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Abstract—In this paper, we present a novel technique to model
wide-band scattering parameter (S-parameter) curves of high-
speed digital interconnects. The proposed technique utilizes a
new kernel function with periodic components for Gaussian
process (GP) models. After proper training, the GP models are
able to predict the S-parameter values at arbitrary frequency
points inside the trained interval. The performance of the
proposed technique is reviewed by means of correlation with
standard Gaussian Processes with squared exponential kernel
and Matern kernel. Results for the proposed technique show an
increased prediction accuracy when applied to interconnects.

Index Terms—Interconnects, S-parameters, machine learning
(ML), Gaussian processes (GP), kernels.

I. INTRODUCTION

Macromodeling is a fundamental tool for the characteriza-
tion of high frequency interconnects and has been used for sev-
eral applications, including the efficiency increase of general
purpose electromagnetic full-wave simulations, modeling lossy
transmission lines, and design optimization [1]. Many popular
macromodeling techniques exploit Vector Fitting (VF) [1]
to build a rational function approximation for interconnect
transfer functions. Recently, several machine learning methods
have been proposed in literature to try to overcome the limita-
tions of standard macromodeling approaches, when describing
complex high frequency systems with a large number of ports
and design parameters [2].

However, powerful ML models, such as neural networks or
support vector machines [3], can be prone to overfitting. They
may predict complicated patterns that are absent in the func-
tion (or stochastic process) underlying the data. Conversely,
stochastic ML models such as Gaussian Processes (GP) [4]
are less inclined to overfitting, thanks to their self-regularizing
capability, while they present relatively high data-efficiency.

Furthermore, GPs have been successfully employed to
optimize performance metrics of microwave devices, using
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Bayesian Learning [5], [6]. For a given DUT, they can rapidly
identify the optimal values of performance metrics, which are
modelled as a function of design variables. Hence, GPs appear
to be generally suitable for building S-parameter models.

Unfortunately, deriving models for frequency-dependent
data, such as S-parameters, over wide ranges is particularly
challenging using GPs. The samples may resemble highly non-
smooth and oscillating behavior, while standard GP configura-
tions usually assume high smoothness of curves. In fact, this
property of the GP derives from the typical covariance function
used among the data points, also known as kernels [4].

In this paper, a new kernel is proposed to improve the GP ac-
curacy on S-parameter curves across a wide frequency range.
The new kernel is referred to as “periodic” for simplicity. It
allows the GP to fit S-parameter curves even in the presence
of ample oscillations, which may be a result of resonances or
crosstalk. The usefulness of the obtained GP is demonstrated
by the use of an example interconnect, and is compared to a
GP model that uses a common, general-purpose kernel.

II. METHODOLOGY

A. Gaussian process modeling

In this study, the GP is applied to model interconnect
S-parameter data across frequency. The GP is a non-parametric
model: its computational complexity does not depend on a
fixed number of trainable parameters, but it grows polynomi-
ally with the amount of training data samples. Therefore, an
accurate GP can be built using a relatively low amount of data
points and is suitable to represent low-dimensional functions
or stochastic processes.

Moreover, the GP is a stochastic model: it represents each
available data point as a realization of Gaussian probability
density (prior distribution) with specified mean and variance,
while the correlation between pairs of points is given by the
kernel function. Most notably, the kernel has to be manually
specified. This may include assumptions or prior knowledge
of the function or stochastic process to be modeled, such as
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smoothness, discontinuities, stationarity, or noise distribution
on the data samples. If the kernel is properly designed to
incorporate correct assumptions, the GP will achieve high
prediction accuracy.

After specifying the kernel, the value of new data samples
can be predicted via Gaussian Process regression (GPR) [4],
also known as Kriging. For any new sample, the GPR pro-
vides the posterior distribution, i.e. the probability density for
each new data sample. The mean of the obtained posterior
represents the expected value, while the variance indicates the
epistemic uncertainty on the value. Hence, the GP is able to
provide a predicted value and a confidence interval for any new
data sample. A comprehensive explanation on the functioning
of the GPR is available in [4].

B. Periodic Gaussian process

As stated in the Introduction, one main limitation of char-
acterizing high-speed digital interconnects with GPs is that
GPs assume a relatively smooth behavior of the quantity to be
modeled with respect to the considered parameters. However,
this does not necessarily correspond to the reality of state-
of-the-art interconnects. The wide-band S-parameters of such
structures can exhibit a dynamic and oscillatory behavior. A
potential solution for coping with this, is to adopt a type of GP
with higher modeling power, like the Deep Gaussian Process
(DGP) [6]. However, this significantly increases computational
complexity and modeling time. Instead, here we propose a
novel kernel to model the dynamic behavior of wide-band
interconnects. The proposed kernel greatly improves GP’s
modeling accuracy at the cost of a limited increase in the
number of hyperparameters to be learned during the training
phase with regard to standard kernels.

In the following, it is applied to the real or imaginary part of
one S-parameter curve, denoted as S(f), across the frequency
variable f . However, without loss of generality, the proposed
kernel can also be used to model the magnitude and the phase
of S(f). The analytical expression for the new kernel function
is kper defined as

kper = kmean + kenvelope ·
Np∏
m=1

kp,m (1)

where Np is the number of periods. The three terms of the
new kernel are defined as follows:

kmean(f, f
′) = exp

(
− (f − f ′)2

2l21

)
(2)

kenvelope(f, f
′) = exp

(
− (f − f ′)2

2l22

)
(3)

kp,m(f, f ′) = exp

−2
sin2

(
π 1

pm
(f − f ′)

)
l23

 (4)

where the terms kmean and kenvelope are standard squared ex-
ponential (SE) kernel functions, while kp,m is a periodic kernel
of period pm [7]. In other research areas, periodic kernels have
been used to model functions that present visible oscillatory

behaviours, such as seasonal time-series [7], or that are defined
on periodic domains [8]; here we investigate applicability of
periodic kernels to characterize high frequency interconnects.
The quantities l1, l2 and l3 are trainable length-scale hyper-
parameters: intuitively, they represent the maximum distance
for which the correlation between two frequency samples is
non-negligible. Note that all the kernel terms are stationary,
since they depend only on the distance between two frequency
samples f and f ′. Furthermore, kper is also stationary, since
it is a linear combination of stationary functions.

The role of each term of the proposed kernel can be
observed on a typical S-parameter curve of a microwave
device. For example, Fig. 1 illustrates the near-end crosstalk
between two adjacent ports of a 44-ports high-speed inter-
connect [9]. Considering the high oscillatory behaviour, the
following assumptions can be made, either on the real or
imaginary part of the S-parameters.

Assumption 1: The mean values of the oscillations are
continuous and highly correlated between adjacent frequency
samples, and weakly correlated otherwise. Therefore, the cor-
relation among the mean values is represented by the decaying
exponential in kmean.

Assumption 2: Frequency samples separated by integer
multiples of the oscillations’ semi-period are highly correlated.
This information is encoded in the kernel by the sin2(·)
operator in kp,m.

Assumption 3: The oscillations may have a non-constant
amplitude. Hence, the term kenvelope is included to represent
the envelope of the oscillations: the amplitude values are
highly correlated between two adjacent frequency samples.

Furthermore, if oscillations of different periods can be ob-
served in the S-parameter curve, multiple periodic terms kp,m
can be combined into a single product, as shown in equa-
tion (1). The main advantage of the new kernel kper is that
it does not require the exact knowledge of the oscillation
periods pm. In fact, pm values can be set as trainable hyperpa-
rameters for the GPR. Nonetheless, if prior knowledge on the

Fig. 1. Real/imaginary (top) and magnitude/phase (bottom) representation
of the near-end crosstalk (NEXT), S2,1, between interconnects available
from [9]. The depicted S-parameters are analyzed in Section III.



period(s) is available, it can be integrated in the tuning process.
In fact, it is possible to select the optimal period from a specific
interval pm ∈ [pL, pH ], where pL, pH are arbitrary bounds.
Alternatively, if a prior probability distribution of period values
is available, the GP regression provides an estimated posterior
distribution from which the optimal period can be sampled. For
example, by observing the data in Fig. 1, the period length p0
can be constrained to values in the range of [0.2, 0.4]GHz. In
addition, the envelope length-scale l2 can be assumed to be
larger than a 20GHz, since oscillations seems to attenuate
in a larger frequency window. Thus, l2 can be drawn from a
prior gamma distribution with rate and scale parameter equal
to 5: l2 ∼ Γ(5, 5). Subsequently, the optimal value for each
hyperparameter is extracted during the GP training, using a
gradient ascend algorithm for likelihood maximization [10]. It
is worth noting that the optimal solution for hyperparameter
values may not be unique and can be sensitive to the available
training data.

The main disadvantage of the proposed kernel kper is that
the number of periods Np can heavily affect the performance
of the GP. In fact, if the number of periods is under-estimated,
the GP is more likely to underfit the available data samples,
leading to reduced accuracy. Conversely, if the number of peri-
ods is over-estimated, GP may exhibit numerical instabilities
due to the excessive amount of hyperparameters. However,
the latter problem is minor in practice, because of the low
computational cost of the GP regression. If in doubt, the GP
training may be repeated for different numbers of periods until
a sufficient accuracy is reached with regard to the validation
data set.

III. APPLICATION EXAMPLE

The GP model is tested on previously validated interconnect
S-parameters that were extracted using physics-based model-
ing [9]. While several routing lengths, topologies, and dielec-
tric materials have been investigated, the following discussion
focuses on a single-board interconnect with a routing length
of 10 in. The interconnect contains 22 differential signal pairs
and occupies the outer nine layers of a board with 40 layers
and an effective dielectric εr = 3.7, tan δ = 0.01. The
signals are routed through via pin fields with a pitch of 60mil,
which are the main cause of crosstalk between lines of the
interconnect. The single-ended S-parameter matrix is avail-
able in the frequency range from 0.05GHz to 50GHz in
steps of 0.05GHz, for a total of 1000 frequency samples.
The samples are equally split into two sets: the first set is
used to train the GPs (training set), while the second set
is used to validate the performance of the trained models
(validation set). Two GPs are built respectively for the real and
imaginary part of each single-ended S-parameter, between any
ports a and b of the interconnect: Re[Sa,b(f)] ∼ GPre|a,b(f)
and Im[sa,b(f)] ∼ GPim|a,b(f). Therefore, the predicted
complex-valued S-parameters are

Sa,b = GPre|a,b + j ·GPim|a,b . (5)
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Fig. 2. Comparison of real part of near-end crosstalk, S2,1, as predicted by
GPre with different kernels, and validation data. Only the newly proposed,
periodic kernel readily captures all features of the original S-parameters.

TABLE I
PREDICTION ERROR OF GP MODELS FOR ENTIRE FREQUENCY RANGE.

S-parameter
Mean Abs. Max. Abs.
Err. (dB) Err. (dB)

kexp kmat kper kexp kmat kper

Avg. Sn,n -16.03 -15.20 -59.07 -11.05 -10.68 -38.74
Avg. Sn,n+1 -17.36 -17.24 -60.82 -12.53 -12.52 -44.64

In the following, three kernel functions are compared: the
general-purpose squared exponential (kexp) and Matern (kmat)
kernels [4] and the new periodic kernel (kper). For this applica-
tion example, it is experimentally verified that the kper kernel
achieves the best performance when 2 periodic terms are
used (Np = 2). Furthermore, results indicate that the standard
kernels do not accurately interpolate the training data for most
of the S-parameter curves. For instance, Fig. 2 shows the real
values of S2,1 predicted at the validation frequencies by the
GP. It can be observed that the GP with kper correctly predicts
the validation samples. On the other hand, the conventional
kernels kexp and kmat fail to model the oscillations. For some
S-parameters, kmat manages to fit the average value of the
oscillations as shown in Fig. 2. The kernel kexp regularly
yields significantly deviating results.

The predictions using the new kernel are highly accurate
for all S-matrix elements. Indeed, Fig. 3 illustrates this by
example of four distinct interconnect S-parameters: reflection,
transmission, near-end crosstalk, and far-end crosstalk. The
predicted real part (green) matches the validation samples
(black) and the predicted magnitude (orange) matches the
validation samples (black) in all randomly selected cases,
respectively. In particular, the model captures the amplitude
oscillations of the crosstalk. For completeness, Table I lists the
mean and maximum prediction errors for reflections and near-
end crosstalk S-parameter across the entire frequency range
with regard to each kernel.

Moreover, the high accuracy obtained for both the real and
imaginary part allows one to recover the S magnitude, phase,
mixed-mode S parameters, or other figures of merit that are
derived from the single-ended S-parameters. For example, the
mixed-mode insertion loss (IL) and return loss (RL) are of
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Fig. 3. Single-ended S-parameters of interest, between the first pair of the interconnect: comparison of validation set (black lines) with predicted values using
the new kernel. First and second rows show the real part and the magnitude, respectively.
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Fig. 4. Comparison of quantities, that are derived from the original S-
parameter representation as real/imaginary part for the previously analyzed
interconnect: differential insertion loss (IL) and differential return loss (RL).
The validation data is plotted in solid black, the GP with proposed kernel is
plotted in dashed orange.

particular interest in interconnect design. Figure III correlates
the predicted IL and RL with the respective ones from the
validation data set.

IV. CONCLUSION

The novel kernel uses periodic components that enable the
Gaussian process modeling of S-parameters that show dynamic
and oscillatory behavior, e.g. electrically long interconnects
with considerable delays. It is superior to a standard kernel
that does not achieve sufficient accuracy. In addition, the new
kernel allows retrieval of frequency-dependent figures of merit
thanks to the low prediction error on the real and imaginary

part of the S-parameters. Further studies are necessary to
guarantee physical properties, such as the S-matrix causality,
and to extend the proposed kernel to the modeling of S-
parameters to cover additional design variables.
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