromorphic chips.

Architecture Asynchronousity level

ODIN (Frenkel et al., 2018) Fully synchronous

ReckOn (Frenkel and Indiveri, 2022) Fully synchronous

µBrain (Stuijt et al., 2021) Self-clocked

TrueNorth (Akopyan et al., 2015) Core-to-core

NeuronFlow (Moreira et al., 2020) Chip-to-chip

Loihi (Davies et al., 2018) Self-clocked

Loihi2 (Davis, 2021) Self-clocked

SpiNNaker (Stromatias et al., 2013) Core-to-core

SpiNNaker2 (Mayr et al., 2019) Core-to-core

Tianjic (Deng et al., 2020) Core-to-core

SENECA Core-to-core

processing element (NPE). However, if properly used, it provides

features that well-compensates the costs through:

1. Dynamic allocation and reuse of the core memory for both

weights and neuron states.

2. Calculate the destination address of neurons (axons) instead of

using axon memory.

3. The optimum use of different memory technologies.

4. Implementing a lightweight event-compression mechanism.

RISC-V performs per-spike operations (not per synapse). For

many popular neural network architectures, each spike(activation)

triggers over 100 synaptic updates (Yousefzadeh and Sifalakis,

2022). As part of the address calculation is accelerated in the Event

Generator (output spikes) and in the Loop controller (input spikes),

RISC-V only executes <1% of the total number of operations in

a target application. This results in a negligible energy overhead

which can be compensated by optimized memory access. The

selected RISC-V controller in a SENECA core is a low-power,

free and open-source Ibex controller from lowRISC5. This Ibex

controller is a small processor with a 2-stage pipeline and uses

RV32IMC (Waterman et al., 2014) instruction set (Figure 5).

3.2. Neuron processing elements (NPEs)

The SENECA core includes an array of neuron processing

elements (NPEs) that act as physical neurons in Figure 1C. Each

NPE contains a small register-based memory and executes a

category of instructions. An array of NPEs is forming a SIMD

(Single Instruction Multiple Data) type architecture (Flynn, 1972).

Instructions to be executed in NPEs are coming from the Loop

Buffer. NPEs can get their data fromData Memory (through a wide

Data Memory port), RISC-V (by directly writing into their register

file), and Loop controller (broadcasting).

The register file inside the NPEs allows for reusing data as much

as possible before reading/writing it into the Data Memory. Table 2

5 https://lowrisc.org/
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FIGURE 4

(Left) A core of SENECA and its internal pipeline. It contains a general-purpose controller (RISC-V), many Neuron Processing Elements (NPEs) as

physical neurons, Loop Bu�er, Event-generator, NoC, and Share Memory Prefetch Unit. The orange blocks are the register-based memories, and the

green blocks are the SRAM memories. (Right) Four interconnected clusters containing 16 SENECA cores (connected through the NoC) and one

shared memory (MRAM or HBM).

FIGURE 5

Internal structure of the Ibex controller (Schiavone et al., 2017; Chadwick, 2018).

shows that accessing the data in NPEs’ register file is about 20×

more energy efficient than accessing the Data in the Data Memory

(SRAM). For example, in an extreme case where the number of

neurons is low6, keeping the neuron states inside the NPEs and only

reading the weights from Data Memory (avoiding the neuron state

read/write) reduces the energy consumption of a synaptic operation

from 2.8 to 1.8 pJ7.

6 Less than 256 neurons in the current setup.

7 NPE registers are used to keep neuron states, weights, and event values

(if used). In addition, some registers are used to store intermediate values in

In neuromorphic applications, the optimized resolution

of neuron states and synaptic weights depends on several

variables (Khoram and Li, 2018). Therefore, to optimize the

memory footprint and access energy, it is crucial that our NPEs

support various data types and precision. Currently, NPEs are

designed to support 4, 8, and 16 bit data precisions, both for

the micro-code. Therefore, the maximum number of neuron states which

can be kept locally depends on the micro-code. If we use half of the NPE

registers for neuron states, it is possible to keep 256 neurons in the NPEs of

a SENECA core (based on Table 6, 8-NPEs, each with 64 registers).
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linear and logarithmic quantization (floating point). They also

support shared scale factors (Köster et al., 2017; Moons et al., 2017;

Jacob et al., 2018; Kalamkar et al., 2019; Coelho et al., 2021). This

flexibility allows for the memory-efficient deployment of mixed

precision neural networks for inference and on-device adaptation.

Each NPE consumes 1.3% of the total area of the core.

3.3. Loop controller

The loop controller accelerates part of the controller’s task in

Figure 1 by orchestrating the time-multiplexing of physical neurons

and generating a Data Memory address for the Data Memory

access. Loop controller has an important role in improving the

energy efficiency of SENECA.

As mentioned, NPEs do not implement a specific neuron

model. They only execute special operations, which are common

among many neuron models. A neuron/synapse/learning model

can be built by sequential execution of a few instructions, called

microcode. The loop controller sends the microcode to the NPEs in

a “for-loop” style to process events. Therefore, the Loop controller

is optimized to execute nested loops. Executing loops using the

loop controller is 100× more energy efficient compared to the

RISC-V.

Loop buffer in Figure 4 is a small register-based memory to

store a few microcodes. Each microcode is called to process a

type of event (for example, neuron update or neuron threshold

evaluation).Micro-Code 1 shows an example of a micro-code.

The instructions are located inside the loop buffer memory.

The loop controller dispatches the instructions to NPEs (same

instructions for all NPEs) one by one and the corresponding

address to the Data Memory. The codes executed in the loop

buffer have a special structure in the form of nested loops.

This format is optimized for executing neural networks and is

flexible enough for executing the core of all neural network

algorithms.

Processing of an event requires a set of information that RISC-

V provides to the Loop controller in the form of Tasks, queued

in the Task FIFO. Since the loop buffer holds several micro-

codes, it must be clear which micro-code should be executed. Each

task also contains one or more addresses (e.g., weight address

in Micro-Code 1). Task FIFO allows RISC-V to push future

tasks for processing without waiting for the current task to be

completed. The micro-code will execute in parallel in all the NPEs.

Every instruction executes in one cycle (pipelined); therefore, the

execution of a micro-code can take several hundred cycles.

While(task exists in the Task FIFO) //process
events

//initialized by RISC-V
State_Addr = 0x100120
//Copy the weight address from the task FIFO
Weight_Addr = TASK_FIFO_ADDR
//update 256x8 neurons (8=number of NPEs)
for (i=0, i<256, i++)

for (j=0, j<32, j++)
R1 = DMEM[State_Addr*i+j] //Load 8

neuron states
R2 = DMEM[Weight_Addr*i+j] //Load 8

weights

R1 = R1 + R2 //8 Accumulation
DMEM[State_Addr*i+j] = R1 //Store the 8

states

Micro-Code 1. Example of a micro-code for a fully connected layer, with

2,048 neurons.

3.4. Event generator

As mentioned, due to axon time-multiplexing, every time

a neuron fires, we need to convert its output to a packet of

data. The event generator performs this task after receiving the

corresponding instruction from the Loop controller. This block

inspects one of the internal registers of NPEs. Depending on a

predefined condition, it generates a packet (event) containing a

unique address (source neuron ID) and an optional value (for

graded spikes). The generated events will be collected in a FIFO

and provided to RISC-V for further post-processing of events (e.g.,

adding a core address to it, compression, etc.).

3.5. Network-on-chip (NoC)

To connect the neuro-synaptic cores and deliver the spike

events, SENECA is using an NoC with a minimal footprint.

This NoC supports multicasting (source-based addressing) and

variable-length packets (needed for compression). Multicasting

and event compression features can help to reduce the total

communicated bits.

The multicasting feature is implemented using filters stored in

a register-based routing table inside each router (a similar approach

to Furber et al., 2014). Every filter entry contains three fields:

Input, Lable, and OutputPorts, which define the output port for

each input event. Figure 6 illustrates a mapped neural network and

the corresponding routing table for one of the cores. Even though

increasing the number of filters increases the routing flexibility,

a small set of filters is sufficient for many neural networks with

structured connectivity. For non-structured connectivity types (like

TABLE 6 Available synthesis parameters in a SENECA core and their

default value, used in this paper.

Parameter Default value

Number of NPEs 8

Per NPE register file size 64×16 b

Loop buffer register file size 128×23 b

Data memory size 2 Mb

Instruction memory size 256 Kb

Event generator FiFo size 128× 23 b

NoC input FiFo size 128× 32 b

NoC output FiFo size 32× 32 b

Loop buffer event address FiFo size 16× 23 b

Loop buffer event data FiFo size 16×16 b
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FIGURE 6

Example of mapping a four-layer neural network (Color coded in cores and links) in a 16-core chip. The routing table for core-5 is shown on the left.

millions of randomly connected neurons), a less optimum routing

might be used due to limited filtering capacity.

3.6. Shared memory pre-fetch unit (SMPU)

A SENECA core may extend its local Data Memory by using

denser and larger shared memory blocks, as shown in Figure 4.

The primary motivation behind this decision is to use a different

memory technology that allows us to improve the area efficiency

of a core. Shared memory can be implemented either on-chip

using newer and denser memory technologies (e.g., STT-MRAM)

or off-chip using, for example, a 3D stacked memory technology

(Beyne et al., 2021; Sheikh et al., 2021; Bamberg et al., 2022). Shared

memory is optional and will only be used if the local data memories

are not enough to store the parameters. Also, non-volatile shared

memory allows to power off the volatile memories of a core during

low activity times to reduce leakage power. It is important to

note that, unlike conventional GPU architectures, SENECA’s shared

memories are not supposed to be used to communicate between

processing cores.

Shared Memory Pre-fetch Unit (SMPU) is an optimized DMA

that enables efficient shared memory access through a direct link to

the arbiter of the shared memory (Figure 4). Since shared memory

is far from the neuro-synaptic cores, each data transfer will cost

more energy and latency (Table 2). SMPU can hide the extra latency

by pre-fetching the required parameters for events that are waiting

in the queue.

4. Analysis and results

SENECA core can be synthesized with various parameters.

Table 6 shows the parameters and their default values used in this

paper for synthesis. This section provides the area measurements

of a SENECA core. This information can be used to estimate the

area for a scaled-up system with an arbitrary number of cores.

Since optimizing the leakage power is important for neuromorphic

processors, we decided to target FDX-22nm technology from

Global Foundries (GF-22 nm) as an ultra-low-leakage technology

node. Figure 7 shows the physical implementation of a single

SENECA core. Table 7 shows the breakdown of area consumption,

and Table 1 compares it with other neuromorphic processors.

SENECA has a high area efficiency which comes from the flexibility

in mapping, logic time-multiplexing and using hierarchical

memory architecture.

4.1. Instruction level benchmarking

As mentioned, NPEs can execute various instructions. Each

instruction execution requires the engagement of Loop Buffer,

NPEs and possibly Event Generator and Data Memory. We have

performed a detailed instruction-level energy measurement of a

SENECA core and report the average energy consumption of

some of the NPE instructions in Table 88. The pre-silicon energy

breakdown includes the power consumption of NPE plus all the

modules needed to execute the instruction in NPEs. However, since

those blocks are shared between 8 NPEs, their contribution in total

8 Extra information for Table 8: Energy of Computation: Energy

consumption of the involved unit of ALU (inside the NPE), which performs

the specific operation. Energy of each NPE: This energy number includes

the total NPE power consumption, including the Energy of Computation,

and energy consumption of the access to the register file in the NPE. Energy

of the Loop bu�er: This column reports the total energy of the loop bu�er.

Loop bu�er is shared between 8-NPEs and enables execution of “eight”

instructions. Energy of the Event Generator: This column reports the total

energy of the event generator. The event generator is shared between

8-NPEs and performs eight register inspections. If a register inspection

results in a firing, the event generator consumes extra power per firing.

Energy of Data-Mem-16b/Data-Mem-32b: This column reports the energy

consumption of data memory to access 16b/32b of data. Energy of RV +

Peripherals: Includes energy consumption of the RISC-V and its peripherals

(like the main communication bus). Energy of Inst-Mem-32b: This column

reports the energy consumption of instruction memory to read a 32b

instruction. Total energy per instruction: This column includes the energy

consumption to execute a single instruction. For neural operations in

NPE, it includes the energy of one NPE, plus all the overheads (energy of

Data-Mem access and one-eighth of loop bu�er/event-generator energy, if

involved). For RISC-V energy and NoC, it is simply the summation of all the

other columns.
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FIGURE 7

Snapshot of the physical implementation of a SENECA core in GF-FDX22nm technology using the Cadence Innovus implementation system. Green

boxes show the banks of Data memory. The orange box is the instruction memory, and the distributed gray cells are the standard logic.

energy per instruction is divided proportionally. The results are

measured by running each instruction 8, 000 times with random

data using the Cadence JOULES (time-based mode), an RTL level

power measurement tool (within 15% of signoff power; Cadence,

2021), and with the GF-22 nm FDX technology node in the

typical corner (0.8v and 25C, no back-biasing). Reported energy

consumption includes the total (both dynamic and static) power

consumption of one SENECA core while executing the instruction.

The leakage power for the complete SENECA core is around 30µW

(0.06 pJ in a 2 ns clock cycle).

Reported energy numbers in Table 8 are measured considering

the pessimistic scenario of switching and randomness. In practical

scenarios (also shown in the next sections), the instruction power

consumption is less than the reported numbers.

As seen in Table 8, the energy consumption of the computing

unit (the involved part of the ALU inside the NPE which executes

the computation) is a small part of the total energy consumption.

To execute an instruction like ADD, it is required to access

three registers, which is as power expensive as the instruction

itself. By looking into the energy consumption of Data Memory

access, it can be seen that the location and resolution of data

can significantly change the overall power consumption of an

algorithm. Using Table 8, it is possible to estimate the energy

consumption of a synaptic operation for various neuron models,

parameter resolutions and memory mapping.

To update an Integrate-And-Fire neuron (Abrahamsen et al.,

2004) and perform one synaptic operation in its simplest form,

it is required to load the neuron state and synaptic weight from

memory, add the synaptic weight to the neuron state and store

TABLE 7 Area consumption (cell area plus wiring) of one neuro-synaptic

core and its components in the GF-22 nm technology node, using

Cadence Genus tool.

Module Cell count (k) Area(kµm2) Area (%)

RISC-V 11 10.9 2.3

SMPU 1.7 2.1 0.4

NoC 9.8 12.1 2.6

RV peripherals 2.9 2.4 0.5

NPE 5.6 6.3 1.3

Event generator 7.3 9.7 2.1

Loop buffer 8.9 10.5 2.2

Inst Mem 1× 256 kb 41.2 8.7

Data Mem 8× 256 kb 330.7 70

Total core 92.6 472.4 100

We configured this neuro-synaptic core to have 8 NPEs, 22 kb of register-based memory, 2

Mb of Data Memory, and 128 kb of instruction memory with 500 MHz clock frequency.

the updated neuron state back. This synaptic operation can be

done with the first implementation of Micro-Code 2 and consumes

12.7 pJ. If we use low precision parameters (4b weight and 8b

state) and then perform integer operation, as shown in the second

implementation of Micro-Code 2, the cost of synaptic operation

will drop to 5.6 pJ. The cost of synaptic operation can drop even

further with “spike-grouping,” where we reuse the loaded neuron

state by processing a group of spikes together. For example, in the
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TABLE 8 Energy consumption breakdown for various instructions executes in NPEs.

Instruction Description Energy of Energy of Energy of Total Energy

computation each NPE loop bu�er per instruction

ADD/SUB/MUL FP16 Arithmetic ops. 0.5 1.3 0.9 1.4

2xINT8b Arithmetic ops. 0.3 1.1 0.9 1.2

GTH/MAX/MIN FP16 Compare ops. 0.3 1.1 0.9 1.2

EQL/ABS 0.2 1.0 0.9 1.1

AND/ORR 16b Bit-wise ops. 0.2 1.0 0.9 1.1

SHL/SHR 0.3 1.1 0.9 1.2

I2F Data type cnv. 0.3 1.0 0.9 1.1

RND 0.6 1.3 0.9 1.4

Instruction Description Energy of Energy of Energy of Total energy

Data-Mem-16b each NPE loop bu�er per instruction

MLD 16b Data Mem load 2.9 0.6 1.6 3.7

MST 16b Data Mem store 3.5 0.2 1.6 3.9

Instruction Description Energy of Energy of Energy of Total energy

event generator each NPE loop bu�er per instruction

EVC Event capture 0.6 0.4 0.5 0.5

+ per generated event +1.1 +0 +0 +1.1

Instruction Description Energy of Energy of Energy of Total Energy

RV+Peripheries Inst-Mem-32b Data-Mem-32b per instruction

RISC-V Ops Averaged per instruction 5.9 5.7 0 11.6

+ Data Mem access +10 +10

NOC Per 32b event transmission – – – 2

The energy of the computation is part of the NPE’s energy, consumed by the involved compute logic inside the NPE. All the numbers are in pJ.

third implementation of Micro-Code 2, we load each neuron state

once and update it with a group of four spikes before storing it

back in the memory, resulting in 2.8 pJ per synaptic operation.

Spike-grouping implementation assumes that several neurons in

the previous layer fire simultaneously, which is common.

First implementation (1 SOP)
R1 = DMEM[State_Addr*i+j] //3.7pJ
R2 = DMEM[Weight_Addr*i+j] //3.7pJ
R1 = R1 + R2 //1.4pJ
DMEM[State_Addr+i] = R1 //3.9pJ
//Total = 12.7pJ

Second implementation, Low Precision (4 SOPs)
R1 = DMEM[State_Addr] //2*states 3.7pJ
R2 = DMEM[State_Addr+1] //2*states 3.7pJ
R3 = DMEM[Weight_Addr] //4*weights 3.7pJ
R1 = R1 + R3 //2*Int_ADD 1.2pJ
R3 = R3>>8 //Shift 1.2pJ
R2 = R2 + R3 //2*Int_ADD 1.2pJ
DMEM[State_Addr] = R1 //2*states 3.9pJ
DMEM[State_Addr+1] = R2 //2*states 3.9pJ
//Total = 22.5pJ (5.6pJ per SOP)

Third implementation, Low Precision +
spike-grouping (16 SOPs)

R1 = DMEM[State_Addr] //2*states 3.7pJ
R2 = DMEM[State_Addr+1] //2*states 3.7pJ
for(i=0; i<4, i++)

R3 = DMEM[Weight_Addr(i)] //4*weights 3.7pJ

R1 = R1 + R3 //2*Int_ADD 1.2pJ
R3 = R3>>8 //Shift 1.2pJ
R2 = R2 + R3 //2*Int_ADD 1.2pJ

DMEM[State_Addr] = R1 //2*states 3.9pJ
DMEM[State_Addr+1] = R2 //2*states 3.9pJ
//Total = 15.2pJ+4*7.3 (2.8pJ per SOP)

Micro-Code 2. Integrate-and-fire neuron, instruction level

benchmarking.

4.2. Algorithms level benchmarking

Instruction level benchmarking can provide a fast estimation of

the energy cost of an application composed of many instructions.

However, it cannot accurately predict the overhead costs and

the timings in more complicated scenarios. To perform a more

accurate benchmarking, we implemented a few examples of the

most common neural network layers and learning algorithms to

measure their energy and execution times.

4.2.1. Event-driven fully-connected processing
Fully-connected computations on all-to-all connections

between input neurons and output neurons form the basis of many

neural network architectures, including multilayer perceptron
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(MLP), recurrent neural networks (RNN), convolutional

neural networks (CNN), and more recently, transformers,

and MLP-Mixers (LeCun et al., 2015; Vaswani et al., 2017;

Tolstikhin et al., 2021). To reduce the computational cost,

existing algorithms utilize input sparsity with binary spikes

from SNNs (Zambrano et al., 2019) and graded spikes from

DNNs (Yousefzadeh et al., 2019; Kurtz et al., 2020). In this

section, we implement the event-driven processing of a fully-

connected layer in SENECA and benchmark its performance

with binary and graded spikes, low-precision parameters, and

spike-grouping.

Figure 8 illustrates the event-driven processing in SENECA

that can exploit the sparsity in the inputs for fully-connected

computation. Each incoming input spike is processed in order

by adding the corresponding synaptic weight to all post-synaptic

neurons. For graded spikes, the graded value is multiplied by

the synaptic weight before adding to the neuron state. For spike-

grouping, multiple input spikes are integrated into the neuron state

in the same iteration, reducing the neuron state memory access.

Generally, inference of a neural network layer in SENECA

consists of three phases: preprocessing, integration, and firing (see

Figure 9). In the preprocessing phase, RISC-V preprocesses the

input spikes by finding the local memory addresses of the weights

and the output neuron states based on the input spikes’ source

address. The loop buffer starts executing the neural integration

phase as soon as RISC-V finishes pre-processing the first spike.

After processing all spikes and at the end of the time-step, the

firing phase will be first executed inside the NPEs, which results

in generated events inside the event generator. RISC-V then reads

the generated event, computes, and attaches the extra information

through post-processing before sending out a compressed spike

packet. The RISC-V preprocessing time depends on the number of

incoming spikes, while the RISC-V post-processing time depends

on the number of generated events. The operation time of NPEs

depends on the number of spikes and the number of neurons

in the layer.

Table 9 shows the time/energy measurements of the several

implementations/mappings of the fully connected layer. In all the

experiments, 16 input spikes are processed, and 16 output spikes are

generated. The fully connected layer contains 4, 000 neurons. In the

“Graded Spike” experiment [Baseline], the spike value, weights and

neuron states are 16b. The second experiment shows 6.1% energy

reduction when using binary spikes instead of graded (floating

point) spikes. In the “spike-grouping” experiment, we process

four graded spikes together, as explained in Micro-Code 2, which

results in 47.0% energy reduction over the baseline. The fourth

experiment combines binary spikes andweight quantization. In this

experiment, we use binary spike, 4b weights and 8b neuron states,

allowing us to use the integer ADD operations. Using quantization

and binary spikes results in a 52.7% energy reduction over the

baseline. Bymixing binary spike, quantization, and spike-grouping,

we reduce the energy consumption of baseline implementations

by 80.7%.

Using binary spikes reduces the number of computations

(skipping the spike-weight multiplication). On the other hand,

spike grouping reduces the amount of memory access by reusing

the neuron states in the NPEs’ register file. As seen in Table 9,

FIGURE 8

Processing a fully connected layer in an event-driven model.

Processing each event requires reading all the synaptic weights

from Data Memory, Reading neurons’ state (membrane), updating

them and writing them back. Since the core has eight NPEs, only

eight neurons will be updated in each internal loop iteration.

Spike-grouping (right) reduces the memory access (read/write) for

the neuron states by processing several spikes simultaneously.

memory access optimization has a more significant effect on

energy and processing time. Weight quantization reduces both

computational cost and memory access. However, neural networks

lose accuracy when quantized. Since it is possible to trade off the

number of parameters, sparsity, and accuracy of a neural network,

it is not known in priory if a quantized network is the most

hardware efficient one (Kim et al., 2022). SENECA architecture

provides enough mapping flexibility for neural architecture search

(NAS) approaches to co-optimize algorithm accuracy and hardware

performances (Benmeziane et al., 2021; Chitty-Venkata and

Somani, 2022).

4.2.2. Event-driven convolutional neural layer
processing

Spiking convolutional neural networks have been

widely used in neuromorphic computing for event-based

processing (Yousefzadeh et al., 2017b; Kheradpisheh et al., 2018;

Negri et al., 2018; Patino-Saucedo et al., 2020; Lv et al., 2023). The

convolutional neural layer consists of a sequence of fully-connected

operations on overlapping local regions of the input space using

shared weights. Efficient event-driven convolutional processing

requires weight reuse for memory efficiency and sparse input spikes

for computational efficiency (Yousefzadeh et al., 2015). Compared

with the fully-connected processing presented in Section 4.2.1,

the event-driven convolutional operation requires a more

complex pre-processing and post-processing. In this section, we

implement the event-driven processing of a convolutional neural

layer in SENECA and benchmark the hardware performance of

the processing.

Event-driven convolutional processing directly integrates the

input spike to post-synaptic neurons in the spike’s projection field

without waiting for all spikes to arrive. Figure 10 illustrates the
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FIGURE 9

Total power consumption of a SENECA core in time when processing 16 incoming spikes in a fully connected layer and generating (fire) 16 output

spikes.

TABLE 9 Experimental results for fully connected layer.

Time RISC-V NPEs Dmem Total core Energy per

Experiment (µS) energy (nJ) energy (nJ) energy (nJ) energy (nJ) SOp (pJ)

[Baseline]

Graded spikes 228 11.7 423.3 434.0 908.8 14.2

Binary spikes 179.9 8.4 288.7 525.8 853.1 13.3

Spike-grouping 121.8 13.4 291.8 155.0 481.9 7.5

Binary Spike

+Quantization 109.2 10.7 143.5 254.8 429.5 6.7

Binary Spike

+Quantization

+Spike-grouping 57.7 10.5 100.4 52.9 175.5 2.7

RISC-V energy includes RISC-V and its instruction memory. NPEs energy includes all NPEs, Loop buffer, and Event-generator blocks. Synaptic operation (SOp) energy is calculated by dividing

the total core energy by 64 k (4,000 neurons, each processing 16 spikes).

event-driven convolutional neural layer processing in SENECA,

in which a single incoming spike is integrated into the post-

synaptic layer with 2D convolutional connectivity. In this case,

each spike carries information about the coordination of the

source neuron and its channel number from the previous layer.

Based on these coordinates, RISC-V calculates the projection field’s

start address and the corresponding shared weights’ address to

support NPE processing. As a result, the RISC-V operations in

the convolutional layers are slightly more complex than the fully

connected layers.

Figure 11 and Table 10 show the energy measurements of

the convolutional layer implementation. In the experiment, we

measured a convolutional layer with 128 channels processing 16

input spikes from the previous layer. This experiment uses BF16

values for input spikes, weights, and neuron states. By using the

3 × 3 kernel sizes, each input spike updates a projection field of

3× 3× 128 neurons.

The incoming 16 spikes are from the same (X, Y) location

but various channels. This is very common in event-driven

convolutional processing since all the neurons in different channels

in an (X, Y) location update and fire simultaneously. We exploit

this feature with the following techniques to further reduce the cost

of communication and pre-processing:

• Creating a compressed packet of spikes by sending the source

(X, Y) address of all the spikes only once in the header,

followed by the (Channel, Value) of each spike.

• Processing the (X, Y) location in the RISC-V only once to find

the neuron states in the projection field.

The energy measurements did not include the firing phase

of the neurons. The event-driven convolutional processing in

SENECA can support depth-first CNN, which spontaneously fires

neurons that receive all inputs in its receptive field (Goetschalckx

et al., 2022; Lv and Xu, 2022; Symons et al., 2022). This can

avoid keeping the state of all neurons in the memory and results

in lower latency for CNN processing compared to the layer-wise

synchronized firing in existing neuromorphic hardware (Hwu et al.,
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FIGURE 10

Processing a spike in a convolutional layer. The neurons in the

projection field will be updated after receiving the input spike shown

in this figure.

2017; Massa et al., 2020). Although this is out of the scope of the

paper, the flexibility of the RISC-V controller makes it possible to

have efficient depth-first spike generation in the future.

4.2.3. Recurrent on-device learning with e-prop
Recurrent spiking neural networks (RSNN) consist of recurrent

connections and spiking neurons. With sparse recurrent spikes on

top of stateful neurons, RSNN learns temporal information from

sequence data better than vanilla SNN (Yin et al., 2021; Kumar

et al., 2022). Training of RSNN using backpropagation-through-

time (BPTT) requires unrolling the network on the time dimension

and performing temporal backpropagation (Bellec et al., 2018; Wu

et al., 2018), which is memory and computation intensive. To make

RSNN learning suitable for edge applications, alternative online-

learning algorithms have been proposed to compute gradients

without temporal unrolling and backpropagation (Bellec et al.,

2020; Tang et al., 2021; Bohnstingl et al., 2022). The e-prop

algorithm has demonstrated state-of-the-art online recurrent

learning performance (Bellec et al., 2020; Traub et al., 2022). As

the core component of e-prop, the eligibility trace computes the

local gradients of synaptic weights in real-time during forward

propagation. In this section, we implement the eligibility trace

computation of e-prop in SENECA and benchmark the algorithm’s

performance for RSNN learning.

The e-prop eligibility trace eij computes the local gradient
dzj
dWij

of the synaptic weight Wij with respect to the spike output zj of

the post-synaptic layer. By employing the past-facing perspective

of recurrent learning, e-prop approximates the local gradient using

a Hebbian-like learning rule combining pre and post-synaptic

information. When using RSNN with leaky-integrate-and-fire

(LIF) neurons, the eligibility trace is computed as follows,

trace{zin,i}[k] = trace{zin,i}[k− 1]+ β · zin,i[k] (1)

eij[k] = trace{zin,i}[k] · h(vj[k]) (2)

where trace is the input trace of pre-synaptic spikes zin,i, β is

the leak of the LIF neuron model, vj is the neural state, h is the

surrogate gradient function that estimates the non-differentiable

spiking function, and k is the timestep.

We implemented the e-prop eligibility trace computation with

an RSNN layer in SENECA. The RSNN layer implementation

uses the same synaptic integration phase as the fully-connected

layer presented in Section 4.2.1 using graded spikes. Recurrent

spikes from the previous timestep are buffered and then

processed in the same way as the input spikes. Additional

pre and post-synaptic information needs to be prepared to

compute the eligibility trace, including the input trace and the

output surrogate gradient. For memory efficiency, we compute

the input trace separately for each input dimension instead

of repeating the computation for each synaptic weight. The

surrogate gradient computation is fused into the firing phase to

avoid additional memory access. Here, we used a rectangular

function introduced in Wu et al. (2018) as the surrogate

gradient function. The eligibility trace matrix is the outer product

of the input trace vector and the surrogate gradient vector.

To compute this outer product, we feed the input trace as

events to the NPEs and parallelize the computation on the

output dimension.

Figure 12 and Table 11 show the energy measurements of the

eligibility trace computation with an RSNN layer in SENECA.

We constructed an RSNN layer with 32 input neurons and 128

output neurons. Since the RSNN has fully connected recurrent

connections, the input dimension to the output neuron is

160. The memory overhead of e-prop consists of the input

traces (160 × 16b), post-synaptic surrogate gradients (128 ×

16b), and the eligibility traces (160 × 128 × 16b), which

roughly doubles the memory requirement of the inference-

only RSNN layer. The RSNN layer processes 16 input events

and eight recurrent events, and generates 16 output events. As

shown in Figure 12, the computation has four phases: RSNN

forward path, RSNN firing, input trace update, and eligibility

trace update. Table 10 shows the detailed times and energy

consumption of each phase. Compared to the fully-connected

baseline in Table 8, the e-prop algorithm introduces around 30%

overhead on each synaptic operation in the RSNN forward

computation (14.1 vs. 18.3 pJ per SOp). This overhead mainly

comes from the input spike buffering on RISC-V required for

the input trace computation. Due to the dense vector outer

product iterating every synaptic weight, the eligibility trace

matrix update is the most time and energy-costly phase in our

implementation. The cost of this phase can be reduced by exploiting

the sparsity in the vectors using the event-driven processing

of SENECA.

Even though the deployed algorithm can be further optimized

for SENECA (for example, by quantization, sparsification, and

spike grouping), it demonstrates the capability of SENECA to

execute such a complex pipeline efficiently. Due to the algorithm’s

popularity, e-prop and its close variants have been benchmarked

on several other neuromorphic processors (Tang et al., 2021;

Frenkel and Indiveri, 2022; Perrett et al., 2022; Rostami et al.,

2022). Those implementations are either forced to be (1) less

efficient due to hardware-algorithm mismatch (Tang et al., 2021;

Perrett et al., 2022; Rostami et al., 2022) or (2) hard-wired only to

execute a limited version of this algorithm (Frenkel and Indiveri,

2022) which cannot adapt to deploy the new and more efficient

online learning algorithms (Yin et al., 2021; Bohnstingl et al.,

2022).
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FIGURE 11

Total power consumption of a SENECA core in time when processing 16 spikes in a convolutional layer.

TABLE 10 Experimental results for convolutional layer.

Time RISC-V NPEs Dmem Total core Energy per
(µS) energy (nJ) energy (nJ) energy (nJ) energy (nJ) SOp (pJ)

29.6 12.1 75.4 126.6 221.9 12.0

RISC-V energy includes RISC-V and its instruction memory. NPEs energy includes all NPEs, Loop buffer, and Event-generator blocks. Synaptic operation (SOp) energy is calculated by dividing

the total core energy by 18.4 k (128× 3× 3 neurons, integrating 16 spikes). In this experiment, the firing of neurons is not included.

FIGURE 12

Total power consumption of a SENECA core in time when executing the RSNN layer equipped with the e-prop online learning.

TABLE 11 Experimental results for e-prop with RSNN.

Time RISC-V NPEs Dmem Total core Normalized

Algorithm phase (µS) energy (nJ) energy (nJ) energy (nJ) energy (nJ) energy (pJ)

Forward path 10.5 13.4 18.8 20.7 56.2 18.3/SOp

Firing 0.9 1.3 2.0 0.8 4.5 35.0/Output

Input trace 1.1 2.3 0.9 1.1 4.7 29.3/Input

Eligibility trace 68.2 21.8 117.7 127.8 289.7 14.1/Weight

RISC-V energy includes RISC-V and its instruction memory. NPEs energy includes all NPEs, Loop buffer, and Event-generator blocks.

5. Conclusion

In this paper, we introduced the SENECA neuromorphic

architecture, a flexible and scalable design that tackles

the challenges in neuromorphic engineering. We justified

SENECA’s design choices by discussing the main trace-

offs in the neuromorphic processor design and compared

the proposed architecture with existing designs from these
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perspectives. To demonstrate the efficiency of SENECA,

we provided detailed instruction level measurements

and algorithm level benchmarking for the few most

common algorithms.

The algorithm-level benchmarking shows that the flexibility

of SENECA allows us to efficiently map various algorithms

without sacrificing energy efficiency. Furthermore, our results

show that flexibility increases optimization space and results

in more optimized algorithm implementation (e.g., optimized

fully-connected processing). The flexibility gives SENECA the

potential to outperform a large group of neuromorphic processors

when a hybrid of neural network algorithms with on-device

learning is required to perform the task (e.g., sensory fusion in

automotive applications). This aligns with the trend in the new

generation of more flexible neuromorphic architecture compared

to the first generations of the same processors to increase the

competitiveness of the design in EdgeAI (Mayr et al., 2019; Davis,

2021).

SENECA, like any other neuromorphic chip, is a memory-

dominant processor. Memory consumes most of the area and

power consumption of the processor. In Table 9, we have shown

the performance improvement when saving on the memory

access is more significant than saving on the computation.

SENECA allows using flexible mapping of neural networks,

resulting in high memory efficiency. It also supports a more

advanced memory hierarchy, allowing for better scalability

and data reuse (For example, spike-grouping in Table 9). For

future work, we will look into optimizing memory area and

power consumption using new memory technologies and 3D

integration. We are looking into competitive Non-Volatile

Memories (NVM) with high density (e.g., STT-MRAM) to be

used as the on-chip shared memory. NVMs can be several

times denser than SRAM when deployed in larger blocks.

Having a large shared memory allows us to store multiple

specialized neural network models and switch between them in

different scenarios. Integrating shared memory with advanced 3D

technology allows for reducing the distance between the shared

memory and the cores, which reduces power consumption and

latency.

Our benchmarking results show that computation in RISC-

V is significantly more expensive than in the accelerators

(like loop buffer and NPEs). Therefore, we accelerate the

most common operations shared by many applications.

SENECA provides a test bed to measure various accelerators’

performance improvement and area overhead. This gives us the

opportunity to constantly evaluate SENECA’s performance for

new neural network algorithms and look for opportunities

to add more accelerated operations to the architecture

in the future. In conclusion, the SENECA architecture

paves the way for future efficient neuromorphic designs in

balancing different trade-offs in neuromorphic engineering to

achieve high performance and versatility in neural network

applications. The SENECA platform and the tools used

in this project are available for academic research upon

request.
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Bohnstingl, T., Woźniak, S., Pantazi, A., and Eleftheriou, E. (2022). Online
spatio-temporal learning in deep neural networks. IEEE Trans. Neural Netw. Learn.
Syst. 1–15. doi: 10.1109/TNNLS.2022.3153985

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al.
(2020). Language models are few-shot learners. Adv. Neural Inform. Process. Syst.
33, 1877–1901. Available online at: https://papers.nips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Cadence (2021). Joules RTL power solution. Available online at: https://www.
cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-
rtl-power-solution.html

Chadwick Greg, E. A. (2018). Ibex. Available online at: https://github.com/lowRISC/
ibex

Chen, L., Xiong, X., and Liu, J. (2022). A survey of intelligent chip design
research based on spiking neural networks. IEEE Access 10, 89663–89686.
doi: 10.1109/ACCESS.2022.3200454

Chitty-Venkata, K. T., and Somani, A. K. (2022). Neural architecture search survey:
a hardware perspective. ACM Comput. Surveys 55, 1–36. doi: 10.1145/3524500

Coelho, C. N., Kuusela, A., Li, S., Zhuang, H., Ngadiuba, J., Aarrestad, T. K.,
et al. (2021). Automatic heterogeneous quantization of deep neural networks for low-
latency inference on the edge for particle detectors. Nat. Mach. Intell. 3, 675–686.
doi: 10.1038/s42256-021-00356-5

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday,
S. H., et al. (2018). Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.1121
30359

Davis, M. (2021). Taking neuromorphic computing to the next level with loihi 2.
Intel Technol. Brief. Available online at: https://download.intel.com/newsroom/2021/
new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Demler, M. (2019). Brainchip Akida is a Fast Learner, Spiking-Neural-Network
Processor Identifies Patterns in Unlabeled Data. Microprocessor Report. Available
online at: https://d1io3yog0oux5.cloudfront.net/brainchipinc/files/BrainChip+Akida+
Is+a+Fast+Learner.pdf

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: a unified
and scalable chip bridging spike-based and continuous neural computation. IEEE J.
Solid State Circuits 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE
Trans. Comput. 100, 948–960. doi: 10.1109/TC.1972.5009071

Frenkel, C., and Indiveri, G. (2022). “Reckon: a 28nm Sub-mm2 task-agnostic
spiking recurrent neural network processor enabling on-chip learning over second-
long timescales,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC)
(San Francisco, CA), Vol. 65, 1–3. doi: 10.1109/ISSCC42614.2022.9731734

Frenkel, C., Lefebvre, M., Legat, J.-D., and Bol, D. (2018). A 0.086-mm2
12.7-pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic
processor in 28-nm cmos. IEEE Trans. Biomed. Circuits Syst. 13, 145–158.
doi: 10.1109/TBCAS.2018.2880425

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Goetschalckx, K., Wu, F., and Verhelst, M. (2022). Depfin: a 12-nm depth-first,
high-resolution CNN processor for IO-efficient inference. IEEE J. Solid-State Circuits.
58, 1425–1435. doi: 10.1109/JSSC.2022.3210591

Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu, G. (2020). A survey
of deep learning techniques for autonomous driving. J. Field Robot. 37, 362–386.
doi: 10.1002/rob.21918

Hartmann, K., Thomson, E. E., Zea, I., Yun, R., Mullen, P., Canarick, J., et al.
(2016). Embedding a panoramic representation of infrared light in the adult rat
somatosensory cortex through a sensory neuroprosthesis. J. Neurosci. 36, 2406–2424.
doi: 10.1523/JNEUROSCI.3285-15.2016

Höppner, S., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., Stolba, M., et al. (2021).
The spinnaker 2 processing element architecture for hybrid digital neuromorphic
computing. arXiv preprint arXiv:2103.08392.

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2017). “A self-driving robot
using deep convolutional neural networks on neuromorphic hardware,” in 2017
International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK), 635–641.
doi: 10.1109/IJCNN.2017.7965912

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al. (2018).
“Quantization and training of neural networks for efficient integer-arithmetic-only
inference,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT), 2704–2713. doi: 10.1109/CVPR.2018.00286

Kalamkar, D.,Mudigere, D.,Mellempudi, N., Das, D., Banerjee, K., Avancha, S., et al.
(2019). A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., andMasquelier, T. (2018). STDP-
based spiking deep convolutional neural networks for object recognition.Neural Netw.
99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Khoram, S., and Li, J. (2018). “Adaptive quantization of neural networks,” in
International Conference on Learning Representations (Vancouver, BC).

Kim, M., Saad, W., Mozaffari, M., and Debbah, M. (2022). “On the tradeoff between
energy, precision, and accuracy in federated quantized neural networks,” in ICC
2022-IEEE International Conference on Communications (Seoul), 2194–2199. IEEE.
doi: 10.1109/ICC45855.2022.9838362

Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K., Constable, W., et al.
(2017). “Flexpoint: an adaptive numerical format for efficient training of deep neural
networks,” in Advances in Neural Information Processing Systems, Vol. 30.

Kumar, N., Tang, G., Yoo, R., and Michmizos, K. P. (2022). Decoding EEG
with spiking neural networks on neuromorphic hardware. Trans. Mach. Learn. Res.
Available online at: https://openreview.net/forum?id=ZPBJPGX3Bz

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr, J., Goin, M., et al. (2020).
“Inducing and exploiting activation sparsity for fast neural network inference,” in
Proceedings of the International Conference on Machine Learning.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

LeDoux, J. E. (1994). Emotion, memory and the brain. Sci. Am. 270, 50–57.
doi: 10.1038/scientificamerican0694-50

Lv, C., Xu, J., and Zheng, X. (2023). “Spiking convolutional neural networks for text
classification,” in The Eleventh International Conference on Learning Representations
(Kigali).

Lv, M., and Xu, E. (2022). Efficient dnn execution on intermittently-
powered iot devices with depth-first inference. IEEE Access 10, 101999–102008.
doi: 10.1109/ACCESS.2022.3203719

Massa, R., Marchisio, A., Martina, M., and Shafique, M. (2020). “An efficient
spiking neural network for recognizing gestures with a DVS camera on the Loihi
neuromorphic processor,” in 2020 International Joint Conference on Neural Networks
(IJCNN) (Glasgow, UK), 1–9. doi: 10.1109/IJCNN48605.2020.9207109

Mayr, C., Hoeppner, S., and Furber, S. (2019). Spinnaker 2: A 10 million
core processor system for brain simulation and machine learning. arXiv preprint
arXiv:1911.02385.

Frontiers inNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnins.2023.1187252
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/CEIT.2018.8751829
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/IJCNN.2012.6252637
https://doi.org/10.1145/3299874.3319491
https://doi.org/10.1007/978-3-030-98229-4_2
https://doi.org/10.1109/CICC53496.2022.9772783
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.24963/ijcai.2021/592
https://doi.org/10.1109/IEDM19574.2021.9720614
https://doi.org/10.1109/TNNLS.2022.3153985
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://doi.org/10.1109/ACCESS.2022.3200454
https://doi.org/10.1145/3524500
https://doi.org/10.1038/s42256-021-00356-5
https://doi.org/10.1109/MM.2018.112130359
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://d1io3yog0oux5.cloudfront.net/brainchipinc/files/BrainChip+Akida+Is+a+Fast+Learner.pdf
https://d1io3yog0oux5.cloudfront.net/brainchipinc/files/BrainChip+Akida+Is+a+Fast+Learner.pdf
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/ISSCC42614.2022.9731734
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JSSC.2022.3210591
https://doi.org/10.1002/rob.21918
https://doi.org/10.1523/JNEUROSCI.3285-15.2016
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1109/ICC45855.2022.9838362
https://openreview.net/forum?id=ZPBJPGX3Bz
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/scientificamerican0694-50
https://doi.org/10.1109/ACCESS.2022.3203719
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tang et al. 10.3389/fnins.2023.1187252

Mink, J. W., Blumenschine, R. J., and Adams, D. B. (1981). Ratio of
central nervous system to body metabolism in vertebrates: its constancy and
functional basis. Am. J. Physiol. Regul. Integr. Compar. Physiol. 241, R203–R212.
doi: 10.1152/ajpregu.1981.241.3.R203

Molendijk, M., Vadivel, K., Corradi, F., van Schaik, G.-J., Yousefzadeh, A.,
and Corporaal, H. (2022). “Benchmarking the epiphany processor as a reference
neuromorphic architecture,” in Industrial Artificial Intelligence Technologies and
Applications, 21–34.

Moons, B., Goetschalckx, K., Van Berckelaer, N., and Verhelst, M.
(2017). “Minimum energy quantized neural networks,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers (Pacific Grove, CA), 1921–1925.
doi: 10.1109/ACSSC.2017.8335699

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE Trans. Biomed. Circuits Syst. 12, 106–122.
doi: 10.1109/TBCAS.2017.2759700

Moreira, O., Yousefzadeh, A., Chersi, F., Cinserin, G., Zwartenkot, R. J., Kapoor,
A., et al. (2020). “Neuronflow: a neuromorphic processor architecture for live AI
applications,” in 2020 Design, Automation Test in Europe Conference Exhibition (DATE)
(Grenoble), 840–845. doi: 10.23919/DATE48585.2020.9116352

Negri, P., Soto, M., Linares-Barranco, B., and Serrano-Gotarredona, T. (2018).
“Scene context classification with event-driven spiking deep neural networks,” in
2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
(Bordeaux), 569–572. doi: 10.1109/ICECS.2018.8617982

Patino-Saucedo, A., Rostro-Gonzalez, H., Serrano-Gotarredona, T., and Linares-
Barranco, B. (2020). Event-driven implementation of deep spiking convolutional
neural networks for supervised classification using the spinnaker neuromorphic
platform. Neural Netw. 121, 319–328. doi: 10.1016/j.neunet.2019.09.008

Pedram, A., Richardson, S., Horowitz, M., Galal, S., and Kvatinsky, S. (2016). Dark
memory and accelerator-rich system optimization in the dark silicon era. IEEE Des.
Test 34, 39–50. doi: 10.1109/MDAT.2016.2573586

Perrett, A., Summerton, S., Gait, A., and Rhodes, O. (2022). “Online learning in snns
with e-prop and neuromorphic hardware,” in Neuro-Inspired Computational Elements
Conference, 32–39. doi: 10.1145/3517343.3517352

Quian Quiroga, R., and Kreiman, G. (2010). Measuring sparseness in the brain:
comment on bowers (2009). Psychol. Review. 117, 291–297. doi: 10.1037/a0016917

Ravindran, R., Santora, M. J., and Jamali, M. M. (2020). Multi-object detection
and tracking, based on dnn, for autonomous vehicles: a review. IEEE Sensors J. 21,
5668–5677. doi: 10.1109/JSEN.2020.3041615

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., and Sornborger, A. (2021). The
backpropagation algorithm implemented on spiking neuromorphic hardware. arXiv
preprint arXiv:2106.07030. doi: 10.21203/rs.3.rs-701752/v1

Rostami, A., Vogginger, B., Yan, Y., and Mayr, C. G. (2022). E-prop on spinnaker
2: exploring online learning in spiking RNNs on neuromorphic hardware. Front.
Neurosci. 16:6. doi: 10.3389/fnins.2022.1018006

Schemmel, J., Billaudelle, S., Dauer, P., and Weis, J. (2022). “Accelerated
analog neuromorphic computing,” in Analog Circuits for Machine Learning,
Current/Voltage/Temperature Sensors, and High-speed Communication (Springer),
83–102. doi: 10.1007/978-3-030-91741-8_6

Schiavone, P. D., Conti, F., Rossi, D., Gautschi, M., Pullini, A., Flamand, E., et al.
(2017). “Slow and steady wins the race? A comparison of ultra-low-power RISC-V
cores for internet-of-things applications,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PATMOS) (Thessaloniki),
1–8. doi: 10.1109/PATMOS.2017.8106976

Shankar, V., Roelofs, R., Mania, H., Fang, A., Recht, B., and Schmidt, L. (2020).
“Evaluating machine accuracy on imagenet,” in International Conference on Machine
Learning (Vienna), 8634–8644.

Sheikh, F., Nagisetty, R., Karnik, T., and Kehlet, D. (2021). 2.5 d and 3d
heterogeneous integration: emerging applications. IEEE Solid-State Circuits Mag. 13,
77–87. doi: 10.1109/MSSC.2021.3111386

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.
(2017). Mastering the game of go without human knowledge. Nature 550, 354–359.
doi: 10.1038/nature24270

Stansfield, T. (2022). Improving the efficiency of AI applications using in-memory
computation [White paper]. Surefcore Limited. Available online at: https://www.sure-
core.com/new-wp/wp-content/uploads/2022/10/WP4-AI-IMC-1.pdf

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). “Power
analysis of large-scale, real-time neural networks on spinnaker,” in The 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–8.
doi: 10.1109/IJCNN.2013.6706927

Stuijt, J., Sifalakis, M., Yousefzadeh, A., and Corradi, F. (2021). µbrain: an event-
driven and fully synthesizable architecture for spiking neural networks. Front. Neurosci.
15:538. doi: 10.3389/fnins.2021.664208

Symons, A., Mei, L., Colleman, S., Houshmand, P., Karl, S., and Verhelst, M. (2022).
Towards heterogeneous multi-core accelerators exploiting fine-grained scheduling of
layer-fused deep neural networks. arXiv preprint arXiv:2212.10612.

Tang, G., Kumar, N., Polykretis, I., and Michmizos, K. P. (2021). Biograd:
biologically plausible gradient-based learning for spiking neural networks. arXiv
preprint arXiv:2110.14092.

Teman, A., Rossi, D., Meinerzhagen, P., Benini, L., and Burg, A. (2016). Power,
area, and performance optimization of standard cell memory arrays through controlled
placement. ACM Trans. Des. Autom. Electron. Syst. 21, 1–25. doi: 10.1145/2890498

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
et al. (2021). MLP-mixer: an all-MLP architecture for vision. Adv. Neural Inform.
Process. Syst. 34, 24261–24272. Available online at: https://proceedings.neurips.cc/
paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf

Traub, M., Otte, S., Menge, T., Karlbauer, M., Thümmel, J., and Butz, M. V. (2022).
Learning what and where-unsupervised disentangling location and identity tracking.
arXiv preprint arXiv:2205.13349.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30 (Long Beach, CA).

Waterman, A., Lee, Y., Patterson, D., Asanovic, K., and level Isa, V. I. U.
(2014). The RISC-v Instruction Set Manual. Vol. I: User-Level ISA, Version, 2.
doi: 10.21236/ADA605735

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12:331.
doi: 10.3389/fnins.2018.00331

Xilinx (2020). Virtex ultrascale+ hbm fpga. Available online at: https://www.xilinx.
com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html

Yin, B., Corradi, F., and Bohté, S. M. (2021). Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nat. Mach. Intell. 3,
905–913. doi: 10.1038/s42256-021-00397-w
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