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Abstract—In this contribution we study the propagation con-
stant of interconnects subject to line edge roughness by means
of an efficient stochastic framework. By employing the stochastic
testing method, we succeed in limiting the number of calls to
the full-wave electromagnetic field solver at the core of the
system. Additionally, the computationally burdensome solution
of the eigenvalue problem is eased by reducing its order through
projection on an appropriate basis. The resulting two-step accel-
eration leads to an effective approach to assess the effect of line
edge roughness on the characteristics of interconnects. The novel
framework is applied to a rough rectangular waveguide and a
microstrip.

Index Terms—interconnects, surface roughness, stochastic test-
ing , reduced order modeling

I. INTRODUCTION

The push towards ever higher frequencies, more compact
components and increasing heterogeneous integration raises
the complexity in the design of electronic circuits and systems.
Physical phenomena that could previously be ignored without
detrimental consequences are now more than ever inevitable
and should be included in the designer’s tools to assess their
influence from the get-go. Surface roughness and line edge
roughness (LER) [1] are prime illustrations of such phenomena
that refer to the non-ideal, irregular profile of conductors.
Whether present due to the production process or intentionally
applied to obtain cohesion between various layers, its effect
on the performance is getting stronger due to miniaturization
and a more developed skin effect. Given the random nature
of line edge and surface roughness, stochastic methods built
around full-wave electromagnetic modeling simulators are the
most appropriate tools. However, dealing with the complicated
geometry of a coarse surface or edge is a time-consuming
effort for full-wave tools, not to mention the numerous runs
required for distribution estimation in a stochastic context.

Here, we continue the work outlined in [2], where a set of
sparse stochastic methods to capture LER’s influence on the
propagation constant of a rectangular waveguide was modeled
and analyzed. In that paper, the sparse polynomial chaos (SPC)
method [3] and a sparse grid version of stochastic testing
(ST) [4], [5] are deployed for the waveguide analysis. Both
methods strongly reduce the number of calls required to the
full-wave solver, which is a finite-element method (FEM)
in this study. However, the generalized eigenvalue problem
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Fig. 1. The line edge roughness (LER) is realized by shifting every ith point
on the nominal (black) edge by a random height variation ∆i perpendicular
to the edge.

that needs to be solved remains a costly operation that is
unavoidable for every single instance of the FEM simulation
and it thus is an important bottleneck in the computation cost.
Therefore, we propose to modify the model order reduction
approach presented in [6] to be applicable to the pertinent
eigenvalue problem. This allows for the solution to be sped
up considerably without any discernible loss in accuracy.
Our improved technique is validated via the analysis of the
TE10 mode of a rectangular waveguide and comparison with
the sparse ST method. Additionally, it is applied to a microstrip
configuration.

II. SPARSE GRID STOCHASTIC TESTING

Consider a 2-D waveguide configuration with the z-axis as
the direction of invariance and a e−jβz dependence of the
modal fields, with β the propagation constant of the mode.
Solving the field distribution in the cross-section by means
of a pertinent set of hierarchical vector basis functions [7]
and testing with a Galerkin approach, results in the following
quadratic eigenvalue problem:[

Mβ2 + Cβ +K
]
v = 0. (1)

Cast in a generalized eigenvalue form, it can be written as[
C K

−I 0

] [
βv
v

]
= β

[
−M 0

0 −I

] [
βv
v

]
⇔ Ax = βBx,

(2)
with I the identity matrix of size n, i.e., the number of
basis functions. Matrices C, K and M are easily constructed
through the standard derivation of the finite element method.
The solution of (2) yields the sought-after propagation con-
stants β of the given waveguide.

As demonstrated in Fig. 1 and similar to the procedure
outlined in [8], [9], the rough edges are realized by shifting
points ri on these lines randomly over a distance ∆i, which are



random variables (RVs) governed by a multivariate Gaussian
distribution. The elements of the accompanying correlation
matrix Σ are given by

Σij = σ2
r exp

(
−||ri − rj ||2∂Ω/L2

c

)
, (3)

with || · ||∂Ω the distance measured along the contour, σr the
standard deviation of the matrix and Lc the correlation length,
i.e., a measure for the dependency on neighboring heights.
The correlated set of height variations is subsequently ap-
proximated through the Karhunen-Loève transform (KLT) by a
(smaller) set of NRV stochastically independent normal random
variables ξ tweaked by a threshold parameter Θ (see [2] for
more details).

At this point, the sought-after distribution of the propagation
constant β is modeled by a polynomial chaos expansion
(PCE):

β (ξ) ≈
K∑

k=0

akϕk (ξ) , (4)

where K +1 orthonormal polynomials ϕk are employed with
unknown expansion coefficient ak. If all polynomials up to
the order Pmax are included for NRV RVs, the number of
polynomials equals

K + 1 =
(Pmax +NRV)!

Pmax!NRV!
. (5)

To find the unknowns ak, stochastic testing [4] is employed,
which computes (4) for K + 1 interesting realizations ξi,
resulting in a set of equations:

β = Φ · a ⇔ β (ξi) =

K∑
k=0

akϕk (ξi) ∀i ∈ {0, . . . ,K}. (6)

The crux of the matter now remains to select those points ξi.
In the node picking algorithm [4], a quadrature-based ten-
sor grid is constructed first from which nodes with higher
weights are preferentially selected while at the same time
orthogonalizing the candidate set to ensure the conditioning
of (6). However, the curse of dimensionality cripples ST as
well: when applying this method to a problem with a growing
number of RVs, which easily occur in LER experiments,
the number of required evaluations of the full-wave solver
rises fast. Moreover, the node selection process slows down
considerably as the next node with the highest weight has to
be found in a rapidly growing search space.

A solution to ease this fast-growing set of nodes is to exploit
the fact that not all nodes in the grid are of equal importance
to represent the distribution of the propagation constant. Cross
terms with a high total degree can be safely omitted without
losing accuracy. This procedure leads to sparse grids, such
as the Smolyak grid [10], used in this incarnation of ST. By
applying the ST node picking algorithm on the reduced set of
grid nodes, the matrix equation (6) remains well-conditioned
and maintains a reasonable run-time.

III. REDUCED-ORDER STOCHASTIC TESTING

With the random realization ξi chosen, the FEM solver
needs to be invoked for each corresponding roughness profile
and the subsequent eigenvalue problem (2) has to be solved.
The operation to invert this 2n×2n matrix, with n the number
of basis functions on the FEM mesh, is resource intensive
but can be sped-up. Each run of the full-wave simulation
solves a configuration that does not differ that much from
the previous one, so some information should be transfer-
able or recyclable. To exploit this redundancy to the fullest,
the approach advocated in [6] is adapted to the generalized
eigenvalue problem (2). The core idea is to construct an
(2n × m) orthogonal projection matrix Q composed of m
orthonormal basis vectors ej , with m ≪ 2n, such that (2)
can be transformed into

Ãx̃ = β̃B̃x̃, (7)

with Ã = Q
T
AQ, B̃ = Q

T
BQ and β̃ the approximated

propagation constant with its eigenvector x̃ in the subspace
spanned by {ej}. With the resulting matrix equation reduced
to dimension m, it can be solved in a fraction of the time,
thus reducing the overall computation time.

The question of course remains how to efficiently con-
struct Q to obtain a considerable efficiency gain without
sacrificing too much accuracy. The applied strategy consists
of solving the full, non-reduced eigenvalue problem (2) for a
few, well-chosen nodes of the K +1 realizations in {ξj} and
extract their eigenvectors as a starting point for the projection
matrix. In this contribution, we choose for this set, named
{ξj}base, NRV + 1 specific elements of {ξj}, namely the
nominal problem and NRV realizations of ξi along the main
directions of ξ. These vectors correspond to points on the
sparse grid with the highest weight along the axis of each
individual normal random variable. Depending on the nature of
the configuration under study other choices for {ξj}base might
be opportune but for the analysis of rough interconnects in this
contribution, the approach has proven to be very successful as
will be shown in Section IV. With the starting set fixed, the
algorithm for constructing Q is as follows:

1) Solve (2) for the NRV + 1 elements of {ξj}base and
store their corresponding eigenvectors {xj}base.

2) Initialize Q as
x0

||x0||
with x0 the eigenvector

corresponding to the nominal problem.

3) For each of the remaining eigenvectors in {xj}base,

compute x⊥
j = xj −Q

[
Q

T
xj

]
. If ||x⊥

j || is larger than

a predetermined threshold value, expand the column
space of Q with xj , resulting in P =

[
Q | xj

]
.

4) Calculate an updated version of Q by performing a
QR-decomposition on P = Q

′
R to get a numerically

stable computed orthogonal projection matrix. As a last
action, replace Q by its updated successor Q

′
.



5) Repeat step 3) and 4) for the remaining eigenvectors in
{xj}base and terminate once all eigenvectors have been
tested and, if necessary, added to Q. In the end, a (2n×
m) matrix has been constructed with m ≤ NRV + 1.

The remaining K−NRV elements of {ξj} can now be solved
through (7) in the reduced space.

IV. APPLICATION TO INTERCONNECT STRUCTURES

We first apply the proposed method to the rectangular
waveguide analyzed in [2], to verify the validity of the
reduced-order ST and demonstrate its speed-up. Secondly,
we look at a microstrip configuration to show the applica-
bility to more widespread, realistic interconnect configura-
tions. All calculations were performed on a machine with an
Intel®core™i7-3770 CPU at a clock of 3.4GHz with 32 GB
of RAM.

A. Rough rectangular waveguide

Consider a rectangular waveguide with dimensions 2l and
1l along the x-axis and y-axis, respectively, with l an arbitrary
length unit. With a wavenumber k0 = 10l−1, a discretization
of 1094 triangles is required, leading to a total of 5745 un-
knowns, in a second-order FEM expansion. Roughness is
simulated by displacing 82 edge nodes along the rectangle’s
boundary. The constants defining the roughness profile are
σr = 0.01l and Lc = 0.5l which leads to NRV = 8 after
a KLT with Θ = 0.85. Therefore, the set {ξj}base contains
9 realizations that are solved in the full space. For a PCE with
maximal order of expansion Pmax = 2, the total number of
polynomials, and thus also of required realizations, is given by
K+1 = 45 (see (5)). Hence, the remaining 45−9 = 36 nodes
can now be calculated in the reduced space.

Comparing the distribution of the propagation constant of
the lower-order, i.e., the TE10 mode, with a Monte Carlo
approach of 50000 samples, we obtain the correspondence
shown in Figure 2. The curve of the reduced-order ST was
obtained by performing a MC analysis on the polynomial
model (4), which owing to the ease of evaluation of such a
model took a mere fraction of the brute force MC method. The
average and standard deviation of β are tabulated in Table I
together with those of the MC, ST and SPCE [2] methods.
The obtained standard deviation is slightly higher than the
other methods predict but this can be attributed to a small
loss of accuracy by projecting on the reduced solution space.
A Cramér-von Mises test [11] on both distributions in Fig. 2
yields in a p-value of 0.149, confirming that both sets of results
stem from the same distribution.

The main goal of the reduced-order ST was to reduce
the calculation time without significantly sacrificing accuracy.
Having confirmed the latter, we turn to the former. From Ta-
ble II, we clearly see a speed-up of about a factor four
obtained on the total calculation time. The breakdown of the
computation time over the various steps in the algorithms
exposes the origin of this speed-up: the computation of the
eigenvectors in the full space is such a dominant contribution

Fig. 2. Distribution comparison of the TE10 mode propagation constant for
a rectangular waveguide by a Monte Carlo approach and a reduced-order ST
technique.

TABLE I
STATISTICS OF THE TE10 PROPAGATION CONSTANT OBTAINED BY MC,

SPARSE ST, SPC AND REDUCED-ORDER ST

Method µ
[
l−1

]
σ
[
l−1

]
MC 9.87589 0.00192

ST [2] 9.87590 0.00196
SPCE [2] 9.87589 0.00196

Reduced-Order ST 9.87588 0.00197

to the run-time that the, albeit rather limited, overhead of
the arithmetic involved in constructing the Q-matrix is im-
mediately compensated by a reduced number of large matrix
solutions.

B. Microstrip interconnect

Our second example constitutes a microstrip interconnect
on a (lossless) RO4003C substrate bounded by a perfect
electric conductor (PEC) box. The cross-section is meshed
with 3333 triangles, with a finer discretization near the metallic
strip in anticipation of strong fringing fields in this region.
Subjecting the 154 nodes on the central strip to LER, the
distribution on their deviation is governed by σr = 1 µm
and Lc = 0.1mm which leads to NRV = 13 after a KLT
with Θ = 0.85. Given a second-order PCE, this leads to
K + 1 = 105 runs, in correspondence with (5), of the FEM

TABLE II
COMPARISON OF THE CALCULATION TIME BETWEEN THE ST [2] AND THE

REDUCED-ORDER ST METHODS. tEIG IS THE CALCULATION TIME TO
SOLVE (2), tRED THE TIME TO SOLVE (7), tQ THE CALCULATION TIME FOR

CONSTRUCTING Q AND tTOT THE TOTAL COMPUTATION TIME.

Waveguide teig [s] tred [s] tQ [s] ttot [s]

ST 45 · 1.97 / / 88.8
Reduced-Order ST 9 · 1.97 36 · 0.0857 0.37 21.2

Microstrip teig [s] tred [s] tQ [s] ttot [s]

ST 105 · 8.81 / / 925.05
Reduced-Order ST 14 · 8.81 91 · 0.0588 2.66 131.35



Fig. 3. Schematic overview of the simulated microstrip interconnect with
annotated dimensions and relevant material properties. The strip and boundary
box are perfect electric conductors (PEC) with the strip subjected to roughness.

(a) β with smooth (black) and rough
(red) edge.

(b) Average deviation ∆β.

Fig. 4. Comparison of the lowest-order propagation constant as a function
of the frequency, for the nominal microstrip and the average lowest-order
propagation constant for a rough microstrip. a) Average β for both ST and
reduced-order ST vs. a smooth microstrip. b) Average deviation ∆β from the
nominal β as a function of frequency.

solver for every frequency point whose we would like to
examine the propagation constant.

The results of this frequency sweep are given in Fig. 4a
and Fig. 4b. Figure 4a compares the nominal lowest-order
propagation constant to the average β for the configuration
with a rough metal strip. For the rough microstrip, the results
obtained by means of standard and reduced-order ST are both
displayed. A very good agreement between both techniques
is observed. Furthermore, it is also clearly visible that the
lowest-order propagation constant tends to shift upwards as a
consequence of LER. These observations are further clarified
in Fig. 4b, where the nominal value of the propagation constant
is subtracted from the average, again for both techniques.

The calculation time involved in solving the eigenvalue
problem for one frequency sample is included in Table II.
The speed-up obtained by projecting the matrix equation on a
reduced space has increased to a factor of seven as compared to
the rectangular waveguide due to a higher number of random
variables. This further demonstrates that the reduced-order ST
is a powerful extension of the ST algorithm and augments its
applicability to problems involving a ever-growing number of
unknowns.

V. CONCLUSION

The goal of this contribution was to facilitate the anal-
ysis of line edge roughness’ influence on the propagation
characteristics of interconnect structures. Given the long run-
time of a full-wave simulation, an order reduction technique
was applied to a sparse stochastic testing method. This cuts
down not only the number of calls required to the full-
wave solver but also drastically reduces the solution time of

the generalized eigenvalue problem required to extract the
propagation constant in the lion’s share of the runs required to
characterize the probability distribution. The framework was
successfully applied to a rough rectangular waveguide and a
rough microstrip interconnect.
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